ФОТОХИМИЯ И МАГНЕТОХИМИЯ

УДК 541.64:541.14:539.199

ВЛИЯНИЕ ДЛИНЫ ВОЛНЫ И ИНТЕНСИВНОСТИ ВОЗБУЖДАЮЩЕГО СВЕТА НА ЭФФЕКТИВНОСТЬ ФОТОГЕНЕРАЦИИ СИНГЛЕТНОГО КИСЛОРОДА ФОТОДИТАЗИНОМ В ПРИСУТСТВИИ ПЛЮРОНИКА F-127 В МОДЕЛЬНЫХ ПРОЦЕССАХ ФОТООКИСЛЕНИЯ

© 2021 г. А. С. Курьянова^{*a,b,**}, А. Б. Соловьева^{*a*}, Н. Н. Глаголев^{*a*}, Н. А. Аксенова^{*a,b*}, П. С. Тимашев^{*a,b*}

^а Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр химической физики им. Н.Н.Семенова РАН, Москва, Россия ^b Институт регенеративной медицины, Первый Московский государственный медицинский университет им. И.М. Сеченова, Москва, Россия *e-mail: kuryanovaanastasi@gmail.com Поступила в редакцию 12.07.2020 г. После доработки 12.07.2020 г. Принята к публикации 30.07.2020 г.

Изучены активность и фотостабильность фотодитазина (Φ 3) в фотогенерации синглетного кислорода ($^{1}O_{2}$) в модельной реакции фотоокисления триптофана в воде при возбуждении светом с λ = 400 нм и 660 нм при разных плотностях мощности света и влияние на этот процесс амфифильного полимера (AП) плюроника F-127. Показано, что наибольшие фотокаталитическая активность и фотостабильность фотодитазина в генерации $^{1}O_{2}$ наблюдаются при возбуждении светом с длиной волны 400 нм при средней плотности мощности излучения и введении в реакционную среду плюроника F-127. Отмечено, что на модельных реакциях можно "подбирать" фотосенсибилизаторы (Φ C) системы (наличие АП, других добавляемых вместе с Φ C систем) и характерные для каждого Φ C режимы низкоэнергетических фотодинамических (Φ Д) воздействий на субстраты, наиболее благоприятных для реальной терапии, а именно, способствующих инициированию регенеративных, иммунных процессов.

Ключевые слова: фотодитазин, фотосенсибилизированное окисление триптофана в водных растворах, плюроник F-127, плотность мощности света, фотодинамическая терапия **DOI:** 10.31857/S0044453721060170

Процесс генерации синглетного $({}^{1}O_{2})$ и других активных форм кислорода (АФК) возбужденными фотосенсибилизаторами (ФС) лежит в основе фотодинамической терапии (ФДТ) – метода лечения злокачественных опухолей, а также неонкологических локализованных инфекций (гнойных ран, пролежней, трофических язв) [1, 2]. Метод основан на введении фотосенсибилизирующего препарата в патогенные ткани организма с последующим облучением пораженных участков светом с определенной для каждого ФС длиной волны. Возбужденные молекулы фотосенсибилизаторов (³ФС*) способны инициировать фотохимические реакции двух типов [3]. Возможно непосредственное взаимодействие ³ФС* с биомолекулами (отрыв электрона или непосредственно атомов водорода), что ведет к образованию свободных радикалов, которые при взаимодействии с молекулярным кислородом, растворенным в тканях, образуют радикальные формы кислорода. В реакциях второго типа происходят перенос энергии от ³ФС* к молекулам кислорода и генерация активных форм кислорода (АФК), важнейшие из которых, в первую очередь, синглетный ${}^{1}O_{2}$ кислород, а также анион-радикал супероксида $(O_2^{-\bullet})$, гидроксильный радикал (OH^{\bullet}) , а также пероксид водорода (H_2O_2) и органические пероксиды. На конечных этапах фотодинамического (ФД) воздействия оба типа фотохимических реакций приводят к деструктивным процессам в жизненно важных структурах клеток и их гибели [4]. Следует учитывать, что время жизни синглетного и других активных форм кислорода в клетке весьма мало $(\sim 1 \text{ мкс})$, и вследствие этого $^{1}\text{O}_{2}$ реагирует с окружающими молекулами на расстояниях не более 0.1 мкм от места генерации [5]. При этом синглетный кислород, помимо взаимодействия с молекулами субстрата, способен реагировать с молекулами фотосенсибилизатора, что ведет к разрушению системы сопряженных двойных связей, характерной для молекул используемых ФС, и дезактивации ФС (так называемый фотобличинг ФС) [6, 7].

Общая схема фотодинамического процесса может быть представлена в виде [8]:

 ${}^{1}\Phi C + hv = {}^{1}\Phi C^{*}; \rightarrow {}^{3}\Phi C^{*};$ 1 ${}^{3}\Phi C^{*} + Sub = {}^{3}\Phi C^{-\bullet} + Sub^{+}$ или ${}^{3}\Phi C^{+} + Sub^{-}$. 2. 3. $Sub^- + O_2 = Sub + O_2^{\bullet-}$, 4. $O_2^{\bullet-} + H^+ = HO_2^{\bullet}$, реакции І типа 5. $HO_2^{\bullet} + O_2^{\bullet-} + H^+ = O_2 + H_2O_2$, 6. $O_2^{\bullet-} + H_2O_2 = O_2 + OH^{\bullet} + OH^{-},$ ${}^{3}\Phi C^{-\bullet} + O_{2} = {}^{1}\Phi C + O_{2}^{\bullet-},$ 7. ${}^{3}\Phi C^{*} + O_{2} = {}^{1}O_{2} + {}^{1}\Phi C_{2}$ 8. 9. ${}^{1}\text{O}_{2} + \text{Sub} = \text{SubOOH}, \$ реакции II типа 10. ${}^{1}O_{2} + {}^{1}\Phi C = {}^{1}\Phi C - O_{2}.$

Здесь ${}^{1}\Phi C^{*}$ и ${}^{3}\Phi C^{*}$ — возбужденные состояния ΦC , синглетное и триплетное соответственно; Sub — субстрат; ${}^{-}\Phi C \cdot u {}^{+}\Phi C$ — анион и катион-радикал ΦC ; ${}^{1}\Phi C$ - O_{2} — окисленный (дезактивированный) ΦC .

Следует отметить, что ФДТ новообразований и локализованных инфекций подразумевает не только прямые воздействия на патологические ткани с некрозом или апоптозом пораженных клеток, но и фотоиндуцируемую динамику последующих регенеративных процессов. Такие процессы в условиях ФДТ инициируются локальной иммунной системой организма в тканях, приграничных с патологически развивающимися областями. В частности, было отмечено локальное повышение гуморального и клеточного иммунитета у онкологических больных при проведении фотодинамической терапии [9]. Было показано также, что в крови пациентов, получивших ФДТ, обнаруживаются повышенные концентрации цитокинов (факторов роста) [10]. Эти результаты свидетельствуют об иммуностимулирующем действии ФДТ [11]. Именно по этой причине энергетические воздействия при ФДТ, в том числе при лечении инфицированных ран следует минимизировать до определенного уровня, чтобы инициировать, но не подавлять возможности регенеративных систем организма.

Для возбуждения фотосенсибилизаторов используют одну из полос поглощения ФС в видимом или ближнем инфракрасном диапазоне спектра. При лечении опухолей используется красный (инфракрасный) свет, поскольку так называемое "окно прозрачности" биологических тканей заключено приблизительно между 600 и 1200 нм. Именно в этом диапазоне длин волн поглощение света биокомпонентами клеток не столь велико, и излучение проникает в биологические ткани, что делает возможным лечение достаточно глубоких пораженных тканевых структур [12, 13]. В то же время при ФДТ поверхностных гнойных ран или других инфекционновоспалительных процессов, где для эффективного лечения не требуется проникновения света в глубь тканей, возможно использование для фотовозбуждения ФС сине-зеленой области спектра, где, как правило, у фотосенсибилизиторов более интенсивные полосы поглощения. Это позволяет контролируемым образом понижать уровень световых воздействий при ФДТ и, тем самым, создавать условия для оптимального инициирования последующих регенерационных процессов [14].

Контролируемое понижение уровня световых воздействий при ФДТ связывается с возможным снижением до определенных значений концентрации фотосенсибилизаторов, что крайне важно и для снижения фототоксичности таких соединений. Кроме того, важно отметить, что тип гибели клеток (апоптоз/некроз) зависит не только от природы и концентрации ФС, но и от дозы облучения [15]. Использование высоких доз световой энергии приводит к некрозу, в результате которого клетка набухает [16, 17], так что может теряться целостность цитоплазматической мембраны, и содержимое некротических клеток может попадать на соседние клетки, что приводит к развитию воспалительных процессов и гибели таких клеток ("эффект свидетеля") [18, 19]. Некротические изменения в клетках провоцируют регионарную и системную реакцию. При проведении ФДТ с использованием низких доз световой энергии запускается, как правило, механизм апоптоза [20]. При этом клетка перестает функционировать, и происходит ее упорядоченная самоликвидация, проявляющаяся в уменьшении ее размера, конденсации и фрагментации хроматина, уплотнении цитоплазматической мембраны без выхода содержимого клетки в окружающую среду. Однако определенный оптимальный уровень ФД-воздействий, не подавляющих апоптоз, должен сохраняться. Поэтому одна из проблем ФДТ при минимально допустимом уровне ФД-

воздействий — использование оптимальных режимов (длины волны и дозы возбуждающего света) фотодинамических воздействий на патологические ткани, чтобы регенеративные системы организма могли проявлять свою активность в полной мере. Естественно, при допустимой минимизации ФД-воздействий будут минимизированы и процессы фотодеструкции ФС и максимально снижен уровень фототоксичности ФДТ.

В данной работе показано, что решение указанных проблем ФЛТ частично может быть найдено на основе физико-химических исследований фотосенсибилизированного окисления модельных органических субстратов при использовании различных типов ФС-систем. При исследовании реакции окисления триптофана проведен сопоставительный анализ активности и фотостабильности фотодитазина (ФЗ) (одного из наименее токсичных ФС из использующихся в клинической практике ФДТ в настоящее время) в фотогенерации ¹О₂ при возбуждении светом разной мощности при $\lambda = 400$ и 660 нм (длины волн, соответствуюшие двум наиболее интенсивным полосам поглощения ФЗ в видимой области). При этом исследовано влияние плюроника F-127 (одного из наибопее известных амфифильных полимеров. используемых в лекарственных формах для ФДТ совместно с ФС [21]) на скорость процессов фотоокисления триптофана и фотодеструкции ФС. Ранее нами было показано [21], что совместное использование ФС с плюроником F-127 повышает активность ФС в 10-30 раз при фотовоздействии на культуры раковых клеток, а также в экспериментах in vivo при ФДТ опухолей поверхностной локализации и модельные раны у животных.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве фотосенсибилизатора использовали N-метил-три-D-глюкаминовую соль хлорина e_6 (Фотодитазин, ФЗ), производство фирмы "Вета-Гранд", Россия. Изучали фотокаталитическую активность ФЗ в зависимости от концентрации амфифильного полимера (АП) — плюроника F-127, $M = 12\ 600$ (фирма BASF, США).

Модельную реакцию фотоокисления субстрата – L,D-триптофана (Sigma-Aldrich, США) в воде проводили в кварцевой кювете (толщина l = 1 см) при предварительном перемешивании раствора, содержащего все компоненты реакции ($t \sim 15$ мин). Отсчет времени реакции начинали с момента включения освещения реакционной смеси. Время облучения варьировали (18–200 с). Освещение осуществляли с помощью светодиодного аппарата "АФС-Соларис" (ООО "Полироник", Россия), снабженного светоизлучателями с $\lambda = 400$ и 660 нм. Кинетику процесса фотоокисления фиксировали по уменьшению оптической плотности

поглощения в УФ-спектре триптофана в воде ($\lambda = 280$ нм). Аналогичным образом следили за кинетикой процесса "фотодеградации" ФЗ по уменьшению оптической плотности полосы поглощения его в видимом спектре ($\lambda = 655$ нм). Электронные спектры поглощения (ЭСП) растворов снимали на спектрофотометре Cary50 (Varian, Австрия) (рис. 1).

При проведении реакций фотоокисления концентрация триптофана составляла 1×10^{-4} M, концентрации $\Phi 3 - 2 \times 10^{-6}$ и 5×10^{-6} M, концентрацию плюроника F-127 варьировали в диапазоне от 5×10^{-5} до 8×10^{-4} M. Определение наблюдаемой константы k_{obs} скорости фотоокисления триптофана на основе проводимых экспериментов осложнялось тем, что при включении светодиода в момент времени t = 0 одновременно с уменьшением концентрации $C^{TP}(t)$ триптофана в реакционной среде фиксировалось уменьшение концентраций $C^{PD}(t)$ фотодитозина соответственно. Для кинетики фотоокисления триптофана использовали следующее уравнение:

$$\frac{dC^{TP}(t)}{dt} = -kC^{TP}(t)C^{PD}(t).$$
(1)

Здесь k — константа скорости фотосенсибилизированного окисления триптофана, так что при $C^{TP}(0) \equiv C_0^{TP}$ получаем

$$C^{TP}(t) = C_0^{TP} \exp\left[-k \int_0^t C^{PD}(\tau) d\tau\right].$$
 (2)

В дальнейшем будем определять, прежде всего, наблюдаемую константу $k_{\rm obs}^{TP}$ скорости фотоокисления триптофана по уменьшению флуоресценции триптофана, анализируя линейный участок соответствующей кинетической зависимости, в течение которого окисляется ~ $\Delta 20\%$ количества триптофана в исходном растворе. При этом, как это следует из выражения (2), необходимо одновременно исследовать кинетику фотодеструкции ФЗ, т.е. фиксировать соответствующую зависимость $C^{PD}(t)$ при известной начальной концентрации $C^{PD} \equiv C_0^{PD}$ фотодитозина в реакционной среде. При исследовании таких зависимостей (они представлены ниже) было показано, что в исследуемом временном интервале $[0, \Delta t]$ фотоокисления триптофана и при выбранных концентрациях компонентов, участвующих в исследуемом процессе фотоокисления триптофана, интегральное выражение в показателе экспоненты (2) с достаточной точностью (~5%) может быть представлено в виде линейной зависимости от времени:

$$\chi(\Delta t) \equiv C_0^{PD} \int_0^{\Delta t} \left[C^{PD}(\tau) / C_0^{PD} \right] d\tau \approx C_0^{PD} \xi \Delta t, \qquad (3)$$

с введением безразмерного коэффициента ξ , характеризующего относительную скорость фотодеградации фотосенсибилизатора в исследуемом временном интервале Δt проведения процесса [22].

Кинетика процесса окисления триптофана на указанном интервале представляется в виде:

$$\Delta C^{TP} \equiv C_0^{TP} - C^{TP}(\Delta t) = C_0^{TP} C_0^{PD} k \xi \Delta t.$$
(4)

Наблюдаемую константу k_{obs}^{TP} скорости фотоокисления триптофана представляем в виде, учитывая, что фиксируемая интенсивность фотолюминесценции триптофана пропорциональна его концентрации в рабочей ячейке:

$$k_{\rm obs}^{TP} = \frac{\Delta I}{I_0 \Delta t},\tag{5}$$

где I_0 и ΔI — соответственно интенсивность люминесценции триптофана (в приборных единицах, а.u.) и изменение этой интенсивности при фотоокислении за время Δt . Ниже нас будет интересовать эффективная константа $k_{\rm eff}$ скорости фотоокисления триптофана, приходящаяся на одну молекулу ПФС:

$$k_{\rm eff} = k_{\rm obs}^{TP} / C_0^{PD} \xi$$

с определением величины ξ при численном анализе в каждом конкретном случае.

Мы анализировали также константы k_d скорости фотодеструкции ФЗ, которые рассчитывали по линейному участку соответствующих кинетических кривых согласно: $k_d = \Delta C^{PD} / (C_0^{PD} \Delta t)$, где ΔC^{PD} изменение концентрации фотодитазина при окислении триптофана за время Δt . Ошибка измерений получаемых данных обычно составляла ~10%.

С помощью измерителя средней мощности и энергии лазерного излучения ИМО-2Н определяли мощности (мВт) светового потока с длиной волны 400 и 660 нм, генерируемого светодиодным аппаратом "АФС-Соларис", и вычисляли плотность мощности света, действующего на реакционную смесь. Плотность мошности излучения света рассчитывали по формуле: P = W/S, где W – мощность излучения на расстоянии 3 см между светом и кюветой (мВт), *S* – площадь облучаемой поверхности кюветы объемом 3 мл (см²). Кинетику процесса фотоокисления субстрата и фотодеградации ФЗ анализировали при трех различных плотностях мошности светодиода. Плотность Р мошности ("Высокая", "Средняя", "Низкая", табл. 1) подбирали таким образом, чтобы они находились в пределах значений стимулирующих доз низкоинтенсивного лазерного излучателя (от 0.5–9 мВт/см²) [23].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследование фотокаталитической активности и фотодеградации ФЗ проводили при двух концентрациях C_{pz} фотодитазина (5 × 10⁻⁶ и 2 × × 10⁻⁶ М) и облучении светом 400 и 660 нм при разных плотностях мощности световых потоков, условно обозначаемых как "высокая", "средняя" и "низкая". На рис. 2–5 приведены зависимости величины эффективной константы k_{eff} скорости фотоокисления триптофана в присутствии ФЗ и константы k_{pz} фотодеградации ФЗ от концентрации плюроника F-127, полученные при указанных концентрациях фотодитазина – 5 × 10⁻⁶ М (рис. 2 и 3) и 2 × 10⁻⁶ М (рис. 4 и 5).

Отметим основные особенности представленных на рис. 2–5 зависимостей для величин $k_{\text{eff}}(C^{Pl})$ и $k_d(C^{Pl})$ от концентрации C^{Pl} плюроника F-127 в реакционной среде.

Рис. 1. Электронный спектр поглощения Фотодитазина $C = 5 \times 10^{-6}$ М в водном растворе.

1. Эффективные константы $k_{\rm eff}$ скорости фотоокисления триптофана при облучении светом с длиной волны 400 нм превосходят по величине соответствующие константы при воздействии на исследуемые системы излучений при 660 нм и обеих используемых в работе концентрациях ФЗ в реакционной среде для всех исследуемых концентраций плюроника F-127. Этот факт просто определяется большей эффективностью (величиной экстинкции) возбуждения молекул ФЗ в полосе поглощения ~400 нм, нежели в полосе возбуждения ~660 нм. При этом во всех случаях наблюдается очевидная зависимость — большей величине мощности воздействия соответствуют большие величины фиксируемых величин $k_{\rm eff}$.

2. Все представленные зависимости $k_{\text{eff}}(C^{Pl})$ возрастают при введении плюроника F-127 в реакционную среду. При этом зависимости, полученные при меньшей концентрации фотодитазина $C_0^{PD} = 2 \times 10^{-6}$ М в реакционной среде и при воздействиях света с длиной волны 400 нм характеризуются максимумом при относительно малых $C^{Pl} \approx 1 \times 10^{-4}$ М значениях концентрации плюроника, который в большей мере проявляется при больших мощностях падающего света. В экспериментах при $C_0^{PD} = 5 \times 10^{-6}$ М такой максимум проявляется лишь при световых воздействиях с длиной волны 400 нм и наибольшей мощностью (6 мВт/см²). Во всех случаях зависи-

Таблица 1. Величины плотности мощности (P, мВт/см²) для светодиодных излучателей с $\lambda = 400$ и 660 нм, используемые для возбуждения ФЗ

λ, нм	Высокая	Средняя	Низкая
400	6.0	4.0	2.4
660	2.0	1.0	0.5

мости $k_{\rm eff}(C^{Pl})$ выходят на постоянные значения при $C^{Pl} > 2 \times 10^{-4}$ М.

Для понимания такого характера зависимостей $k_{\text{eff}}(C^{Pl})$ необходимо рассмотреть полученные в наших экспериментах зависимости $k_d(C^{Pl})$. Для всех этих зависимостей характерно достаточно резкое падение величин $k_d(C^{Pl})$ в области малых значений C^{Pl} (от нулевых, при которых константы выгорания ФЗ максимальны, до 2 × 10⁻⁴ M). При последующем возрастании C^{Pl} зависимости $k_d(C^{Pl})$ изменяются слабо, т.е. введение в реакционную среду плюроника при концентрации ~2 × × 10⁻⁴ M оказывается достаточным для эффективной защиты ФЗ от фотодеградации, которая естественным образом связывается с воздействи-

ем молекул ${}^{1}O_{2}$, продуцируемых фотодитазином. Известно [24], что при концентрациях выше 5 × × 10^{-6} М плюроник F-127 в водных растворах образует мицеллы, и молекулы Φ 3, локализующиеся

Рис. 2. Зависимости эффективной константы $k_{\rm eff}$ скорости фотоокисления триптофана (1 × 10⁻⁴ M) в присутствии ФЗ (5 × 10⁻⁶ M) от концентрации плюроника F-127 при разных плотностях мощности света и длинах волн падающего света (400 нм): I - 6, 2 - 4, 3 - 2.4 мВт/см²; (660нм): 4 - 2, 5 - 1, 6 - 0.5 мВт/ см².

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 6 2021

Рис. 3. Зависимости констант k_{pz} скорости фотодеградации ФЗ (5 × 10⁻⁶ M) от концентрации плюроника F-127 при различных плотностях мощности света с различными длинами волн света; обозначения см. рис.2.

во внешней, гидрофильной части таких мицелл и образующиеся координационные связи с фрагментами плюроника оказываются защищенными от

разрушающего действия молекул ¹О₂. Фактически эффективность фотосенсибилизирующего окисления молекул органических субстратов определяется тем, насколько молекулы субстрата окажутся локализованными вблизи молекул фотосенсибилизатора, чтобы синглетный кислород преимущественно атаковал молекулы субстрата и в меньшей степени – молекулы фотосенсибилизатора.

Как следует из сопоставления рис. 2 и 3, особенно кривых 1, соответствующих наибольшей мощности при облучении светом в полосе около 400 нм, сильное уменьшение константы деградации указывает на то, что защитные функции плюроника оказываются определяющими. Ранее было показано, что и ФЗ, и триптофан, в силу достаточной полярности своих молекул локализуются в верхней части мицелл плюроника в гидрофильной этиленоксидной "опушке" мицелл плюроника F-127 [24], причем молекулы ФЗ оказываются (особенно при меньших концентрациях) разнесенными на расстояния ~ 20 нм. В этих условиях вероятность фотодеградации "соседних" молекул ФЗ может быть малой, поскольку время жизни синглетного кислорода в водной среде составляет $\tau \sim 1$ мкс, и за такое характерное время частица (синглетного кислорода) в воде при грубых оценках (коэффициент диффузии $D \sim 10^{-8} \text{ см}^2/\text{с}$) перемещается на характерное расстояние $l \sim \sqrt{2D\tau} \sim 1$ нм. В то же время молекулы субстрата (при достаточно большой их концентрации, $C^{TP} \sim 1 \times 10^{-4}$ M) в среднем локализуются на взаимных расстояниях $\sim 2-3$ нм, что и определяет большую вероятность взаимодействия синглетного кислорода именно с молекулами аминокислотного субстрата.

3. Формирование координационных связей ФЗ с фрагментами плюроника F-127 обусловливает разагрегирование молекул ФЗ, которые обычно формируют ассоциаты в достаточно концентрированных ($C > 5 \times 10^{-6}$ M) водных растворах. Согласно [24], размеры фиксируемых ассоциатов обычно невелики, ~10-20 нм. С этой точки зрения, интерес представляют зависимости $k_{\rm eff}(C^{Pl})$ при двух исследуемых концентрациях фотосенсибилизатора ($C_0^{PD} = 2 \times 10^{-6}$ и 5 × 10⁻⁶ М), полученные при воздействии света в полосе 400 нм и представленные на рис. 2 и 3 (кривые 1-3). Превышение эффективных констант $k_{\text{eff}}(C^{Pl})$ окисления триптофана при разных значениях мощности светового воздействия в случае, когда концентрация Φ 3 в растворе составляет $C_0^{PD} = 2 \times$ × 10⁻⁶ М, в 1.5, 2.3 и 3 раза по сравнению с полученными при $C_0^{PD} = 5 \times 10^{-6}$ M, может указывать именно на дезагрегацию ассоциатов ФЗ при включении их в мицеллы плюроника. Поэтому

Рис. 4. Зависимости эффективной константы $k_{\rm eff}$ скорости фотоокисления триптофана (1 × 10⁻⁴ M) в присутствии ФЗ (2 × 10⁻⁶ M) от концентрации плюроника F-127 при различных плотностях мощности света с различными длинами волн света; обозначения см. рис.2.

можно полагать, что такие ассоциаты Φ 3 при солюбилизации в мицеллах плюроника уменьшают свой размер в 2–3 раза. Обычно полагается, что Φ 3 при концентрациях в водных растворах, меньших 1 × 10⁻⁶ М, практически не агрегирован. Наши данные показывают, что при концентрациях 2 × 10⁻⁶ М небольшая степень агрегированности может еще оставаться.

Следует подчеркнуть, что эффект дезагрегированности молекул Φ 3 при наличии в растворе плюроника F-127 удалось зафиксировать только на основе зависимостей $k_{\rm eff}(C^{Pl})$, полученных при воздействии света с длиной волны ~400 нм. На основе данных, полученных при воздействии света с $\lambda \sim 660$ нм, надежную информации на этот счет получить не удалось. Естественно связать такое заключение с существенно меньшей экстинкцией при таком воздействии на Φ 3 и меньшими величинами мощности воздействия, используемыми в таких экспериментах.

ЗАКЛЮЧЕНИЕ

1. Показано, что концентрации ΦС, плотности мощностей излучения и длины волн света влияют на фотокаталитическую активность и фотодеградацию ΦЗ в модельной реакции.

2. Значения эффективной константы k_{eff} скорости фотоокисления триптофана при облучении светом с длиной волны 400 нм в 1.5—3 раза выше, чем для аналогичных систем при воздействии света с длиной волны 660 нм при концентрациях

 $C_{\rho z}$ фотодитазина (5 × 10⁻⁶ и 2 × 10⁻⁶ М) в реакционной среде для всех исследуемых концентраций плюроника F-127. Данный результат связан с ЭСП фотодитазина, а именно с большим возбуждением молекул ФЗ в полосе поглощения с $\lambda \sim$ ~ 400 нм, нежели в полосе возбуждения с $\lambda \sim$ 660 нм.

3. Показаны характерные зависимости констант фотодеградции ФЗ от концентрации плюроника в реакционной системе. Для всех этих зависимостей установлено резкое падение значений $k_d(C^{Pl})$ при концентрации плюроника $C^{Pl} = 0-2 \times 10^{-4}$ М и дальнейший выход на плато величин $k_d(C^{Pl})$ при последующем возрастании C^{Pl} . Увеличение концентрации плюроника (>~2 × × 10⁻⁴ М) в реакционной системе эффективно защищает ФЗ от процесса фотодеградации, что показывает взаимосвязь процесса фоторазрушения ФЗ с фотокаталитической активностью ФС в модельной реакции, поскольку связывается с воздействием

молекул $^{1}O_{2}$, продуцируемых фотодитазином.

4. Показано, что амфифильный полимер плюроник F-127 способен повысить фотокаталитическую активность ФС систем в модельных реакциях фотоокисления триптофана в воде вследствие разогрегации ассоциатов ФЗ при включении их в мицеллы плюроника. Данный эффект зафиксирован только при воздействии света с длиной волны ~400 нм, что, вероятно, связано наибольшей плотностью мощности света и наибольшим коэффициентом экстинкции при данном воздей-

Puc. 5. Зависимости констант k_{pz} скорости фотодеградации Φ3 (2 × 10⁻⁶ M) от концентрации плюроника F-127 при различных плотностях мощности света с различными длинами волн света; 400 нм: (*I*) 6 мВт/см², (*2*) 4 мВт/см², (*3*) 2.4 мВт/см²; 660 нм: (*4*) 2 мВт/см², (*5*) 1 мВт/см², (*6*) 0.5 мВт/ см².

ствии на ФС, чем при облучении светом с длиной волны 660 нм.

5. Данная модельная реакция позволит "подобрать" ФС системы (в присутствии или в отсутствие других компонентов) и характерные для каждого ФС режимы низкоэнергетических ФД-воздействий на субстраты, которые должны быть наиболее благоприятными для реальной терапии — инициировании регенеративных, иммунных процессов.

Работа выполнена при финансовой поддержке Государственного задания (№ 0082-2019-0012).

СПИСОК ЛИТЕРАТУРЫ

- 1. Juzeniene A., Nielsen K.P., Moan J.E. // J. Environ. Pathol. Toxicol. Oncol. 2006. V. 25. P. 7.
- Brown S.B., Brown E.A., Walker. I. // The Lancet Oncol. 2004. V. 5. P. 497.
- 3. *Красновский А.А.* // Биофизика. 2004. Т. 49. № 2. С. 305.
- Jonson P.G., Bellnier D.A., Henderson B.W. // Photochem and Photobiology. 1993. V. 57. P. 50.
- Henderson B.W., Bellnier D.A. // Ciba Found. Symp. 1989. V. 146. P. 112.
- Wilkinson F., Helman W.P., Ross A.B. // J. Phys. Chem. Ref. Data. 1995. V. 24. № 2. P. 663.
- 7. *McCaughan Jr.J.S.* // Drugs & Aging. 1999. V. 15. P. 49.
- Plaetzer K., Krammer B., Berlanda J., Berr F. et al. // Lasers Med Sci. 2009. V. 24. P. 259.
- 9. Canti G., De Simone A., Korbelik M. // Photochem. Photobiol. Sci. 2002. V. 1. P. 79.

- 10. Allison R.R., Moghissi K. // Clin. Endosc. 2013. V. 46. P. 24.
- Акопов А.Л., Казаков Н.В., Русанов А.А., Карлсон А. // Фотодинамическая терапия и фотодиагностика. 2015. № 2. С. 9.
- Оптическая биомедицинская диагностика / Под ред. проф. В.В. Тучина. М.: Физматлит, 2007. Т. 1. С. 560. Т. 2. С. 368.
- Красников И.В., Привалов В.Е., Сетейкин А.Ю., Фотиади. А.Э. // Вестн. СПбГУ. 2013. Сер. 11. Вып. 4.
- Solovieva A.B., Tolstih P.I., Melik-Nubarov N.S. et al. // Las.Phys. 2010. № 5. P. 1068–1074.
- 15. Oleinick N.L., Morris R.L., Belichenko I. // Photochem. Photobiol. Sci. 2002. № 1. P. 1.
- Ding X., Xu Q., Liu F. et al. // Cancer Lett. 2004. V. 26. P. 43.
- Henderson B.W., Donovan J.M. // Cancer Res. 1989. V. 49. P. 6896.
- Henderson B.W., Owczarczak B., Sweeney J., Gessner T. // Photochem. Photobiol. 1992. V. 56. № 1. P. 513.
- Agarwal M.L., Clay M.E., Harvey E.J., Evans H.H. et al. // Cancer Res. 1991. V. 51. P. 5993.
- 20. Мачинская Е.А., Иванова-Радкевич В.И. // Фотодинамическая терапия и фотодиагностика. 2013. № 4. С. 19.
- 21. Rudenko T.G., Shekhter A.B., Guller A.E., Aksenova N.A. et al. // Photochem. Photobiol. 2014. V. 90. P. 1413.
- Соловьева А.Б., Глаголев Н.Н., Аксенова Н.А. и др. // Журн. физ. химии. 2019. Т. 93. № 9. С. 1428.
- 23. Беликов А.В., Скрипкин А.В. Лазерные биомедицинские технологии (часть 1). Учебное пособие. СПб.: СПбГУ ИТМО. 2008. 116 с.
- Zhientaev T.M., Melik-Nubarov N.S., Litmanovitch E.A., Aksenova N.A. et al. // Polymer Science. Ser. A. 2009. V. 51. № 5. P. 502.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 6 2021