= ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ =

УДК 547.979

ТЕРМОДИНАМИКА РАСТВОРЕНИЯ МАКРОГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НЕСИММЕТРИЧНОГО СТРОЕНИЯ С ФРАГМЕНТАМИ ТИАДИАЗОЛОВ В ПОЛЯРНЫХ РАСТВОРИТЕЛЯХ

© 2021 г. Г. Р. Березина^{*a*,*}

^а Ивановский государственный химико-технологический университет, 153000, Иваново, Россия

**e-mail: berezina@isuct.ru* Поступила в редакцию 08.07.2020 г. После доработки 21.09.2020 г. Принята к публикации 24.09.2020 г.

Методом изотермического насыщения со спектрофотометрическим контролем концентрации изучена растворимость соединений на основе 1-имино-2-фенил-1*H*-инден-3-амина с фрагментами 1,4-фенилендиамина и 1,3,4-, 1,2,4-тиадиазолов в этаноле и ДМФА в интервале температур 298–318 К. Обсуждены закономерности растворения макрогетероциклических соединений. Рассчитаны термодинамические параметры растворения синтезированных соединений.

Ключевые слова: макрогетероциклические соединения, растворимость, термодинамические характеристики растворения, сольватация

DOI: 10.31857/S0044453721060030

Прикладному применению любых новых соединений предшествует всестороннее исследование их свойств. Макрогетероциклы являются частицей этой обширной области научного поиска. Синтез веществ с практически полезными свойствами — одна из основных задач современной химии. К настоящему времени синтезированы самые разнообразные макрогетероциклические соединения, их производные с электронодонорными и электроноакцепторными заместителями в фенильных и бензольных ядрах [1–10].

Данная работа посвящена определению растворимости макрогетероциклических соединений несимметричного строения (1–3) в этаноле и ДМФА при 298, 308 и 318 К:

Растворители: этанол и ДМФА, выбранные для исследования, являются полярными; ДМФА – растворитель с ярко выраженной электронодонорной способностью (донорное число по Гутману DN = 26.6), этанол – растворитель с преимущественно электроноакцепторной функцией (AN = 37.1).

Центрами сольватации в молекуле макроциклов могут быть сопряженная система π-электронов макрокольца в целом, а также различные функциональные заместители. Имеющиеся в молекуле макроцикла центры специфической и универсальной сольватации определяют ее специфику и поведение в растворе [11]. В результате сольватации образуются сольваты постоянного и переменного состава. В соответствии с типами межмолекулярных взаимодействий, выделяют неспецифическую и специфическую сольватации. Неспецифическая сольватация обусловлена ван-дер-ваальсовыми взаимодействиями. Специфическая сольватация проявляется вследствие электростатических взаимодействий, координационных и водородных связей [12].

Важнейшие термодинамические характеристики сольватации — энтальпия (ΔH_c) и энергия Гиббса (ΔG_c), связаны соотношением: $\Delta G_c = \Delta H_c - T\Delta S_c$, где ΔS_c — энтропия сольватации. Энтальпия сольватации определяет тепловой эффект внедрения молекулы растворенного вещества в растворитель, а энергия Гиббса — растворимость вещества.

Растворение вещества в растворителе сопровождается разрушением кристаллической решетки и сольватацией, это влияет на энтальпию растворения, а изменение структурных параметров системы в целом отражается на энтропии растворения. Оба этих термодинамических параметра одинаково определяют суммарное изменение свободной энергии (изобарно-изотермического потенциала) в процессах сольватации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Данные элементного анализа получали на приборе CHNS-O Analyzer FlashEA 1112 Series (погрешность в измерениях составляет ± 0.05). С целью определения оптических свойств измеряли спектры поглощения в УФ- и видимой областях (350–800 нм) на приборе HitachiU-2010. Измерения спектров растворов соединений в различных растворителях проводили при комнатной температуре (20–25°C). Инфракрасные спектры твердых образцов регистрировали на приборе Avatar 360 FT-IRTSR в области 400–4000 см⁻¹. Для снятия ИК-спектров использовали метод таблетирования вещества с КВг. Содержание исследуемого образца 0.7–0.8% от массы КВг. Макрогетероциклические соединения исследовали на дифференциальном сканирующем калориметре динамического теплового потока DSC 204 F1 Phoenix. Квалификация веществ и растворителей – "х.ч.". Масс-спектры записывали на масс-спектрометре Shimadzu AXIMA Confidence MALDI TOF в режиме регистрации положительных ионов. Температуру в экспериментах по определению растворимости поддерживали с точностью ±0.1 К. Погрешность определения температур разложения и плавления ±0.2.

N,N-бис-(1-имино-2-фенил-1H-инден-3-илиден)-1,4-фенилендиамин (1). Смесь 0.6 г (1.16 ммоля) 1-имино-2-фенил-1*Н*-инден-3-амина и 6 г (77.84 ммоля) ацетата аммония (в мольном соотношении 1:67) нагревали в 10 мл ледяной уксусной кислоты при кипении 2 ч. Реакционную массу охлаждали, разбавляли 10 мл воды, прибавляли 5 мл HCl и выдерживали 3 ч при комнатной температуре. Полученный осадок растворяли в минимальном объеме этанола при нагревании и нейтрализовали 10%-ным раствором щелочи. Выдерживали 24 ч при комнатной температуре, выпавший осадок отфильтровывали и сушили. Выход 0.4 г (75.5%), порошкообразное вещество ярко-красного цвета, $T_{\text{н.разл}} = 254^{\circ}\text{C}$, растворимо в этаноле, ДМФА. ИК-спектр, v, см⁻¹: 1081, 1130 (C-N), 1363 (C-C), 1546 (C=N), 1604, 1631 (C=C), 2831, 3164, (NH) 3452 (C-H); 863 δ (C-H), 1498 δ ((N–H).

Найдено, %:	C 83.94;	H 4.67;	N 9.90.
$C_{36}H_{26}N_{4.}$			
Вычислено. %:	C 84.05:	H 5.06:	N 10.89.

Цикло-[(бис-1-имино-2-фенил-1Н-инден-3-или*ден)-1,4-фенилен-1,3,4-тиадиазол]* (2). Смесь 0.1 г (0.19 ммоля) N, N'-бис-(1-имино-2-фенил-1*H*-инден-3-илиден)-1,4-фенилендиамина (1) и 0.03 г (0.26)ммоля) 2,5-диамино-1,3,4-тиадиазола (в мольном соотношении 1:1.37) нагревали в 7 мл ДМФА при кипении 48 ч. Реакционную массу охлаждали, разбавляли водой, отфильтровывали и сушили. Выход 0.048 г (40%), порошкообразное вещество темно-красного цвета, $T_{\text{пл}}$ = $= 262.2^{\circ}$ С, растворимо в этаноле, ДМФА, хлороформе. ИК-спектр, v, см⁻¹: 756 (С–S), 1364 (С–N), 1428 (C-C), 1545 (C=N), 1605, 1629 (C=C), 2823, 3162 (C-H), 3452 (N-H); 865 δ (C-H), 1498 δ ((N–H). Macc-спектр: m/z = 595.3095 [M + H⁺]; $m/z = 656.457 [M + K^+ + Na^+].$

Найдено, %: С 76.13; Н 4.51; N 13.8; S 4.52. С₃₈H₂₄N₆S. Вычислено, %: С 76.51; Н 4.03; N 14.09; S 5.37.

Цикло-[(бис-1-имино-2-фенил-1Н-инден-3-илиден)-1,4-фенилен-1,2,4-тиадиазол] (3) получили аналогично из 0.1 г (0.19 ммоля) соединения 1 и 0.03 г (0.26 ммоля) 3,5-диамино-1,2,4-тиадиазола время реакции – 35 ч. Выход 0.08 г (66.67%), порошкообразное вещество красного цвета, $T_{пл} =$ 272.9°С, растворимо в этаноле, хлороформе, ДМФА. ИК-спектр, v, см⁻¹: 756, 775 (C–S), 1156 (C–N), 1365 (C–C), 1544 (C=N), 1595, 1631 (C=C), 3158 (C–H), 3306, 3454 (N–H); 860 δ (С– H), 1430 δ (N–H). Масс-спектр: m/z = 595.2088[M + H⁺]; m/z = 656.441 [M + K⁺ + Na⁺].

Найдено, %: С 76.04; Н 4.59; N 13.45; S 4.85. С₃₈H₂₄N₆S. Вычислено, %: С 76.51; Н 4.03; N 14.09; S 5.37.

Растворимость (равновесную концентрацию) соединений (1–3) определяли при трех температурах: 298, 308 и 318 К методом изотермического насыщения со спектрофотометрическим контролем концентрации [13]. Равновесную концентрацию раствора рассчитывали (как среднюю из трех опытов) из соотношения, приведенного ниже:

$$s = C_x = Dn/\varepsilon l$$

где s — растворимость синтезированных макроциклов, C_x — равновесная концентрация раствора, D — оптическая плотность раствора, n — число раз разбавления, l — толщина светопоглощающего слоя, см; ε — молярный коэффициент погашения, определенный как среднее из трех величин, полученных для растворов с известной концентрацией. В качестве аналитических были выбраны длины волн в максимуме полосы поглощения, представленные в табл. 1. Термодинамические характеристики процесса растворения макрогетероциклов рассчитывали из известных соотношений химической термодинамики [14]:

$$\Delta H^0$$
, кДж/моль = 8.314[$T_2T_1/(T_2 - T_1)$]ln(S_2/S_1),

 ΔG^0 , кДж/моль = $-RT \ln S^0_{298}$,

$$\Delta S^0$$
, Дж/(моль K) = ($\Delta H^0 - \Delta G^0$)/*T*,

где S_1 и S_2 – значения равновесной растворимости при T_1 и T_2 соответственно, R – универсальная газовая постоянная, равная 8.314 Дж/(моль K).

Систематическая ошибка в определении растворимости, обусловленная погрешностью в определении молярного коэффициента погашения, составила 5%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Данные по определению растворимости (равновесной концентрации) приведены в табл. 1. Имеющиеся данные о политермической зависимости равновесных концентраций растворов соединений позволили рассчитать изменения свободной энергии, энтальпии и энтропии процесса их растворения.

Таблица 1. Положение (λ , нм) и интенсивность (lg ε) полосы поглощения в электронных спектрах и политермическая зависимость равновесной растворимости ($s \pm 0.03$ ммоль/л) синтезированных соединений

№ п/п	Раство- ритель	λ, нм	lgε	s(298 K)	s(308 K)	s(318 K)
1	Этанол	449	3.69	2.76	6.38	9.70
	ДМФА	455	3.94	20.40	125.01	225.00
2	Этанол	462	3.50	1.74	14.35	27.25
	ДМФА	461	4.08	2.71	49.29	92.00
3	Этанол	456	4.06	1.50	2.57	3.62
	ДМФА	450	4.15	5.33	45.85	83.15

Органические растворители полифункциональны, что определяет сложность процессов сольватации. Данные полярные растворители выбраны потому, что они имеют разную степень структурированности и электронодонорной способности.

Растворимость твердых веществ определяется природой растворителя и растворенного вещества и зависит от температуры.

Растворимость соединений 1-3 в этаноле и ДМФА составляет, в основном, 10^{-3} моль/л, за исключением растворимости в ДМФА соединения 1.

ДМФА–(CH₃)₂–NCHO диполярный растворитель, способный как к универсальной, так и к специфической сольватации. Увеличение растворимости (3 < 2 < 1) в ДМФА – растворителя с выраженной протоноакцепторной функцией (DN ≈ 26) происходит вследствие изменения протонизации NH-связей за счет электронных эффектов *d*-цепи сопряжения. Наиболее благоприятны условия сольватации у соединения **1**.

При рассмотрении характера изменения растворимости синтезированных макрогетероциклических соединений можно сделать вывод, что, несмотря на имеющиеся центры специфической сольватации, они по-видимому, стерически экранированы от взаимодействия с молекулой ДМФА. ДМФА как полярный апротонный растворитель в ряде случаев лучше сольватирует соединения за счет универсальных ван-дер-ваальсовых взаимодействий.

При изучении растворимости макрогетероциклических соединений в органических растворителях, в частности, спиртах установлено, что сольватация соединений не зависит от структуры спирта, т.е. от длины алкильной цепочки, в данном случае имеет место специфическая сольватация, с конкретными центрами [15]. В результате взаимодействия синтезированных соединений с этанолом за счет образования водородной связи растворимость почти одинакова и составляет 10⁻³ моль/л.

У макрогетероциклов существенный вклад в энергию межмолекулярных взаимодействий в кристаллической решетке вносят π - π -взаимодей-

Раство- ритель	ΔH^0	ΔG^0	ΔS^0	ΔH^0	ΔG^0	ΔS^0	ΔH^0	ΔG^0	ΔS^0
	1		2		3				
Этанол	49 ± 10	14.6	116	107 ± 37	15.7	307	34 ± 5	16.1	62
ДМФА	93 ± 20	9.6	282	137 ± 30	14.6	411	107 ± 35	13.0	315

Таблица 2. Термодинамические параметры растворения синтезированных макрогетероциклических соединений 1–3 в этаноле и ДМФА (ΔH^0 и $\Delta G^0 \pm 0.5$ кДж/моль, $\Delta S^0 \pm 8$ Дж/(моль K) при 298 K

ствия. Очевидно, что для осуществления взаимодействий этого типа межплоскостные расстояния молекул в кристалле должны быть минимальны. Отклонение молекулы макрогетероцикла от планарности за счет функционального замещения или по иным причинам ослабляет межмолекулярные π - π -взаимодействия и уменьшает энергию кристаллической решетки соединения. Последнее должно приводить к уменьшению эндотермичности энтальпии растворения макроцикла.

Растворимость большинства твердых тел с повышением температуры увеличивается. Процесс растворения синтезированных макрогетероциклических соединений имеет положительную температурную зависимость, т.е. протекает с поглощением тепла.

Из политермической зависимости равновесной растворимости рассчитаны термодинамические параметры растворения (табл. 2). При замыкании в цикл происходит перераспределение электронной плотности, и растворимость уменьшается. Процесс растворения соединений эндотермичен, происходит разупорядочивание системы, что сопровождается небольшим ростом энтропии растворения. При растворении происходит переход между двумя кристаллическими формами, наблюдаются высокая конформационная подвижность молекул в растворе и разрушение структуры растворителя.

Сопряженные макрогетероциклические соединения имеют более низкие энергии межмолекулярных взаимодействий в кристалле, связанные с неплоской структурой и конформационной нежесткостью их молекул.

Невысокие величины ΔG , характеризующие суммарный вклад энтальпийной и энтропийной составляющих в процесс растворения, имеют примерно одинаковые значения, поэтому все молекулы имеют примерно одинаковую вероятность перехода из твердой фазы в раствор.

Таким образом, впервые оценены растворимость и термодинамические параметры растворения соединений 1-3 в этаноле и ДМФА при трех температурах: 298, 308 и 318 К. Специфику и поведение в растворе исследуемых соединений определяют имеющиеся в молекуле центры специфической и универсальной сольватации. Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием ФГБОУ ВО "ИГХТУ".

СПИСОК ЛИТЕРАТУРЫ

- 1. Березина Г.Р., Воробьев Ю.Г., Смирнов Р.П., Сироткина В.В. //Журн. физ. химии. 2000. Т. 74. № 10. С. 1782.
- Куликов М.А., Воробьев Ю.Г., Berezina G.R., Степаненко В.А. // Журн. общ. химии. 2004. Т. 74. № 6. С. 1031.
- 3. *Березина Г.Р., Воробьев Ю.Г. //* Там же. 2004. Т. 74. № 3. С. 447.

https://doi.org/10.1023/B:RUGC.0000030398.01111.f8

- 4. Березина Г.Р., Воробьев Ю.Г., Воробьева С.М., Садова М.В. // Там же. 2005. Т. 75. № 6. С. 1017. https://doi.org/10.1007/s11176-005-0352-5
- 5. *Березина Г.Р., Фомина И.С. //* Изв. вузов. Химия и хим. технология. 2014. Т. 57. Вып. 8. С. 3.
- Березина Г.Р., Фомина И.С. // Журн. общ. химии. 2014. Т. 84. № 7. С. 1112; Berezina G.R., Phomina I.S. // Russ. J. Gen. Chem. 2014. V. 84. Issue 7. Р. 1308. https://doi.org/10.1134/S107036321407010X
- 7. Березина Г.Р., Купцова К.Д., Березина Н.М. // Журн. орган. химии. 2015. Т. 51. Вып. 2. С. 279. https://doi.org/10.1134/S1070428015020220
- Березина Г.Р., Купцова К.Д., Березина Н.М. // Журн. общ. химии. 2015. Т. 85. Вып. 3. С. 420; Berezina G.R., Kupchova K.D., Berezina N.M. // Russ. J. Gen. Chem. 2015. V. 85. Issue 3. P. 584. https://doi.org/10.1134/S1070363215030093
- Березина Г.Р. // Там же. 2018. Т. 88. Вып. 1. С. 90; Berezina G.R. // Russ. J. Gen. Chem. 2018. V. 88. Issue 1. P. 86. https://doi.org/10.1134/S1070363218010139
- 10. Березина Г.Р. // Там же. 2018. Т. 88. № 6. С. 958; Berezina G.R. // Russ. J. Gen. Chem. 2018. V. 88. Issue 6. Р. 1138. https://doi.org/10.1134/S1070363218060154
- 11. Крестов Г.А., Березин Б.Д. Основные понятия современной химии. Л.: Химия, 1983. 102 с.
- Бургер К. Сольватация, ионные реакции и комплексообразование в неводных средах. М.: Мир, 1984. 256 с.
- 13. *Березина Г.Р., Воробьев Ю.Г. //* Журн. физ. химии. 2005. Т. 79. № 4. С. 680.
- 14. Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высшая школа, 1982. С. 320.
- 15. *Березина Г.Р., Воробьев Ю.Г., Смирнов Р.П.* // Журн. физ. химии. 1996. Т. 70. № 1. С. 94.