= ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 544.01

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ВЫСОКОТЕМПЕРАТУРНОЙ ОБЛАСТИ СИСТЕМЫ Са₃(PO₄)₂-СаКРО₄-СаNаPO₄

© 2021 г. Н. К. Орлов^{*a,b,**}, А. К. Киселева^{*a*}, П. А. Милькин^{*a*}, П. В. Евдокимов^{*a,c,d*}, В. И. Путляев^{*a,c*}, Yaxiong Liu^{*e*}

^а Московский государственный университет имени М.В. Ломоносова, Факультет наук о материалах, Москва, 119991, Россия

^b Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, Berlin, 12203, Germany

^с Московский государственный университет имени М.В. Ломоносова,

Химический факультет, Москва, 119991, Россия

^d Российская академия наук, Институт общей и неорганической химии им. Н.С. Курнакова, Москва, 119071, Россия ^e Institute of Advanced Manufacturing Technology, Xi'an, Shanxi, 710049, P.R. China

> *e-mail: nicolasorlov 174@gmail.com Поступила в редакцию 03.09.2020 г. После доработки 12.10.2020 г. Принята к публикации 13.10.2020 г.

Изучена высокотемпературная область фазовой диаграммы $Ca_3(PO_4)_2$ — $CaNaPO_4$ — $CaKPO_4$. Определены составы фазовых полей при температуре 1200°С. Показано, что область трикальциевого состава при данной температуре состоит из двух однофазных областей — высокотемпературного α - $Ca_3(PO_4)_2$ и низкотемпературного β - $Ca_3(PO_4)_2$. Определены верхние температуры существования некоторых фазовых полей сечения фазового треугольника при 1200°С.

Ключевые слова: смешанные фосфаты кальция, натрия и калия, фазовые превращения, тройные фазовые диаграммы

DOI: 10.31857/S0044453721070190

Исследование материалов для костного имплантирования ведется уже долгое время и направлено, в своей основной массе, на увеличение уровня резорбируемости в среде организма. На данный момент предложено несколько решений этой задачи, наиболее перспективные из которых – уменьшение объема имплантата, а если точнее - количество материала в имплантате (изготовление имплантата в виде каркаса с объемом пустого пространства до 70%) [1-3], и изменение состава материала [4-6]. В последнем методе речь идет об отходе от используемых в настоящий момент разформ апатита общей личных формулой $Ca_{10}(PO_4)_6 X_{(2)}$ (где чаще всего X = OH⁻, но также встречаются $F^{-}, \operatorname{CO}_2^{2^-})$ и трикальциевого фосфата (ТКФ) $Ca_3(PO_4)_2$ [7–11] к соединениям с менее стабильной решеткой. Таковыми являются, например, соединения замещенного ТКΦ $Ca_{3-x}M_{2x}(PO_4)_2$, в котором часть ионов кальция замещена щелочными металлами ($M = Na^+, K^+$). Такие материалы показывают лучший уровень резорбции, а варьирование соотношения Ca/K/Na предоставляет свободу выбора фазового состава и регулирования уровня резорбции [12].

Однако, при использовании любого из вышеперечисленных подходов — создании каркаса или изменении химического состава материала происходит падение прочностных свойств. Одной из причин такого поведения являются фазовые переходы, которые начинают происходить в процессе нагревания/охлаждения в материале при изменении при внедрении в решетку посторонних ионов. Знание фазовых отношений и границ существования твердых фаз необходимо при спекании в том числе для выбора оптимального температурного режима.

Упрощая, можно сказать, что соединения $Ca_{3-x}M_{2x}(PO_4)_2$ (M = Na⁺, K⁺, x = 0–1) представляют собой смесь трех основных компонентов: $Ca_3(PO_4)_2$ (ТКФ), CaNaPO₄ (натриевый ренанит) и CaKPO₄ (калиевый ренанит). Соответственно, для успешного спекания необходимо знание фазовых отношений в системе $Ca_3(PO_4)_2$ –CaNa-PO₄–CaKPO₄. В литературе представлены сведения для части этой системы [13–16], но некоторые из указанных данных нуждаются в перепроверке, в то время как некоторые данные полностью отсутствуют. Целью данной работы было выяснение фазовых отношений в высокотемпературной области системы Ca₃(PO₄)₂–CaNaPO₄–CaKPO₄.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Смешанные тройные фосфаты были синтезированы в соответствии со следующим уравнением твердофазной реакции:

$$(1 - x)Ca_{3}(PO_{4})_{2} + 2xyCaKPO_{4} + + 2x(1 - y)CaNaPO_{4} \rightarrow$$
(1)
$$\rightarrow Ca_{3-x}(K_{y}Na_{1-y})_{2x}(PO_{4})_{2},$$

где y = 0.1 - 0.9 (через 0.1).

Получение двойных фосфатов кальция и щелочных металлов осуществляли твердофазным методом по уравнению реакции:

$$Ca_{2}P_{2}O_{7} + M_{2}CO_{3} \rightarrow 2CaMPO_{4} + CO_{2}\uparrow$$

$$(M = Na, K, Ca),$$
(2)

Са $_2P_2O_7$ был синтезирован разложением при 800°С брушита – СаНРО $_4 \cdot 2H_2O$, осажденного из 0.6 М растворов Са(NO₃) $_2$ и (NH₄) $_2$ HPO₄ (оба – "ч.д.а.") по реакции

$$Ca(NO_3)_2 + (NH_4)_2HPO_4 + 2H_2O =$$

= CaHPO_4 \cdot 2H_2O\forall + 2NH_4NO_3, (3)

кроме того для синтеза двойных фосфатов использованы Na₂CO₃ ("ч.д.а."), K₂CO₃ ("ч.д.а.").

Смеси были размолоты в планетарной мельнице в течение 10 мин в среде ацетона, а затем подвергнуты обжигу в интервале температур 800— 1200°С продолжительностью до 36 часов. Полученные после отжига порошки дезагрегировали помолом в планетарной мельнице Pulverisette (Fritsch, Германия).

Исследования фазового состава образцов проводили с помощью X-ray diffraction (XRD) на дифрактометре Rigaku D/Max-2500 с вращающимся анодом (Япония). Съемку проводили в режиме на отражение (геометрия Брегга–Брентано на отражение) с использованием Cu K_{α} излучения (длина волны $\lambda = 1.54183$ Å). Для коррекции спектра в качестве внутреннего стандарта использовали порошок кремния (ASTM). Качественный анализ полученных рентгенограмм проводили с помощью программы WinXPOW (STOE, Germany) при использовании базы данных ICDD PDF-2.

Дифференциально-термический (ДТА) и термогравиметрический (ТГ) анализ образцов проводили с использованием синхронного термоанализатора с вертикальной загрузкой образцов STA 409 PC Luxx (Netzsch, Германия).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В качестве исследуемой области фазовой диаграммы $Ca_3(PO_4)_2$ — $CaNaPO_4$ — $CaKPO_4$ была выбрана область от 1200 до 1400°С. Это связано с особенностями спекания кальций-фосфатных материалов. Как показывают исследования [11, 15] оптимальная температура спекания замещенных фосфатов кальция лежит не ниже 1200°С ввиду недостаточной диффузии ионов при температуре ниже. В то же время ограничение в 1400°С обусловлено температурами плавления компонентов — при данной температуре. Исследование границ фазовых полей проводилось для температуры 1200°С.

Точки на фазовой диаграмме выбирались линиями из вершины, в которой расположен ТКФ к стороне CaNaPO₄-СаКРО₄. Таким образом удалось в лучшей степени изучить область, ближнюю к ТКФ, так как именно она, а если точнее, ее левая верхняя часть является, на наш взгляд наиболее перспективной с точки зрения производства костных имплантатов. Близость к большему содержанию кальция позволяет сохранить скорость резорбции на адекватном уровне (при больших значениях содержания К и Na скорость растворения становится слишком высокой [15]), а удаленность от стороны Са₃(РО₄)₂-СаКРО₄ позволяет избежать чрезмерной цитотоксичности. Соответственно, были выбраны направления ТКФ-СаК_{0.2}Na_{0.8}PO₄, ТКФ-СаК_{0.4}Na_{0.6}PO₄ и ТКФ-СаК_{0.6}Na_{0.4}PO₄ (рис. 1).

Исследования фазового состава проводились методом закалки образцов на металлических пластинах с интересующей температуры. Таким образом удавалось предотвратить протекание достаточно быстро проходящих фазовых превращений при обычной закалке на воздухе рентгенофазовый анализ показывал присутствие низкотемпературных фаз. Скорость закалки составляла порядка 50 К/мин в случае закалки на воздухе и порядка 1000 К/мин в случае закалки порошков между металлическими пластинами. Результаты фазового анализа представлены на рис. 2. Видно, что во всех приведенных составах присутствует фаза β -ТКФ. По мере добавления щелочных металлов появляются фазы "А" и "Х", что говорит о дестабилизации решетки трикальциевого фосфата и начале процессов его распада.

Полученные результаты были также представлены в более наглядном виде — сечения трехкомпонентной фазовой диаграммы при 1200°С. Для большей наглядности и проверки полученных результатов к сечению были дополнительно добавлены диаграммы Ca₃(PO₄)₂—CaKPO₄ и Ca₃(PO₄)₂— CaNaPO₄. Получившаяся область показана на рис. 3.

Рис. 1. Фазовый треугольник Ca₃(PO₄)₂-CaNaPO₄-CaKPO₄ со схематично нанесенными точками (*1*-9), соответствующих исследованным составам (табл. 1).

Стоит отметить, что при анализе рентгенограмм полученных образцов не было обнаружено фазы α -ТКФ, тем не менее, она указана на рис. 3, что связано с тем, что данная фаза существует при 1200°С в системе Ca₃(PO₄)₂–CaKPO₄, что означает, что она должна также уходить внутрь фазового треугольника Ca₃(PO₄)₂–CaKPO₄–CaNaPO₄. Очевидно, область ее существования достаточно узкая, что не позволило установить ее наличие экспериментально при выбранном шаге составов. То же касается и двухфазной области "А" + α -ТКФ и трехфазной области "А" + α -Ca₃(PO₄)₂ + β -Ca₃(PO₄)₂.

Исследование верхних границ найденных фазовых областей проводилось методом ДТА. Вид кривых ДТА представлен на рис. 4.

Различие в температурах начала тепловых эффектов обусловлено явлением переохлаждения, в связи с чем температура эффекта определялась по кривой нагрева. Полученные температуры не позволяют построить поверхности границ существования указанных фазовых полей, однако они дают представление о примерных температурных интервалах, возможных для спекания материалов из этой системы (рис. 5). Кроме того, исходя из слабой интенсивности, а также визуальных наблюдений образцов после исследования ДТА, полученные эффекты соответствуют переходам твердое-твердое, что говорит об отсутствии плавления ниже температуры 1400°С.

Таким образом, исследованы фазовые отношения в системе $Ca_3(PO_4)_2$ –CaKPO₄–CaNaPO₄ при температуре 1200°С. Область трикальциевого фосфата состоит из двух полей твердых растворов на основе α -Ca₃(PO₄)₂ и β -Ca₃(PO₄)₂, разделен-

N	Линия ТКФ–СаК _{0.2} Na _{0.8} PO ₄	Линия ТКФ–СаК _{0.4} Na _{0.6} PO ₄	Линия ТКФ–СаК _{0.6} Na _{0.4} PO ₄
1	β -Ca ₃ (PO ₄) ₂	β -Ca ₃ (PO ₄) ₂	β -Ca ₃ (PO ₄) ₂
2	β -Ca ₃ (PO ₄) ₂ + "A"	β -Ca ₃ (PO ₄) ₂	β -Ca ₃ (PO ₄) ₂ + "X"
3	β -Ca ₃ (PO ₄) ₂ + "A"	β -Ca ₃ (PO ₄) ₂ + "A"	"X" + "A"
4	β -Ca ₃ (PO ₄) ₂ + "A"	β -Ca ₃ (PO ₄) ₂ + "A" + "X"	β -Ca ₃ (PO ₄) ₂ + "A" + "X"
5	β -Ca ₃ (PO ₄) ₂ + "A"	β -Ca ₃ (PO ₄) ₂ + "A" + "X"	"X" + α -Rh*
6	"A"	β -Ca ₃ (PO ₄) ₂ + "A" + "X"	"X" + α -Rh*
7	"A"	"A" + "X"	α-Rh*
8	"A"	—	—
9	"A" + α -Rh*	—	—

Таблица 1. Фазы найденные в процессе исследований

Обозначения: Rh — условное обозначение фазы $CaK_{0.6}Na_{0.4}PO_4$. Фазы "A" и "X" соответствуют твердым растворам на основе $Ca_5Na_2(PO_4)_4$ (структура нагельшмидтита) и $Ca_8K_2(PO_4)_6$ (структура типа апатита).

Рис. 2. Фазовый состав образцов (2–5) по линии ТКФ–СаК_{0.4}Na_{0.6}PO₄. Найденные в процессе исследований фазы указаны в табл. 1.

Рис. 3. Часть трехкомпонентной фазовой диаграммы Ca₃(PO₄)₂-CaKPO₄-CaNaPO₄.

Рис. 4. Кривые ДТА образцов из внутренней части фазовой диаграммы Ca₃(PO₄)₂-CaKPO₄-CaNaPO₄.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 7 2021

Рис. 5. Верхние температуры существования фазовых полей сечения при 1200°С.

ные двухфазной областью. Помимо этого, при указанной температуре становятся стабильными три структуры на основе α -CaMPO₄ (структура ренанита), "A" (структура нагельшмидтита) и "X" (апатитоподобная структура). Выяснено, что в высокотемпературной области присутствуют две трехфазных области, содержащих фазы "A" + α -Ca₃(PO₄)₂ + β -Ca₃(PO₄)₂ и "A" + β -Ca₃(PO₄)₂ + + "X". Указанные поля становятся нестабильными при температурах ниже 1350°C и претерпевают переход в другие конденсированные фазы. Образование жидкой фазы при превышении указанных температур не наблюдалось.

Исследование выполнено при поддержке Российского фонда фундаментальных иследований в рамках проектов № 19-38-90199 и № 19-38-60063.

СПИСОК ЛИТЕРАТУРЫ

- Ievlev V.M., Putlyaev V.I., Safronova T.V., Evdokimov P.V. // Inorg. Mater. 2015. T. 51. C. 1297. https://doi.org/10.1134/S0020168515130038
- Hing K.A. // Int. J. Appl. Ceram. Technol. 2005. V. 2. P. 184. https://doi.org/10.1111/j.1744-7402.2005.02020.x
- Zocca A., Colombo P., Gomes C.M., Günster J. // J. Am. Ceram. Soc. 2015. V. 98. P. 1983. https://doi.org/10.1111/jace.13700

- Berger G., Gildenhaar R., Ploska U. // Biomaterials. 1995. V. 16. P. 1241. https://doi.org/. https://doi.org/10.1016/0142-9612(95)98131-W
- Bredig M.A. // J. Phys. Chem. V. 46 (1942) P. 747. https://doi.org/10.1021/j150421a009
- 6. Ando J. // Bull. Chem. Soc. Jpn. 1958. V. 31 P. 201.
- Jarcho M. // Clin. Orthop. Relat. Res. 1981 P. 259. http://www.ncbi.nlm.nih.gov/pubmed/7018783 (accessed March 25, 2019).
- Jarcho M., Bolen C.H., Thomas M.B. et al. // J. Mater. Sci. 1976. V. 11. P.2027. https://doi.org/10.1007/PL00020328
- Dorozhkin S.V., Epple M. // Angew. Chemie-International Ed. 2002. V. 41. P. 3130.
- 10. *Kanazawa T.* Inorganic phosphate materials. New-York: Elsevier, 1989.
- 11. *Champion E.* // Acta Biomater. 2013. V. 9 P. 5855. https://doi.org/10.1016/j.actbio.2012.11.029
- Orlov N.K., Putlayev V.I., Evdokimov P.V. et al. // Inorg. Mater. 2018. V. 54. https://doi.org/10.1134/S0020168518050096
- 13. Znamierowska T. // Zesz. Nauk. Politech. Sl. 1982. V. 709. P. 33.
- Znamierowska T. // Zesz. Nauk. Politech. Sl. 1982. V. 709. P. 45.
- Orlov N.K., Evdokimov P.V., Milkin P.A. et al. // J. Eur. Ceram. Soc. 2019. V. 39. P. 5410. https://doi.org/10.1016/j.jeurceramsoc.2019.07.044.
- Evdokimov P.V., Putlyaev V.I., Ivanov V.K. et al. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1219. https://doi.org/10.1134/S0036023614110084