ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2021, том 95, № 5, с. 810–817

– ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 543.544.45:543.51

ИЗУЧЕНИЕ ПРОДУКТОВ ВЗАИМОДЕЙСТВИЯ ГИДРАЗИНОВ С ИЗОТИОЦИАНАТАМИ МЕТОДАМИ ХРОМАТОГРАФИИ И МАСС-СПЕКТРОМЕТРИИ

© 2021 г. А. В. Ульянов^{*a*}, К. Е. Полунин^{*a*}, И. А. Полунина^{*a*}, А. К. Буряк^{*a*,*}

^а Российская академия наук, Институт физической химии и электрохимии им. А.Н. Фрумкина, 119071 Москва, Россия *e-mail: akburyak@mail.ru Поступила в редакцию 15.06.2020 г.

После доработки 15.06.2020 г. Принята к публикации 17.07.2020 г.

Методом масс-спектрометрии в режимах электронной ионизации и матрично-активированной лазерной десорбции/ионизации в сочетании с методами газовой и жидкостной хроматографии изучены продукты взаимодействия алкилгидразинов с этил-, аллил- и фенилизотиоцианатами. Оптимизированы условия хроматографического разделения реакционных смесей и масс-спектрометрической идентификации целевых соединений в on-line и off-line режимах. Определены физикохимические характеристики сорбции тиосемикарбазидов. Изучены процессы распада и фрагментации их метастабильных протонированных молекул. Предложены схемы образования фрагментных и характеристических ионов тиосемикарбазидов в различных режимах ионизации.

Ключевые слова: алкилгидразины, изотиоцианаты, тиосемикарбазиды, хроматография, масс-спектрометрия

DOI: 10.31857/S0044453721050319

Соединения с изоцианатной группой широко используются при хроматографическом анализе аминов [1]. В [2, 3] было предложено использовать изотиоцианаты в качестве дериватизирующих реагентов при проведении хроматографических анализов алкилгидразинов в объектах окружающей среды. Дериватизация алкилгидразинов позволяет превратить эти полярные и чрезвычайно токсичные соединения, которые характеризуются крайней неустойчивостью на воздухе, в стабильные гидрофобные производные [3]. Преимушеством изотиоцианатов по сравнению другими типами дериватизирующих реагентов (ангидридами и галоидангидридами карбоновых кислот, карбонильными соединениями) является отсутствие образования в процессе реакции побочных продуктов и воды, осложняющих анализ. S, N-дериваты гидразинов, или тиосемикарбазиды, представляют и самостоятельный интерес как биологически активные соединения, проявляющие фунгицидную, инсектицидную и гербицидную активность [4].

Жидкостная хроматография на сегодняшний день может считаться одним из наиболее совершенных методов определения алкилгидразинов в различных природных объектах. Но существующие хроматографические методы их анализа имеют ряд недостатков: неэффективное хроматографическое разделение пары реагент-продукт, низкая чувствительность и селективность, необходимость долгой и трудоемкой пробоподготовки, невозможность прямого определения гидраспектрофотометрическими зинов метолами. сложности при исследовании мало летучих и термолабильных соединений [5]. Применение массспектрометра в качестве детектора позволяет увеличить чувствительность и селективность методов анализа алкилгидразинов и значительно упростить пробоподготовку за счёт исключения стадии очистки образца. Для масс-спектрометрической идентификации термолабильных и мало летучих соединений эффективно использование методов "мягкой" ионизации. в частности, лазерной десорбции/ионизации (ЛДИ) [6]. В методе ЛДИ импульсы лазерного излучения приводят к испарению и переводу анализируемого вещества с поверхности мишени в газовую фазу. Добавление матрицы (метод матрично-активированной лазерной десорбции/ионизации, МАЛДИ) позволяет обеспечить эффективное поглощение лазерного излучения и ионизацию анализируемых соединений [7]. МАЛДИ-МС можно использовать как отдельный аналитический метод, а также в сочетании с хроматографическими методами разделения в режиме *off-line*. Это обеспечивает экспрессный и надежный метод анализа смесей, позволяет существенно увеличить его чувствительность.

Целью работы являлось исследование продуктов взаимодействия алкилгидразинов с изотиоцианатами (тиосемикарбазидов) методами хроматографии и масс-спектрометрии, определение физико-химических характеристик их сорбции и сравнение характеристической масс-фрагментации тиосемикарбазидов в режимах электронной ионизации и МАЛДИ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4-Этил-, 4-аллил- и 4-фенил-1,1-диметилтиосемикарбазиды (I, II и III, соответственно) были получены по методике [2] путем добавления свежеперегнанного несимметричного диметилгидразина (НДМГ) (Нефтеоргсинтез, Салават) к растворам этил-, аллил- или фенилизотиоцианатов в дихлорметане (Aldrich, США). S,N-производные 1-метил- и 1,1-метилэтил-гидразинов (Aldrich, США) получали аналогичным образом. Реакции дериватизации протекают при 20°С без доступа воздуха за 1 ч.

Анализ реакционных смесей проводили на хромато-масс-спектрометре JEOL JMS-D300 (Jeol, Япония) с газовым хроматографом HP-5890 (Hewlett-Packard, США) и кварцевой капиллярной колонкой с неподвижной фазой DB-5 (J&W Scientific Inc., США) размером 30 м × 0.35 мм. Температура инжектора повышалась до 300°С со скоростью 5°С/мин, скорость газа-носителя (гелия) – 5 мл/мин, деление потока 1:10.

Хроматографический анализ методом ВЭЖХ проводили на хроматографе Agilent 1200 (Agilent Technologies, США) с УФ диодно-матричным детектором Agilent G1315B, программным обеспечением ChemStation A.10.02. и колонками: Zorbax-C18 Eclipse XDB (Agilent Technologies, CIIIA), Zorbax-CN (DuPont Instruments, США) размерами 4.6×150 мм, Hypercarb (Thermo Scientific, США) размером 2.1 × 100 мм. Удельная поверхность по БЭТ силикагелей с привитыми группами -C18 и -CN, составляла 180 м²/г, размер зерна 5 мкм, диаметр пор 80 и 70 Å, соответственно. Удельная поверхность пористого графитированного углерода $\Pi \Gamma Y - 120 \text{ м}^2/\Gamma$, размер зерна 5 мкм, диаметр пор 250 Å. Хроматографические разделения проводили в изократическом режиме при скорости элюента 0.5 мл/мин. В качестве элюентов использовали 50% раствор метанола в воде и 30% раствор пропанола-2 в н-гексане. Все растворители от Sigma-Aldrich (США) имели квалификацию HPLC. Идентификацию соединений проводили по поглощению при 240 нм.

Расчет индексов удерживания I_r соединений проводили в соответствии с инкрементами функциональных групп их молекул [8]. Фактор липофильности log P оценивали с помощью алгоритма XLogP [9].

Масс-спектры электронной ионизации (ЭИ) получены на масс-спектрометре JEOL JMS-D300 с прямым вводом образца в режиме положительных ионов в диапазоне масс 40–450 Да. Энергия ионизирующих электронов 70 эВ, ускоряющее напряжение 3 кВ, ток ионизации 300 мкА. Идентификацию соединений осуществляли с помощью программы библиотечного поиска и на основании расшифровки масс-спектров с использованием основных закономерностей фрагментации [10].

Масс-спектрометрические эксперименты с ЛДИ выполнены на масс-спектрометре Ultraflex II TOF (Bruker Daltonics, Германия) с азотным лазером ($\lambda = 337$ нм, энергия лазера 110 мкДж, частота импульса 20 Гц, количество импульсов 25-50, время между импульсами 1 мкс) и времяпролетным масс-анализатором с рефлектроном. Ускоряющее напряжение и напряжение на рефлектроне – 25 и 26.5 кВ, соответственно. Спектры получены в режиме регистрации положительных ионов и обработаны с помощью программного обеспечения FlexControl 3.4 И FlexAnalysis 3.4. (Bruker, Германия). Калибровку масс осуществляли по методам внешнего и внутреннего стандарта, используя значения масс пиков ионов матриц. Для изучения фрагментации исходных метастабильных протонированных молекул тиосемикарбазидов применяли режим распада за пределами ионного источника. Массспектры ионов-продуктов регистрировали с помощью метода FAST (Bruker Daltonics).

Раствор матрицы DHB — 2,5-дигидроксибензойной кислоты (Bruker Daltonics, Германия), с концентрацией 1 мг/мл готовили в 80% растворе метанола в воде. На поверхность металлической мишени AnchorChip 600 мкм (Bruker) наносили 1 мкл матрицы и после ее высушивания при комнатной температуре добавляли 1 мкл анализируемого раствора.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В газовой хроматографии разделение смесей обусловлено селективным взаимодействием между веществами и неподвижной фазой. Как видно на хроматограмме реакционной смеси (рис. 1а), молекулы тиосемикарбазидов сильнее взаимодействуют с полисилоксановой неподвижной фазой, чем более полярные молекулы изотиоцианатов, причем время удерживания t_R плоской молекулы аллилтиосемикарбазида II (*sp*²-гибридизация атома углерода) больше, чем t_R молекулы этилтиосемикарбазида I (*sp*³-гибриди-

Рис. 1. Хроматограмма реакционной смеси (а) и корреляционная зависимость времени и индексов хроматографического удерживания (б) этил- и аллилизотиоцианатов (*1* и *2*) и тиосемикарбазидов **I**, **II** (*3* и *4* соответственно).

зация атома углерода). Обнаружена линейная зависимость между экспериментально измеренными значениями $t_{\rm R}$ тиосемикарбазидов и изотиоцианатов и теоретически рассчитанными индексами их удерживания $I_{\rm r}$ (рис. 1б), которая может быть описана уравнением y = 32.113x + 561.55 с коэффициентом корреляции $r^2 = 0.9976$. Небольшая разница между индексами удерживания тиосемикарбазидов I и II (1351 и 1439 соответственно) может затруднить полное разделение этих соединений методом газовой хроматографии.

Алкильный заместитель обеспечивает более высокую летучесть этилтиосемикарбазида I. Фенильный заместитель фенилтиосемикарбазида III вносит большой вклад в его значение $I_r = 1824$ на полисилоксановой неподвижной фазе, однако это мало летучее и термолабильное соединение полностью разлагается в хроматографической системе на диметилгидразин и фенилизотиоцианат.

В масс-спектре ЭИ тиосемикарбазида I (табл. 1) присутствуют интенсивный пик молекулярного иона с m/z 147 и пики характеристических ионов с m/z 59 и 60, образовавшихся, предположительно, в результате элиминирования иона диметилгидразина с m/z 60 и его фрагмента с m/z 59.

В масс-спектре II помимо мало интенсивного пика молекулярного иона с m/z 159 присутствует две пары интенсивных пиков характеристических ионов с m/z 59, 60 и 115, 116, которые удобно использовать при идентификации микроколичеств II. Их образование, вероятно, можно объяснить внутримолекулярной циклизацией молекулярного иона в 2-имидазолидинтионовый цикл с последующим элиминированием из молекулярного иона диметиламиногруппы и метилимина формальдегида (схема 1). Предполагается, что структуры фрагментных ионов стабилизированы за счет внутримолекулярной водородной связи либо таутомерных переходов. Дополнительным критерием идентификации соединений I и II может служить время их удерживания или индексы удерживания.

Таким образом, метод газовой хроматографии позволяет эффективно разделить тиосемикарбазиды **I**, **II** и отделить их от избытка исходных реагентов. Однако этот метод не применим для анализа мало летучих и термолабильных соединений типа фенилтиосемикарбазида **III**. Более перспективным для исследования всех синтезированных тиосемикарбазидов является метод жидкостной хроматографии с масс-спектрометрической идентификацией соединений в режиме off-line.

На рис. 2 приведены результаты разделения смесей трех тиосемикарбазидов на ПГУ и модифицированных силикагелях с полярным элюентом (50 об. % метанола в воде). Тиосемикарбазиды I-III имеют одинаковый набор функциональных групп и отличаются только углеводородным радикалом, поэтому их факторы хроматографического удерживания при одинаковом составе элюента преимущественно будут определяться гидрофобными взаимодействиями с сорбентом. Во всех случаях эти взаимодействия усиливаются с увеличением количества атомов углерода в гидрофобном радикале тиосемикарбазидов: Et-All-Ph (рис. 2). В той же последовательности увеличиваются факторы липофильности тиосемикарбазидов lg P: 1.11-1.30-2.35, которые характеризуют способность вещества к переходу из неполярной фазы в полярную; и времена удерживания тиосемикарбазидов на Zorbax-CN из неполярно-

Таблица 1. Масс-спектры ЭИ молекул тиосемикарбазидов

m/z			
Еt-тиосемикар-	All-тиосемикар-	Ph-тиосемикар-	
базид I	базид II	базид III	
44, 45, 59, 60,	44, 45, 59, 60,	44, 45, 59, 60, 77,	
104, 147	115, 116, 159	93, 152, 161, 195	

Схема 1. Фрагментация молекулярного иона аллилтиосемикарбазида II с *m/z* 159.

Рис. 2. Хроматограммы разделения смеси тиосемикарбазидов I (*1*), II (*2*) и III (*3*) на колонках Hypercarb (a), Zorbax-Cl8 (б) и Zorbax-CN (в). Элюент: 50 об. % метанола в воде.

го элюента (30% раствор пропанола-2 в *н*-гексане) при разделении смесей в режиме НФ ВЭЖХ. В условиях ОФ ВЭЖХ на колонках Hypercarb и Zorbax-C18, а также в условиях НФ ВЭЖХ на колонке Zorbax-CN достигается хорошее разделение компонентов реакционных смесей и выделение целевых соединений.

При увеличении температуры удерживание соединений I–III закономерно снижается, но изменения порядка выхода веществ не происходит. В интервале температур 298–318 К для всех использованных сорбентов зависимости факторов удерживания тиосемикарбазидов $\ln k'$ от обратной температуры близки к линейным (коэффициенты корреляции $r^2 = 0.9874-0.9993$). Приведенный в табл. 2 температурный коэффициент

сорбции $V = [(k'_1 - k'_2) - 1]/(T_2 - T_1)$ позволяет определить изменение фактора удерживания вещества при изменении температуры на 1 К. Минимальное влияние температура оказывает на удерживание тиосемикарбазидов I и II на колонке Zorbax-C18.

Наибольшие значения энтальпии сорбции соединений **I**–III наблюдаются на ПГУ (колонка Нурегсагb). Сравнительный анализ влияния сорбентов на изменение термодинамических функций аллил- и фенилтиосемикарбазидов II и III относительно этилтиосемикарбазида I (выбранного стандартом) позволил обнаружить, что значение $\delta(\Delta S^{\circ})$ при переходе от соединения II к тиосемикарбазиду III на ПГУ увеличивается в 28 раз, тогда как на других сорбентах значение $\delta(\Delta S^{\circ})$

Таблица 2. Значения энтальпии, энтропийной константы и температурного коэффициента сорбции тиосемикарбазидов I–III в условиях ОФ ВЭЖХ

Колонка	Вещество	<i>−∆Н</i> °, кДж моль ^{−1}	$-\Delta S^{\circ}/R + + \ln \varphi^*$	$V \times 10^3,$ K^{-1}
Hypercarb	Ι	13.3	5.5	21
	II	14.5	5.4	23
	III	16.0	4.1	26
Zorbax-C18	Ι	4.2	2.0	6
	II	5.3	2.1	7
	III	8.8	2.5	12
Zorbax-CN	Ι	7.4	3.8	10
	II	8.6	4.0	12
	III	11.6	4.6	18

* Неопределенность, связанная с тем, что производитель не указал свободный объем хроматографических колонок.

уменьшается (табл. 3). Эта аномалия указывает на существенные различия в механизмах сорбции тиосемикарбазидов на ПГУ и модифицированных силикагелях.

Основной вклад в удерживание соединений на ПГУ и модифицированном силикагеле вносят неспецифические межмолекулярные взаимодействия молекул сорбатов с поверхностью. Вместе с тем на поверхности ПГУ реализуются специфические межмолекулярные взаимодействия сорбатов с базисной гранью графита и остаточными функциональными группами [11]. Поверхность ПГУ характеризуется высокой чувствительностью к особенностям электронного строения молекул тиосемикарбазидов с различной стереохимией, что значительно увеличивает диапазон его селективности в отношении различных органических соединений. Селективность сорбента ПГУ по отношению к тиосемикарбазидам почти в 1.5 раза выше, чем селективность SiO₂ с привитыми группами –С18 и –СN: α = 1.9, 1.4 и 1.3 соответственно.

Время нахождения сорбата в неподвижной фазе зависит не только от природы сорбента, но и от используемого элюента. Изучение влияния состава подвижной фазы позволило обнаружить, что удерживание тиосемикарбазидов на всех сорбентах закономерно увеличивается по мере снижения объемной доли φ органического модификатора (метанола) в воде. Соединение III с метанолом взаимодействует слабее I и II. Для него уравнения зависимости $1/k' = f(\varphi)$ на колонках Нурегсагb, Zorbax-C18 и Zorbax-CN выглядят следующим образом:

$$1/k' = 0.0004\varphi^2 - 0.0291\varphi + 0.6096$$
$$(r^2 = 0.9996),$$
$$1/k' = 0.0020\varphi^2 - 0.1486\varphi + 2.8378$$
$$(r^2 = 0.9926),$$
$$1/k' = 0.0014\varphi^2 - 0.0856\varphi + 1.5330$$
$$(r^2 = 0.9993).$$

Состав полярного элюента влияет на удерживание III на сорбенте ПГУ значительно слабее, чем на модифицированных силикагелях. Вероятно, это следствие того, что поверхность ПГУ нельзя рассматривать как полностью гидрофобную неполярную, а основным механизмом адсорбции не являются гидрофобные взаимодействия.

Идентификацию тиосемикарбазидов при их исследовании методом ВЭЖХ проводили спектрофотометрически по интенсивной полосе поглощения в области 240 нм. Относительно поглощения изотиоцианатов она сдвинута в длинноволновую область, поэтому даже большой избыток реагентов не мешает определению целевых компонентов. Однако в присутствии буферов, примесей и других соединений в хроматографической системе возможно наложение полос поглощения компонентов смесей. В этом случае, а также при хроматографическом исследовании малолетучих и термолабильных соединений для их идентификации применяли метод МАЛДИ-МС в режиме off-line, т.е. после полного заверше-

Таблица 3. Влияние сорбентов на изменение термодинамических функций тиосемикарбазидов II и III относительно соединения I (*T* = 298 K, элюент: 50 об. % метанола в воде)

	Тип сорбента					
№	Нуре	ercarb	Zorba	x-C18	Zorba	ax-CN
	$-\delta(\Delta H^{\circ}),$	$\delta(\Delta S^{\circ}),$	$-\delta(\Delta H^{\circ}),$	$\delta(\Delta S^{\circ}),$	$-\delta(\Delta H^{\circ}),$	$\delta(\Delta S^{\circ}),$
	$Дж$ моль $^{-1}$	Дж моль $^{-1}$ K $^{-1}$	$Дж$ моль $^{-1}$	Дж моль $^{-1}$ K $^{-1}$	$Дж$ моль $^{-1}$	Дж моль $^{-1}$ K $^{-1}$
Ι			Стандартн	ое вещество		
II	-1219.6	0.4	-1064.2	-0.5	-1229.6	-1.9
III	-2686.2	11.0	-3964.1	-4.5	-4229.8	-6.2

2021

Рис. 3. Масс-спектр МАЛДИ тиосемикарбазида I $(m/z \ 148)$ с матрицей DHB.

ния процесса разделения [7]. Поскольку тиосемикарбазиды практически не поглощают излучение азотного лазера с $\lambda = 337$ нм, к ним добавляли матрицу DHB, которая способна поглощать лазерное излучение масс-спектрометра, переносить протоны в ходе процесса ионизации, обладает низкой летучестью в условиях вакуума, инертна по отношению к тиосемикарбазидам и способна к сокристаллизации с ними. В МАЛДИ массспектре тиосемикарбазида I с этой матрицей помимо пиков протонированных и катионированных молекул I $([M + H]^+, [M + Na]^+, [M + K]^+ c$ m/z 148, 171, 183, соответственно), присутствуют пики их молекулярных ассоциатов с матрицей и кластерных ионов матрицы с *m/z* 155, 177 и 193 (рис. 3).

Максимальная интенсивность пиков протонированной молекулы тиосемикарбазида I достигается при соотношении матрица/аналит Mt/A = 100, тиосемикарбазида II – при Mt/A = 1, фенилтиосемикарбазида III при Mt/A = 1000. Причиной влияния концентрации матрицы (органической кислоты) на эффективность ионизации молекул I–III, отличающихся только приро-

Таблица 4. Масс-спектры фрагментации метастабильных протонированных молекул тиосемикарбазидов [M + H]⁺ в режиме распада за пределами источника (МАЛДИ)

m/z			
Еt-тиосемикар- базид I	All-тиосемикар- базид II	Ph-тиосемикар- базид III	
46, 61, 78, 103, 114, 146, 148	46, 58, 61, 78, 103, 115, 126, 158, 160	46, 61, 78, 103, 152, 162, 192, 194, 196	

 * Примечание. Жирным шрифтом выделены протонированные молекулы. дой заместителя, по данным [7], является различие в их основности в газовой фазе.

Надежно идентифицировать тиосемикарбазиды методом масс-спектрометрии ЭИ позволяет присутствие в их масс-спектрах не только молекулярных, но и характеристических ионов (табл. 1). В связи с этим были исследованы процессы фрагментации метастабильных протонированных молекул тиосемикарбазидов, ускоренных в ионном источнике, в условиях МАЛДИ (табл. 4). Необходимо отметить, что распаду за пределами ионного источника подвергаются также и кластерные ионы матрицы DHB, что несколько осложняет проведение масс-спектрометрического анализа в диапазоне масс 20–200 Да.

масс-спектрах фрагментации исходных ионов тиосемикарбазидов I-III присутствуют пики их протонированных молекул $[M + H]^+$ и пики характеристических ионов с m/z 46, 61, 78, 103. Анализ обнаруженных фрагментов позволяет предположить, что распад метастабильных протонированных молекул тиосемикарбазидов происходит в результате разрыва химических связей, ближайших к атому азота, после присоединения к нему протона (схема 2). Распад молекул I-III приводит к элиминированию нейтральных аминосоединений (этиламина, аллиламина, анилина и диметилгидразина), а также молекулы сероводорода. Это соответствует данным [12] об основных схемах фрагментации аминов в процессе ЛДИ в растворах и газовой фазе.

Особое значение в идентификации методом МАЛДИ-МС 1,1-диметилгидразина в виде S,Nпроизводного имеет фрагментный ион с m/z 78, образование которого не зависит от природы заместителя R в тиосемикарбазидах I-III и связано только с наличием в их структуре остатка 1,1-диметилгидразина. В масс-спектрах ЭИ ион с *m/z* 77 наблюдается только у соединения III (табл. 1). Обнаружено сходство фрагментации тиосемикарбазида III в режимах ЭИ и МАЛДИ. В режиме ЭИ (табл. 1) наблюдается элиминирование молекулы сероводорода и образование иона с m/z 161, соответствующего 1-диметиламино-4-фенилкарбодиимиду, элиминирование фрагментов 1,1-диметилгидразина с m/z 60, анилина с m/z 93 и расщепление связи N-N с образованием иона диметиламина с *m/z* 45. В условиях ионизации МАЛДИ (табл. 4) осколочные ионы детектируются в соответствующей протонированной форме.

Кроме вышеуказанных ионов в масс-спектрах МАЛДИ тиосемикарбазидов, полученных в режиме распада после ионного источника, присутствуют пики ионов [М + H-2]⁺ и [М + H-4]⁺ (табл. 4). Их образование, вероятно, обусловлено протекающими в условиях ионизации МАЛДИ процессами дегидрирования протонированных молекул аминов, которые наблюдались в [11]. До-

Схема 2. Фрагментация метастабильных протонированных молекул тиосемикарбазидов І-ІІІ.

ля дегидрированных ионов [М + H–4]⁺ увеличивается на 40% при увеличении энергии лазера с 35 до 40%.

Масс-спектры МАЛДИ фрагментации метастабильных протонированных аллил- и фенил-S, N-производных 1,1-метилэтилгидразина близки масс-спектрам S,N-производных 1,1-диметилгидразина I—III и отличаются на гомологическую разность 14 Да (табл. 5). Масс-спектры фрагментации ионов $[M + H]^+$ аллил- и фенил-S,N-производных 1-метилгидразина содержат пики ионов метилгидразиния с m/z 47, протонированного N-метиламиноизотиоцианата с m/z 89 и аллиламмония с m/z 58 (схема 3). Распад всех аллилсодержащих тиосемикарбазидов сопровождается образованием ионов аллиламмония с m/z 58;

Таблица 5. Масс-спектры ЭИ и МАЛДИ фрагментации S, N-производных алкилгидразинов

S,N-производные	m/z		
алкилгидразинов	ЭИ	МАЛДИ	
4-All-1-Ме-тио- семикарбазид	46, 56, 128, 128, 145	47, 58, 89, 144, 146	
4-Ph-1-Me-тио- семикарбазид	45, 58, 59, 74, 101, 116, 173	58, 60, 73, 75, 92, 117, 170, 172, 174	
4-All-1-Me-1-Et- тиосемикарбазид	46, 77, 109, 135, 136, 181	47, 89, 165, 182	
4-Ph-1-Me-1-Et- тиосемикарбазид	58, 59, 74, 77, 93, 153, 176, 209	58, 60, 73, 75, 92, 94, 117, 151, 176, 206, 208, 210	

*Примечание. Жирным шрифтом отмечены молекулярные и квазимолекулярные ионы. фрагментация всех фенилсодержащих тиосемикарбазидов строго индивидуальна и зависит от состава исходных алкилгидразинов.

Таким образом, проведенные исследования продуктов дериватизации алкилгидразинов с помощью изотиоцианатов позволяют эффективно разделять компоненты реакционных смесей и надежно идентифицировать S,N-производные алкилгидразинов на основе хроматографических параметров удерживания и масс-фрагментации в режимах ЭИ и МАЛДИ.

Таким образом, методами масс-спектрометрии в режимах ЭИ и МАЛДИ в сочетании с метолами газовой и жилкостной хроматографии изучены продукты взаимодействия алкилгидразинов с этил-, аллил- и фенилизотиоцианатами. Оптимизированы условия разделения реакционных смесей методами газовой и жидкостной хроматографии, а также идентификации целевых соединений в on-line и off-line режимах. Определены физико-химические характеристики сорбции тиосемикарбазидов. Изучены процессы распада и фрагментации их метастабильных протонированных молекул, ускоренных в ионном источнике. Предложены схемы образования фрагментных и характеристических ионов тиосемикарбазидов в различных режимах ионизации.

Работа выполнена в рамках Государственного задания ИФХЭ РАН и при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-08-01224а).

Авторы благодарят Центр коллективного пользования ИФХЭ РАН за предоставленное для исследований оборудование.

Схема 3. Фрагментация метастабильных протонированных аллил- и фенил- S,N-производных 1-метилгидразина.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Blau K., Halket J.M.* Handbook of Derivatives for Chromatography. Chichester: Wiley, 1993.
- 2. Парамонов С.А., Ульянов А.В., Буряк А.К. // Изв. АН. Сер. хим. 2010. Т. 59. С. 517.
- 3. Полунин К.Е., Матюшин Д.Д., Ульянов А.В. и др. // Коллоидн. журн. 2019. Т. 81. № 4. С. 493. https://doi.org/10.1134/S1061933X19030104
- Газиева Г.А., Кравченко А.Н. // Успехи химии. 2012. Т. 81. № 6. С. 494. https://doi.org/10.1070/RC2012v081n06ABEH004235
- Буряк А.К., Сердюк Т.М. // Успехи химии. 2013. Т. 82. С. 369. https://doi.org/10.1070/RC2013v082n04ABEH004304

- Алимпиев С.С., Гречников А.А., Никифоров С.М. // Успехи физ. наук. 2015. Т. 185. С. 207. https://doi.org/10.3367/UFNr.201502f.0207
- Karas M., Krüger R. // Chem. Rev. 2003. V. 103. № 2. P. 427. https://doi.org/10.1021/cr010376a
- 8. *Cheng T., Zhao Y., Li X. et al.* // J. Chem. Information and Modeling. 2007. V. 47. № 6. P. 2140. https://doi.org/10.1021/ci700257y
- Stein S.E., Babushok V.I., Brown R.L., Linstrom P.J. // J. Chem. Information and Modeling. 2007. V. 47. № 3. P. 975. https://doi.org/10.1021/ci600548y
- 10. Лебедев А.Т. Масс-спектрометрия в органической химии. М.: БИНОМ, 2003. 493 с.
- 11. Милюшкин А.Л., Лактюшина А.А., Буряк А.К. // Изв. АН. Сер. хим. 2017. № 1. С. 56. https://doi.org/10.1007/s11172-017-1699-6
- Xianwen L., Spiering A.J.H., de Waal B.F.M. et al. // J. Mass Spectrom. 2008. V. 43. № 8. P. 1110.