СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.6.018.42-16

ВЛИЯНИЕ ГЕТЕРОВАЛЕНТНОГО ДОПИРОВАНИЯ КАТИОННОЙ ПОДРЕШЕТКИ НА ГИДРАТАЦИЮ И СОСТОЯНИЕ КИСЛОРОДО-ВОДОРОДНЫХ ГРУПП В СЛОЖНОМ ОКСИДЕ BaLaIn_{0.9}M_{0.1}O_{3.95} (M = Mg, Zn) СО СТРУКТУРОЙ РАДДЛЕСДЕНА-ПОППЕРА

© 2021 г. Н. А. Тарасова^{*a*,*}, А. О. Галишева^{*a*}, И. Е. Анимица^{*a,b,***}

^а Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002, Екатеринбург, Россия ^b Российская академия наук, Уральское отделение, Институт высокотемпературной электрохимии,

> Екатеринбург, Россия *e-mail: Natalia. Tarasova@urfu.ru **e-mail: Irina.Animitsa@urfu.ru Поступила в редакцию 09.07.2020 г. После доработки 09.07.2020 г. Принята к публикации 16.09.2020 г.

Проведен синтез соединений BaLaInO₄ и BaLaIn_{0.9}M_{0.1}O_{3.95} (M = Mg, Zn), характеризующихся структурой Раддлесдена—Поппера. Доказана способность исследуемых фаз к гидратации, при этом единственной формой кислородно-водородных групп являются энергетически неэквивалентные гидроксо-групп. Установлено, что введение магния и цинка приводит к увеличению степени гидратации по сравнению с недопированной фазой и перераспределению вкладов от различных OH⁻-групп: увеличивается доля изолированных OH⁻-групп и снижается доля OH⁻-групп, вовлеченных в сильные водородные связи.

Ключевые слова: структура Раддлесдена–Поппера, термогравиметрия, ИК-спектроскопия **DOI:** 10.31857/S0044453721050265

Развитие экологически чистой и ресурсосберегающей энергетики предполагает создание различных электрохимических устройств, в том числе, топливных элементов, для работы которых необходимыми являются новые материалы, характеризующиеся комплексом функциональных свойств [1]. Сложные оксиды, обладающие высокими значениями ионной (O^{2-} , H^+) проводимости, могут быть использованы в качестве материала электролита твердооксидных топливных элементов ТОТЭ [2, 3]. При этом использование протонпроводящих сложных оксидов имеет ряд преимуществ, таких как понижение рабочих температур (до 300–500°С) и увеличение эффективности ТОТЭ [4–6].

Большинство известных протонных проводников — это сложные оксиды со структурой перовскита ABO₃ или производной от нее. Возможность возникновения протонных дефектов в этих соединениях обусловлена наличием в их структу-

ре вакансий кислорода $V_0^{\bullet\bullet}$, которые могут быть заданы введением акцепторного допанта. В катионную подрешетку сложного оксида, чаще всего состава $A^{2+}B^{4+}O_3$, вводится элемент с меньшей степенью окисления, и наличие акцепторной примеси компенсируется появлением вакансий кислорода $[V_o^{\bullet\bullet}] = 1/2[M'_B]$. При обработке в атмосфере, содержащей пары воды, в структуре таких соединений формируются протонные дефекты, что обуславливает возникновение протонной проводимости [7]:

$$V_{o}^{\bullet\bullet} + H_{2}O_{ra3} + O_{o}^{\times} \Leftrightarrow 2(OH)_{o}^{\bullet}, \qquad (1)$$

где $V_o^{\bullet\bullet}$ — вакансия кислорода, O_o^{\times} — атом кислорода в регулярной позиции, $(OH)_o^{\bullet}$ — гидроксогруппа в подрешетке кислорода.

Концентрация ОН[–]-групп, их состояние (участие в водородных связях, места расположения и т.д.), температурные пределы гидратации определяют поведение протонной проводимости. Поэтому знание этих характеристик представляется важной задачей для выяснения закономерностей формирования протонной проводимости.

Наиболее изученными с точки зрения протонной проводимости являются акцепторно допированные цераты и цирконаты бария [8]. Однако концентрация протонов в их структуре определяется уровнем кислородного дефицита, задаваемого концентрацией допанта, и не превышает 10–15 мол. %. Кроме того, они претерпевают ряд фазовых превращений, что является неблагоприятным фактором с точки зрения совместимости с компонентами топливных элементов. Соответственно, проблема поиска материалов, характеризующихся высокими значениями протонной проводимости, остается актуальной.

Соединения с блочно-слоевой структурой, в том числе, со структурой Раддлесдена-Поппера, являются перспективными с точки зрения возможности реализации в них протонной проводимости. Наличие в структуре таких соединений (AA'BO₄) оксидных слоев [A, A'-O], разделяющих октаэдры [BO₆] перовскитных блоков [A_{3/4}A'_{1/4}B'O₄], предполагает возможность поглощения из газовой фазы больших количеств воды при гидратации:

$$O_0^{\times} + H_2O \Leftrightarrow (OH)_0^{\bullet} + (OH)_i^{\prime},$$
 (2)

где $(OH)_{o}^{\bullet}$ — гидроксо-группа в регулярной позиции кислорода, а $(OH)_{i}^{\prime}$ — гидроксо-группа, расположенная в солевых блоках.

До недавнего времени, в аспекте ионного переноса соединения со структурой Раддлесдена-Поппера с изучались только как кислородноионные проводники [9-13]. Однако, в течение последних лет была показана возможность протонного переноса в таких соединениях [14, 15], в том числе, в составах на основе $BaLaInO_4$ [16, 17]. Было установлено, что при температурах ниже 500°С в атмосфере с повышенным содержанием паров воды фазы на основе BaLaInO₄ демонстрируют 100% протонный перенос, а допирование катионных подрешеток La и In приводит к росту значений электропроводности на ~1.5 порядка величины. Однако фундаментальные закономерности переноса протонов, в том числе, влияние природы допанта на количество поглощаемой воды и состояние кислородо-водородных для этих систем на настоящий момент еще не установлены.

В настоящей работе изучена возможность проведения акцепторного допирования фазы $BaLaInO_4$ в подрешетке In на атомы Mg и Zn, а также влияние допирования на процессы гидратации и состояние кислородно-водородных групп. Выполнен сравнительный анализ с результатами, полученными ранее при проведении донорного допирования в подрешетке In на атомы Ti, Zr [17] и Nb [18].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы BaLaInO₄, BaLaIn_{0.9}Mg_{0.1}O_{3.95} и BaLaIn_{0.9}Zn_{0.1}O_{3.95} были получены методом твердофазного синтеза из предварительно осушенных BaCO₃, La₂O₃, In₂O₃, MgO, ZnO. Синтез проводили на воздухе при ступенчатом повышении температуры (800°С–1350°С) и многократных перетираниях в агатовой ступке в среде этилового спирта. Время отжига на каждой стадии составляло 24 ч.

Рентгенографический анализ был выполнен на дифрактометре Bruker Advance D8 в Cu K_{α} -излучении при напряжении на трубке 40 кВ и токе 40 мА. Съемка производилась в интервале 2 θ = = 20°-80° с шагом 0.05° θ и экспозицией 1 с на точку. Расчеты параметров решетки проводили методом полнопрофильного анализа Ритвельда с помощью программы FullProf Suite.

Безводные образцы были получены путем выдержки вещества при высоких температурах (1300°С) с последующим охлаждением в атмосфере сухого воздуха ($p_{\rm H_2O} = 3.5 \times 10^{-5}$ атм) и закалкой при 100–150°С. Гидратированные образцы были получены путем медленного охлаждения от 1000°С до 200°С со скоростью 1 К/мин в атмосфере влажного воздуха ($p_{\rm H_2O} = 2 \times 10^{-2}$ атм).

Парциальное давление паров воды задавали циркуляцией воздуха через порошок оксида фосфора P_2O_5 для создания сухой атмосферы ($p_{H_2O} = 3.5 \times 10^{-5}$ атм), а также через насыщенный раствор КВг для создания влажной атмосферы ($p_{H_2O} = 2 \times 10^{-2}$ атм). Для предотвращения карбонизации керамики воздух был предварительно очищен от CO₂ путем циркуляции через реактив AC-КАРИТ, содержащий твердую щелочь, в случае сухой атмосферы, либо через 30% раствор NaOH в случае влажной атмосферы.

Термический анализ предварительно гидратированных образцов проводили на приборе NETZSCH STA 409 PC в комплекте с квадрупольным масс-спектрометром QMS 403C Aëolos (NETZSCH), позволяющем одновременно выполнять термогравиметрические измерения (ТГ), и анализ отходящих газов (масс-спектрометрия MC), в интервале температур 25–1000°C и скоростью нагрева 10 К/мин.

Для идентификации кислородно-водородных групп использовали метод ИК-спектроскопии. Исследования проводили на ИК-Фурье-спектрометре Nicolet 6700 в диапазоне частот от 400 до 4000 см⁻¹ методом диффузного отражения с использованием приставки Smart Diffuse Reflectance.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Методом рентгенофазового анализа установлено, что образцы BaLaInO₄, BaLaIn_{0.9}Mg_{0.1}O_{3.95} и BaLaIn_{0.9}Zn_{0.1}O_{3.95} являются однофазными и характеризуются ромбической симметрией (пространственная группа *Pbca*). Значения параметров решетки, полученные для BaLaInO₄, хорошо согласуются с описанными ранее в литературе [19]. Введение магния и цинка в подрешетку ин-

Образец	a, Å	b, Å	<i>c</i> , Å	<i>V</i> , (Å ³)	V_p , (Å ³)	V_f , (Å ³)
BaLaInO ₄	12.932(3)	5.906(1)	5.894(2)	450.195(8)	112.54(3)	39.41
BaLaIn _{0.9} Mg _{0.1} O _{3.95}	12.931(4)	5.890(7)	5.888(2)	448.533(6)	112.13(0)	39.66
BaLaIn _{0.9} Zn _{0.1} O _{3.95}	12.928(3)	5.891(2)	5.871(3)	447.177(0)	111.87(7)	39.56

Таблица 1. Параметры, объем (V), приведенный к перовскитному объем (V_p) и свободный объем (V_f) элементарных ячеек

дия приводит к изменению объема элементарной ячейки (таблица 1). Значения объема элементарной ячейки допированных образцов близки между собой и ниже значения для недопированного образца, что обусловлено меньшими ионными радиусами металлов-допантов ($r_{Mg^{2+}} = 0.72$ Å, $r_{Zn^{2+}} = 0.74$ Å, $r_{In^{3+}} = 0.80$ Å [20]) относительно радиуса замещаемого металла.

Гидратация как недопированного, так и допированных образцов приводила к изменению их симметрии с ромбической на моноклинную (P2/m), гидролизного разложения фаз не было обнаружено. В качестве примера обработки полученных в работе рентгенографических данных методом полнопрофильного анализа Ритвелда, на рис. 1 приведена рентгенограмма для гидратированного образца BaLaIn_{0.9}Zn_{0.1}O_{3.95} · nH₂O.

Для определения количества поглощаемой воды из газовой фазы для предварительно гидратированных образцов BaLaInO₄ · nH_2O и BaLaIn_{0.9}M_{0.1}O_{3.95} · nH_2O (M = Mg, Zn) были проведены термические и масс-спектрометрические исследования. По убыли массы была определена степень гидратации. Для удобства сравнения данные приведены в пересчете на число молей воды на формульную единицу сложного оксида (рис. 2). Совместно с TГ-кривыми представлены результаты масс-спектрометрии (MC) для BaLaIn_{0.9}Zn_{0.1}O_{3.95} · nH_2O .

Как для недопированного, так и для допированных образцов основная потеря массы наблюдается в температурном интервале $200-700^{\circ}$ С, что, согласно результатам масс-спектрометрического анализа, обусловлено выходом H₂O. Выделения других возможных летучих веществ (CO₂, O₂) не было обнаружено. Значения степени гидратации для допированных образцов близки (~0.78 моль для BaLaIn_{0.9}Zn_{0.1}O_{3.95} и ~0.83 моль для BaLaIn_{0.9}Mg_{0.1}O_{3.95}) и выше, чем значение для недопированного BaLaInO₄ (~0.62 моль).

Поскольку введение акцепторного допанта (Mg²⁺, Zn²⁺) приводит к образованию в структуре вакансий кислорода:

$$2\mathrm{MO} \xrightarrow{\mathrm{B}_{2}\mathrm{O}_{3}} 2\mathrm{M}_{\mathrm{B}}' + 2\mathrm{O}_{\mathrm{O}}^{\times} + \mathrm{V}_{\mathrm{O}}^{\bullet\bullet}, \qquad (3)$$

то можно было предположить, что рост степени гидратации при допировании обусловлен взаимодействием вакансий с водой (уравнение 1). Од-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 5 2021

нако, исходя из концентрации вакансий кислорода, заданной уровнем допирования, можно было ожидать увеличение степени гидратации на 0.05 моль воды для допированных образцов BaLaIn_{0.9}M_{0.1}O_{3.95}[V_o]_{0.05} · nH₂O относительно недопированного. Так как наблюдаемое увеличение степени гидратации составляет в среднем ~0.2 моль воды, это позволяет предполагать, что рост степени гидратации при допировании обусловлен иным фактором.

Известно, что способность к гидратации для сложных оксидов определяется не только присутствием в структуре вакансий кислорода, но и наличием достаточного пространства в кристаллической решетке для размещения гидроксо-групп. В качестве критерия оценки данного параметра была выбрана величина свободного объема элементарной ячейки. В работе для всех исследуемых образцов на основе полученных значений объема элементарной ячейки были рассчитаны значения объема псевдокубической ячейки (V_n) $a_p = a/2, b_p = b/\sqrt{2}, c_p = c/\sqrt{2},$ а также значения свободного объема элементарной ячейки (V_f). Он определялся как разность между общим (приведенным) объемом ячейки и суммой объемов, занимаемых индивидуальными ионами в ячейке, и был рассчитан по следующей формуле:

Рис. 1. Рентгенограмма гидратированного образца $BaLaIn_{0.9}Zn_{0.1}O_{3.95} \cdot nH_2O$; экспериментальные (точ-ки), расчетные (линия), разностные (внизу) данные и угловые положения рефлексов (штрихи).

Рис. 2. Данные термогравиметрии (ТГ) для образцов BaLaInO₄ · nH₂O (l), BaLaIn_{0.9}Zn_{0.1}O_{3.95} · nH₂O (2) и BaLaIn_{0.9}Mg_{0.1}O_{3.95} · nH₂O (3), а также данные масс-спектрометрии (MC) для образца BaLaIn_{0.9}Mg_{0.1}O_{3.95} · nH₂O, C – водопоглощение, I_i – ионный ток.

$$V_f = V_p - \sum m_i (4/3) \pi r_i^3, \qquad (4)$$

где V_p – это объем псевдокубической ячейки, m_i – коэффициент химического состава, r_i – ионный радиус.

Как видно (таблица 1), введение допанта, обладающего меньшим радиусом, приводит к увеличению свободного объема элементарной ячейки, то есть, к увеличению в кристаллической решетке пространства, доступного для размещения гидроксо-групп, что, в итоге, обуславливает рост степени гидратации при допировании.

Возвращаясь к анализу результатов термогравиметрии и масс-спектрометрии, необходимо отметить, что как для недопированного, так и для допированных образцов процесс выделения воды происходит ступенчато. ТГ-кривые представляют суперпозицию слабо разрешившихся ступеней, что подтверждает наличие нескольких сигналов на МС-кривой. Очевидно, это обусловлено наличием в структуре гидратированных образов энергетически неэквивалентных гидроксо-групп, то есть, гидроксо-групп, вовлеченных в различные по силе водородные связи. Введение допанта приводит к уменьшению вклада низкотемпературного эффекта и росту вклада высокотемпературного эффекта. Иными словами, допирование приводит к перераспеределению вкладов ОН--групп.

Для анализа природы кислородно-водородных групп в работе были получены ИК-спектры гидратированных образцов (рис. 3). Сигнал 1420 см⁻¹, регистрирующийся в области валентных колебаний, отвечает деформационным колебаниям гидроксо-групп, связанных с атомами металла М–ОН [21, 22]. Отсутствие в данной области (ниже 2000 см⁻¹) сигналов, относящихся к колебаниям молекулярной воды и катионам гидроксония (~1600 см⁻¹ и ~1700 см⁻¹) позволяет говорить о том, что единственной формой существования протона в структуре исследуемых образцов являются OH^- -группы.

Асимметричный вид широкой полосы в области валентных колебаний 2800—3600 см⁻¹ свидетельствует о наложении нескольких сигналов, то есть, о наличии ОН⁻-групп с различным кристаллографическим положением, и, соответственно, с разной степенью их участия в водородных связях. Полосы 2800 и 3520 см⁻¹ соответствуют колебанию ОН⁻-групп, вовлеченных в сильные и более слабые водородные связи соответственно. Узкая полоса с большей частотой ~3600 см⁻¹ указывает на наличие изолированных ОН⁻-групп.

Сопоставляя данные ИК-спектроскопии с результатами, полученными методом термогравиметрии, необходимо отметить, что основной сигнал на ТГ-кривых, лежащий в температурном интервале 200–350°С, соответствует выделению наименее термически стойких ОН⁻-групп, то есть групп, вовлеченных в сильные и слабые водородные связи. Высокотемпературный сигнал на ТГкривых (350–700°С) соответствует потере изолированных ОН⁻-групп, являющихся наиболее термически стойкими. Величина этой ступени для допированных образцов была значительно больше, по сравнению с недопированной фазой.

Возвращаясь к анализу результатов ИК-спектроскопии, видно, что введение допанта приводит к уменьшению интенсивности сигнала 2800 см⁻¹ относительно недопированного образца, то есть, к снижению доли наименее термически стойких, вовлеченных в сильные водородные

Рис. 3. ИК-спектры гидратированных образцов BaLaInO₄ · nH₂O (I), BaLaIn_{0.9}Zn_{0.1}O_{3.95} · nH₂O (2) и BaLaIn_{0.9}Mg_{0.1}O_{3.95} · nH₂O (3); $I_{\text{отн}}$ – относительная интенсивность.

связи ОН⁻-групп, что хорошо коррелирует с результатами ТГ. Иными словами, введение акцепторного допанта приводит к перераспределению вкладов от различных ОН⁻-групп. Других форм кислородноводородных групп при допировании не образуется.

Необходимо отметить, что помимо акцепторного допирования подрешетки индия, осуществленного в данной работе, ранее нами была изучена возможность донорного допирования данной подрешетки. Было установлено, что замещение In³⁺ на Ti⁴⁺ и Zr⁴⁺ [17], а также на Nb⁵⁺ [18], приволит к росту степени гилратании вслелствие увеличения в кристаллической решетке пространства, доступного для размещения гидроксо-групп (объема элементарной ячейки), а также к перераспределению вкладов от различных ОН-групп. Как и для акцепторно-допированных образцов (BaLaIn_{0.9}Mg_{0.1}O_{3.95} и BaLaIn_{0.9}Zn_{0.1}O_{3.95}), донорно-допированных лля образцов $BaLaIn_{0.9}Zr_{0.1}O_{4.05}$ $(BaLaIn_{0.9}Ti_{0.1}O_{4.05},$ И BaLaIn_{0.9}Nb_{0.1}O_{4.10}) наблюдалось уменьшение доли ОН--групп, вовлеченных в сильные водородные связи.

Таким образом, в работе осуществлен синтез образцов $BaLaInO_4$, $BaLaIn_{0.9}Mg_{0.1}O_{3.95}$ и $BaLaIn_{0.9}Zn_{0.1}O_{3.95}$, характеризующихся структурой Раддлестена—Поппера, рентгенографически подтверждена их однофазность. Установлено, что введение магния и цинка приводит к уменьшению объема элементарной ячейки, но увеличению свободного объема. Доказана способность исследуемых фаз к диссоциативному поглощению воды из газовой фазы, при этом, единственной формой кислородо-водородных групп являются энергетически неэквивалентные OH^- -груп-

Показано, пы. что независимо ОТ вида допирования (донорного/акцепторного), увеличение в кристаллической решетке пространства, доступного для размещения гидроксо-групп, приводит росту степени гидратации для допированных образцов относительно BaLaInO₄, что сопровождается снижением доли ОН--групп, вовлеченных в сильные водородные связи. Это позволяет говорить о том, что гетеровалентное допирование подрешетки индия позволяет увеличить концентрацию протонов в структуре гилратированных образцов и является благоприятным фактором с точки зрения реализации протонного переноса.

СПИСОК ЛИТЕРАТУРЫ

- Al-Khori K., Bicer Y., Koç M. // J. of Cleaner Production. 2020. V. 245. 118924.
- Belmonte M. // Advanced Engineering Materials. 2006. V. 8. P. 693.
- Fabbri E., Bi L., Pergolesi D., Traversa E. // Advanced Materials. 2012. V. 24. P. 195.
- Marrony M., Dailly J. // ECS Transactions. 2017. V. 78. P. 3349.
- 5. Shim J.H. // Nature Energy. 2018. V. 3. P. 168.
- 6. Colomban Ph. // Solid State Ionics. 2019. V. 334. P. 125.
- 7. Iwahara H. // ISSI Letters. 1992. V. 2. P. 11.
- Kochetova N., Animitsa I., Medvedev D. et al. // RSC Advances. 2016. V. 6. P. 73222.
- Fujii K., Shiraiwa M., Esaki Y. // J. Mater. Chem. A. 2015. V. 3. P. 11985.
- Yang X., Liu S., Lu F., Xu J., Kuang X. // J. Phys. Chem. C. 2016. V. 120. P. 6416.
- 11. *Shiraiwa M., Fujii K., Esaki Y. et al.* // J. Electrochem. Soc. 2017. V. 164. P. F1392.
- 12. Ishihara T., Yan Yu., Sakai T., Ida S. // Solid State Ionics. 2016. V. 288. P. 262.
- Yang X., Liu S., Lu F., Xu J., Kuang X. // J. Phys. Chem. C. 2016. V. 120. P. 6416.
- Tarasova N., Animitsa I. // Solid State Ionics. 2015. V. 275. P. 53.
- Li X., Shimada H., Ihara M. // ECS Transactions. 2013. V. 50. P. 3.
- 16. Tarasova N., Animitsa I., Galisheva A., Korona D. // Materials. 2019. V. 12. 1668.
- 17. Tarasova N., Animitsa I., Galisheva A., Pryakhina V. // Solid State Sciences. 2020. V. 101. 106121.
- 18. *Тарасова Н.А., Галишева А.О., Анимица И.Е., Корона Д.В. //* Журн. физ. химии. 2020. Т. 94. С. 590.
- Titov Yu.A., Belyavina N.M., Markiv V.Ya. // Reports of the National Academy of Sciences of Ukraine. 1999. V. 10. P. 160.
- 20. Shannon R.D. Acta Crystallographica. 1976. V. A32. P. 155.
- 21. *Юхневич Г.В.* Инфракрасная спектроскопия воды. М.: Наука, 1973. 205 с.
- 22. Карякин А.В., Кривенцова Г.А. Состояние воды в органических и неорганических соединениях. М.: Наука, 1973. 176 с.