_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 541.133.08:547.36

ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ НЕКОТОРЫХ ХАРАКТЕРИСТИК ХЛОРОВОДОРОДА В СПИРТАХ

© 2021 г. Б. Б. Танганов^{а,*}

^а Восточно-Сибирский государственный университет технологий и управления, Улан-Удэ, Республика Бурятия, Россия *e-mail: tanganov@rambler.ru Поступила в редакцию 26.06.2020 г. После доработки 19.11.2020 г. Принята к публикации 20.11.2020 г.

Оценены предельные значения электропроводности, степень диссоциации, термодинамические константы диссоциации хлороводорода в *н*-спиртах в диапазоне температур 278—328 К с шагом 10 К. Методом многоуровневого моделирования разработаны модельные уравнения оценки предельных электропроводностей и констант диссоциации на некотором базисе растворителей в большом диапазоне температур раствора. Получены надежные и воспроизводимые результаты с высокой степенью надежности и достоверности.

Ключевые слова: электропроводность, плазмоподобная теория электролитов, хлороводород, *н*-спирты, этанол, пропанол, бутанол, пентанол, метод многоуровневого моделирования **DOI:** 10.31857/S0044453721060261

Существующие теории растворов электролитов не дают полной картины ион-дипольных, ион-ионных и диполь-дипольных взаимодействий, имеющих место в растворителях с разными диэлектрическими постоянными, константами автопротолиза, вязкостями и дипольными моментами.

Плазменно-гидродинамическая концепция в отношении водных растворов сильных электролитов, основанная на предположениях Дебая, была разработана на кафедре "Неорганическая и аналитическая химия" Восточно-Сибирского государственного университета технологий и управления проф. Балдановым М.М. в качестве модели для процессов электропроводности. Им была предложена модель переноса количества заряда водных растворов сильных электролитов [1].

Данная теория была в дальнейшем развита, расширена и углублена автором данной работы в отношении сильных и слабых электролитов не только в водном растворе, но и в органических растворителях, коренным образом отличающихся своими свойствами от воды. Так, были выведены модельные уравнения для характеристик сольватированных ионов (ион-дипольные взаимодействия), процессов переноса количества заряда, массы, энергии и количества движения в неводных растворах с учетом вязкости, диэлектрической проницаемости, собственных размеров, дипольного момента, степени диссоциации слабого электролита, коэффициентов активности ионов (ион-ионные взаимодействия), энергии межмолекулярных взаимодействий в молекулах органического растворителя (диполь-дипольные взаимодействия) [2].

Целью данной работы было проверить справедливость плазмоподобной теории электролитов в неводных растворителях, в качестве которых были выбраны четыре *н*-спирта (этанол, пропанол, бутанол и пентанол). В качестве электролита была выбрана хлороводородная кислота, в качестве измеряемого параметра — эквивалентная электропроводность и термодинамическая константа диссоциации.

Расчет эквивалентной электропроводности производился по уравнению плазменно-гидродинамической теории электролитов [3]:

$$\lambda = \alpha \frac{Fze^3}{4\varepsilon U^2} \left(1 + \frac{r_s}{r_D} \right) \times \left[\frac{2}{\mu_s} \left(\frac{5}{2} RT - 2 \left(\frac{2\pi z^2 e^2 \hbar^2 C N_A}{1000\mu_0} \right)^{1/2} \right) \right]^{1/2} \times (1) \times \exp \left(- \left(\frac{2\pi z^2 e^2 \hbar^2 C N_A}{1000\mu_0 k_B^2 T^2} \right)^{1/2} \right),$$

где F – постоянная Фарадея, z – эффективный заряд, e – элементарный заряд, ε – диэлектриче-

Таблица 1. Экс	спериментальные данные эк	свивалентной электропроводности хлороводорода в этаноле при раз-
личных темпер	атурах λ [См см ² моль ⁻¹], <i>С</i> [[моль/л], степень диссоциации, коэффициент активности (f) и термо-
динамические	константы диссоциации	

С	λ	α	$f_{\rm HCl}$	K _{HCl}	р $K_{дисс}$	С	λ	α	$f_{\rm HCl}$	K _{HC1}	р $K_{дисс}$	
278 K						288 K						
0.09808	24.48	0.5290	0.9561	0.1002	0.9992	0.09706	28.61	0.4794	0.9598	0.07024	1.1533	
0.04904	26.53	0.5733	0.9675	0.0620	1.2075	0.04852	31.16	0.5222	0.9702	0.04363	1.3602	
0.02452	28.81	0.6226	0.9759	0.03986	1.3994	0.02426	35.72	0.5986	0.9773	0.03356	1.4741	
0.01226	33.23	0.7181	0.9817	0.03532	1.4519	0.01213	39.93	0.6691	0.9830	0.02496	1.6026	
0.00613	34.10	0.7369	0.9868	0.01905	1.7199	0.006066	44.36	0.7434	0.9873	0.01959	1.7079	
0.003065	37.59	0.8124	0.9902	0.01609	1.7933	0.003032	48.29	0.8092	0.9906	0.01540	1.8123	
0.001532	38.90	0.8407	0.9929	0.009860	2.0061	0.001516	50.80	0.8513	0.9932	0.01071	1.9701	
0.000766	41.64	0.8999	0.9948	0.008958	2.0477	0.0007581	54.2	0.9083	0.9950	0.009857	2.0062	
0.000383	42.91	0.9273	0.9963	0.006446	2.1906	0.0003791	55.55	0.9309	0.9964	0.006740	2.1712	
0.000192	43.97	0.9502	0.9973	0.004893	2.3103	0.0001895	56.94	0.9542	0.9974	0.005282	2.2771	
0.0000958	44.60	0.9639	0.9981	0.003375	2.4716	0.0000948	57.05	0.9560	0.9981	0.002683	2.5712	
0.0000479	44.79	0.9680	0.9986	0.001892	2.7229	0.0000474	57.5	0.9636	0.9987	0.001614	2.7918	
0	46.27		1		1.8600		59.67				1.9082	
		298	3 K					308	3 K	1		
0.09602	33.46	0.4468	0.9627	0.05459	1.2628	0.09498	37.60	0.4129	0.9654	0.03159	1.5003	
0.04801	37.10	0.4954	0.9721	0.03567	1.4475	0.04749	42.03	0.4616	0.9740	0.02057	1.6865	
0.02400	42.04	0.5614	0.9789	0.02583	1.5877	0.02374	48.27	0.5301	0.9802	0.01505	1.8223	
0.01200	47.64	0.6362	0.9840	0.01970	1.7054	0.01187	55.03	0.6043	0.9850	0.01137	1.9441	
0.00613	53.17	0.7100	0.9879	0.01553	1.8087	0.005936	62.60	0.6875	0.9887	0.009193	2.0365	
0.003065	59.23	0.7910	0.9910	0.01328	1.8767	0.002968	69.00	0.7578	0.9916	0.007145	2.1459	
0.001532	63.11	0.8428	0.9934	0.009866	2.0058	0.001468	76.35	0.8385	0.9937	0.006453	2.1902	
0.00075	67.97	0.9077	0.9952	0.009540	2.0204	0.0007419	80.70	0.8863	0.9954	0.005158	2.2874	
0.00037	69.01	0.9216	0.9966	0.005560	2.2548	0.000371	82.48	0.9058	0.9967	0.003245	2.4886	
0.00019	69.81	0.9322	0.9975	0.003302	2.4811	0.0001855	84.91	0.9325	0.9976	0.002396	2.6203	
0.00009	70.40	0.9401	0.9983	0.001758	2.7548	0.0000928	86.33	0.9481	0.9983	0.001610	2.7929	
0.00004	70.90	0.9468	0.9987	0.001028	2.9878	0.0000464	87.71	0.9633	0.9988	0.001174	2.9299	
0	73.59		1		2.0161	0	91.05		1		2.2037	
		318	3 K			328 K						
0.09389	41.83	0.3823	0.9679	0.02557	1.5921	0.09275	45.02	0.3413	0.9707	0.01897	1.7218	
0.04694	46.83	0.428	0.9759	0.01652	1.7819	0.04637	50.85	0.3855	0.9779	0.01236	1.9079	
0.02347	55.09	0.5035	0.9814	0.01272	1.8953	0.02318	58.67	0.4448	0.9832	0.008798	2.0555	
0.01173	62.47	0.5709	0.9860	0.009261	2.0332	0.01159	69.03	0.5233	0.9871	0.006928	2.1593	
0.005868	71.9	0.6571	0.9893	0.007571	2.1208	0.005796	79.80	0.6051	0.9901	0.005507	2.2590	
0.002933	80.5	0.7357	0.9920	0.006101	2.2146	0.002898	91.34	0.6924	0.9925	0.004588	2.3383	
0.001467	88.34	0.8074	0.9941	0.005015	2.2996	0.001449	102.01	0.7733	0.9944	0.003860	2.4133	
0.0007334	95.24	0.8704	0.9956	0.004315	2.3649	0.000724	113.93	0.8637	0.9958	0.003987	2.3993	
0.0003667	98.61	0.9012	0.9968	0.003027	2.5188	0.000362	116.12	0.8803	0.9970	0.002353	2.6282	
0.0001833	101.8	0.9304	0.9977	0.002286	2.6407	0.000181	120.71	0.9151	0.9978	0.001790	2.7470	
0.0000917	103.94	0.95	0.9983	0.001658	2.7802	0.000091	123.88	0.9392	0.9984	0.001323	2.8784	
0.0000458	104.21	0.9524	0.9988	0.0008740	3.0584	0.000045	125.01	0.9477	0.9989	0.0007738	3.1113	
0	109.41		1		2.275	0	131.9	1	1		2.3849	

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 6 2021

ская постоянная среды, R — универсальная газовая постоянная, T — температура в К, \hbar — постоянная Планка, C — эквивалентная концентрация электролита, моль/л, N_A — постоянная Авогадро, $k_{\rm E}$ — постоянная Больцмана, U — энергия водородной связи растворителя, μ_0 — приведенная масса несольватированных ионов, $\mu_{\rm s}$ — приведенная масса сольватированных ионов (катиона и аниона), α — степень диссоциации электролита, r_D — дебаевский радиус экранирования равный:

 $r_D = \sqrt{\frac{250\varepsilon k_{\rm B}T}{\pi e^2 \alpha C N_{\rm A}}}, f$ – вероятность (коэффициент активности HCl в растворах электролитов [1, 2]:

 $f = \exp[-(4\pi z^2 e^2 \hbar^2 C N_{\rm A} / 1000 \mu_0 k_{\rm B}^2 T^2)^{1/2}],$

приведенный радиус сольватированных ионов:

$$r_s = \frac{r_s(\mathrm{Kt})r_s(\mathrm{An})}{r_s(\mathrm{Kt}) + r_s(\mathrm{An})}.$$

Исследованиям процессов переноса – электрической проводимости в растворах и диссоциации сильных и слабых электролитов посвящено много статей. Среди них отметим электрохимические работы [4-11] с использованием электрометрических и других методов. Александров В.В. [12] приводит рК хлороводородной кислоты в среде спиртов: 1.95 в этаноле, 2.87 – в бутаноле. В указанных публикациях приведены величины констант диссоциации сильных и слабых электролитов, различающихся большим диапазоном в воде и в растворах органических растворителей (в частности показатели констант диссоциации хлороводородной кислоты приведены даже в воде от -7.0 до 3.0...7.0. Применяются компьютерное моделирование [7, 8], публикуются pKHCl, полученные с помощью эмпирических моделей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все спирты марки "х.ч." были предварительно обезвожены согласно стандартным методикам [13], окончательно высушены над молекулярными ситами, хранились под вакуумом. Содержание воды по модернизированному методу Карла Фишера не превышало 0.05%. Хлороводород был получен взаимодействием хлорида калия ("х.ч.") с концентрированной серной кислотой ("х.ч."), осушен пропусканием последовательно через две склянки с кислотой и под вакуумом пропускался через колбу со спиртом. Растворы готовились методом последовательных разбавлений по массе, исходные концентрации были установлены трехкратным титрованием 0.1-0.001 М водным раствором гидроксида калия ("х.ч."). Установка для измерения электропроводности растворов электролитов состояла из трех основных элементов: измерительной части, кондуктометрической

ячейки и термостата [3]. Для измерений использовалась вакуумная ячейка из пирекса с тремя плоскопараллельными круглыми платиновыми электродами, покрытыми платиновой чернью. Измерение сопротивления растворов проводилось при частоте 1000 Гц. Для поддержания температуры в термостате использовалась схема с применением регулятора температуры ВРТ-3. Точность поддержания температуры составляла ±0.05°С. Константа ячейки была установлена измерением сопротивления водных растворов KCl исследуемого диапазона концентраций. Погрешность определения константы ячейки не превышала 0.25%, средняя погрешность определения сопротивления не более 1.4% [3]. В качестве примера в табл. 1 приведены значения экспериментальной эквивалентной электропроводности в среде этанола. Отметим, что оцененные электропроводности HCl во всех спиртах по модельному уравнению (1), отличаются от экспериментальных на $\pm 5\%$, что свидетельствует о приемлемости плазмоподобной теории электрической проводимости. Поэтому расчетных данных по уравнению (1) здесь не приведено.

Для расчетов коэффициента активности HCl привлечена плазмоподобная концепция [1-3]. Базисные уравнения для расчетов искомых величин α , *f*, $K_{\text{лисс}}$ и р $K_{\text{лисс}}$ приведены ниже:

$$\alpha = \lambda_{_{\mathfrak{SKCII}}} / \lambda_0, \quad [\mathrm{ROH}_2^+] = Cf \alpha, \tag{2}$$

$$f = \exp[-(4\pi z^2 e^2 \hbar^2 C N_{\rm A} / 1000 \mu_0 k_{\rm B}^2 T^2)^{1/2}], \qquad (3)$$

$$K_{\text{дисс}} = a[\text{ROH}_2^+]^2 \alpha^2 f / C(1 - \alpha).$$
 (4a)

После преобразования уравнение (4а) можно упростить:

$$K_{\text{дисс}} = Ca^2 f / (1 - \alpha), \qquad (4)$$

$$pK_{\mu\nu cc} = -\lg K_{\mu\nu cc}.$$
 (5)

Значения концентрационных и предельных электропроводностей, степени диссоциации, коэффициентов активности HCl и термодинамических констант диссоциации хлороводорода в среде этанола, оцененные по уравнениям (2), (3) и (5), представлены в табл. 1.

На рис. 1 представлены температурные зависимости термодинамических констант диссоциации хлороводородной кислоты в спиртах. Соответствующие уравнения параболических зависимостей характеризуются высокими значениями коэффициентов корреляции от 0.979 до 0.999 (подписи под рис. 1), оцененные по этим уравне-

Рис. 1. Зависимости показателей констант диссоциации HCl в спиртах от температуры (*T*, K); (- \blacklozenge -): p*K*(HCl/EtOH) = (3 × 10⁻⁵)*T*² − 0.00688*T* + 1.453 (*R*² = 0.979), (- \blacksquare -): p*K*(HCl/PrOH) = (8 × 10⁻⁵)*T*² − - 0.0378*T* + 6.595 (*R*² = 0.989), (- \blacktriangle -): p*K*(HCl/BuOH) = = (33.35 × 10⁻⁵)*T*² − 0.1771*T* + 25.82 (*R*² = 0.980), (-*x*-): p*K*(HCl/AmOH) = -(5.35 × 10⁻⁵)*T*² + 0.049*T* − 6.587 (*R*² = 0.999).

ниям (табл. 2, 3, рис. 1) константы диссоциации свидетельствуют о высокой вероятности применяемых методов. То же самое можно отметить (табл. 3, рис. 2) для электропроводностей.

Как видно, значения констант диссоциации и предельной электропроводности в спиртах, определенные экспериментально и оцененные по уравнениям под рисунками и методом многоуровневого моделирования (ММУМ), удовлетворительно совпадают.

Традиционные классические методы исследования, требующие больших затрат труда, времени, уникального оборудования, дорогих реактивов, могут быть заменены на косвенные методы с применением компьютеров, которые гораздо быстрее, позволяют не только интерпретировать результаты, но и с высокой степенью достоверности предсказывать, прогнозировать свойства веществ.

Для уточнения, проверки значений р $K_{\rm HCl/ROH}$ и λ_0 применен следующий метод — многоуровневого моделирования (MMVM), разработанный нами ранее, позволяющий математически моделировать, прогнозировать, уточнять и оценивать характеристики физико-химических систем [14].

Таблица 2. Температурные зависимости экспериментальных и рассчитанных величин термодинамических констант диссоциации хлороводородной кислоты в некоторых спиртах

Т, К	EtOH			PrOH			BuOH			РеОН		
	р <i>К</i> _{эксп}	р <i>К</i> _{рис. 1}	р <i>К</i> _{ММУМ}	р <i>К</i> _{эксп}	р <i>К</i> _{рис.1}	р <i>К</i> _{ММУМ}	р <i>К</i> _{эксп}	р <i>К</i> _{рис.1}	р <i>К</i> _{ММУМ}	р <i>К</i> _{эксп}	р <i>К</i> _{рис. 1}	р <i>К_{ММУМ}</i>
278	1.861	1.859	1.861	2.285	2.269	2.285	2.398	2.360	2.398	2.903	2.900	2.903
288	1.908	1.959	1.908	2.351	2.344	2.351	2.428	2.428	2.428	3.092	3.087	3.092
298	2.016*	2.066	2.016	2.453	2.435	2.453	2.589**	2.660	2.589	3.254	3.263	3.254
308	2.204	2.180	2.204	2.535	2.542	2.535	2.956	2.910	2.956	3.412	3.429	3.412
318	2.275	2.298	2.275	2.601	2.664	2.601	3.331	3.227	3.331	3.541	3.584	3.541
328	2.385	2.423	2.385	2.781	2.803	2.781	3.565	3.610	3.565	3.693	3.729	3.693

* Литературные значения р*K*_{HCl}: в этаноле 1.95 [12]; в бутаноле 2.87 [12].

Таблица 3. Температурные зависимости экспериментальных и рассчитанных величин предельных электропроводностей хлороводородной кислоты в спиртах (λ₀ HCl/ROH (См см²/моль))

<i>Т</i> , К	EtOH			PrOH			BuOH			РеОН		
	$\lambda_{0 \ m skcn}$	$\lambda_{0(\text{рис.2})}$	λ _{0 MMYM}	$\lambda_{0 \ { m skcn}}$	λ _{0 (рис. 2)}	λ _{0 MMYM}	$\lambda_{0 \ { m skcn}}$	λ _{0(рис.2)}	$\lambda_{0 \text{ MMYM}}$	$\lambda_{0 \ { m skcn}}$	$\lambda_{0(\text{рис.2})}$	$\lambda_{0 \text{ MMYM}}$
278	46.27	45.92	46.27	23.24	23.33	23.24	15.08	15.08	15.08	11.89	11.21	11.89
288	59.67	61.18	59.67	29.07	29.64	29.07	19.58	20.32	19.58	17.21	17.35	17.21
298	84.62*	77.13*	84.62	38.78	38.21	38.78	27.95	29.11	27.95	23.27	23.28	23.27
308	91.05	93.75	91.05	50.1	49.05	50.1	41.64	41.45	41.64	29.73	28.99	29.73
318	109.41	111.0	109.41	59.90	62.16	59.90	57.34	57.33	57.34	35.39	34.49	35.39
328	131.90	129.0	131.90	78.36	77.54	78.36	75.86	76.75	75.86	39.83	39.77	39.83

** λ_{0 HCl/EtOH} = 75.72 (при обработке литературных концентрационных электропроводностей для бесконечного разбавления – экстраполяции), в статье – 77.13 и 84.62.

Рис. 2. Зависимости предельных электропроводностей HCl в этаноле, пропаноле, бутаноле, пентаноле от температуры (T, K); - \blacklozenge -: λ (HCl/EtOH) = 0.0034 T^2 – 0.397T – 106.2 (R^2 = 0.985), - \blacksquare -: λ (HCl/PrOH)= 0.01134 T^2 – 5.788T +756.0 (R^2 = 0.996), - \blacktriangle -: λ (HCl/BuOH) = 0.01772 T^2 – 9.505T + 1288.0 (R^2 = 0.999), -x-: λ (HCl/AmOH) = -0.00100 T^2 + + 1.222T – 245.5 (R^2 = 0.998).

Разработаны модельные уравнения, позволяющие теоретически оценить искомые показатели с помощью уравнений (I) и (II)

$$pK_{\rm HCI/ROH} = A_{\rm I}M_{\rm ROH} + B_{\rm I}T_{\rm KM\Pi} + C_{\rm I}\rho_{\rm ROH} + + D_{\rm I}\eta_{\rm ROH} + E_{\rm I}, \qquad (I)$$

$$\lambda_{0 \text{ HCI/ROH}} = A_2 M_{\text{ROH}} + B_2 T_{\text{кип}} + C_2 \rho_{\text{ROH}} + D_2 \eta_{\text{ROH}} + E_2, \qquad (\text{II})$$

где M_{ROH} , $T_{\text{кип}}$, ρ_{ROH} и η_{ROH} — молекулярный вес, температура, плотность и вязкость соответствующего спирта. В табл. 4 приведены базисные табличные параметры спиртов для применения MMУM.

В табл. 5 внесены значения коэффициентов уравнений (I) и (II) при температурах 278, 288, 298, 308, 318 и 328 К, позволяющие рассчитать константы и электропроводность кислоты в изучаемых растворителях при других температурах. Оцененные по уравнениям (I) и (II) величины для этанола, пропанола, бутанола и пентанола в диапазоне температур (278 – 328 К) представлены в табл. 2, 3. Как видно из подписей под рис. 1 и 2

Таблица 4. Базовые характеристики спиртов для метода многоуровневого моделирования

Спирт	<i>М</i> _{ROH} , г/моль	<i>Т_{кип},</i> К	ρ, г/см ³	η, сП
EtOH	46.0	351.3	0.7851	1.052
PrOH	60.1	370.2	0.7995	1.968
BuOH	74.1	390.2	0.8057	2.616
PeOH	88.1	411.0	0.8098	3.718

уравнения параболической зависимости характеризуются достаточно высокими коэффициентами парной регрессии более 0.975. Между тем, соответствующие коэффициенты метода многоуровневого моделирования R_1 и R_2 (табл. 5) для всех спиртов при данных температурах равны 1.000, а оцененные величины констант диссоциации и электропроводностей практически совпадают с экспериментальными. Это свидетельствует о корректности, достоверности и приемлемости метода многоуровневого моделирования для исследования температурной зависимости обсуждаемых характеристик спиртовых растворов хлороводородной кислоты.

выводы

1. Оценены степень диссоциации, коэффициенты активности и термодинамические константы диссоциации HCl в четырех спиртах при температурах от 278 до 328 К.

2. Установлена температурная зависимость констант диссоциации и предельных проводимостей HCl в спиртах, выведены уравнения этих зависимостей. Уравнения параболического приближения функции характеризуются достаточно высокими коэффициентами вероятности, а рассчитанные характеристики в спиртах и температурах от 278 до 328 К достаточно сопоставимы с экспериментальными.

3. Методом многоуровневого моделирования выведены зависимости констант диссоциации и предельных электропроводностей от базисных характеристик спиртов (молярной массы молекул спиртов, температуры кипения, плотности и вяз-

<i>Т</i> , К	A_1	B_1	C_1	D_1	E_1	A_2	<i>B</i> ₂	$-C_{2}$	<i>D</i> ₂	E_2
278	-0.01877	16.55946	1.10239	0.11739	-8.55967	-2.19877	1.60185	1595.9767	0.74223	836.9055
288	-0.02196	24.8301	1.75008	0.27565	-18.4115	-1.91902	1.55420	2402.3684	1.83187	1486.127
298	-0.01497	20.4008	1.56272	0.2513	-16.4911	-1.79022	2.10540	3723.7791	-7.38823	2358.653
308	0.03025	4.29919	0.16985	0.11458	-14.7628	1.18014	0.48616	3556.6909	23.2745	2368.780
318	0.05716	-32.6835	-1.74607	-0.3330	17.8027	-1.14159	3.70667	3131.6801	-63.7266	1385.491
328	0.05841	-32.5282	-2.18290	-0.4401	20.3920	1.37129	2.78265	2861.2381	-91.9928	1434.411

Таблица 5. Коэффициенты уравнений ММУМ (I), (II) и корреляции *R*_{ММУМ} для расчетов температурных зависимостей констант диссоциации и предельных электропроводностей HCl/ROH (*R*₁, *R*₂ = 1.000)

кости) в рассматриваемом диапазоне температур раствора. Коэффициенты метода многоуровневого моделирования практически равны единице и оцененные величины совпадают с опытными.

СПИСОК ЛИТЕРАТУРЫ

- 1. Балданов М.М. // Химия и химическая технология. 1986. Т. 29. № 8. С. 38.
- 2. *Tanganov B.B.* // J. of Chemistry and Chemical Engineering (USA). 2013. V. 7. № 8. P. 711.
- 3. Ангапов В.Д., Танганов Б.Б. // Успехи современного естествознания. 2010. № 5. С. 43.
- Година Е.Н., Щербаков В.В. // Успехи в химии и химической технологии. Вып. XIII. РХТУ им. Д.И. Менделеева. М., 1999. Ч. 3. С. 35.
- 5. Иванов А.А. // Изв. вузов. Химия и хим. технол. 1989. Т. 32. № 10. С. 3.

- 6. *Tikhonov N.A., Sidel'nikov G.B.* // Rus. J. of Physical Chemistry. 2017. V. 91. № 10. P. 1890.
- 7. Lysova S.S., Skripnikova T.A., Zevatskii Yu.E. // Rus. J. of Physical Chemistry. 2017. V. 91. № 12. 2366.
- 8. Леванов А.В., Курбанова У.Д., Исайкина О.Я., Лунин В.В. // Журн. физ. химии. 2019. Т. 93. № 1. С. 86.
- 9. *Alekseev V.G., Markova E.V.* // Rus. J. of Physical Chemistry. 2016. V. 90. № 3. P. 586.
- 10. Usobiaga A., De Diego A., Madariaga J.M. // Chem. and Eng. Data. 2000. 45. № 1. P. 23.
- Hamman S.D., Linton M. // Trans. Faraday Soc-1969. V. 65. P. 2186.
- Александров В.В. Кислотность неводных растворов. Харьков. Изд. Вища школа. Харьков: ХГУ. 1981. 152 с.
- Крешков А.П. Аналитическая химия неводных растворов. М.: Химия, 1982. 120 с.
- 14. Танганов Б.Б., Балданов М.М., Мохосоев М.В. // Журн. физ. химии. 1992. Т. 66. № 6. С. 1476.