____ ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ ____ И НАНОМАТЕРИАЛОВ

УДК 544.55,544.552

ГАЗОФАЗНОЕ ОКИСЛЕНИЕ ПРОДУКТОВ ИСКРОВОГО ПЛАЗМЕННОГО СПЕКАНИЯ КОВАЛЕНТНО СШИТЫХ УГЛЕРОДНЫХ НАНОТРУБОК

© 2021 г. Е. В. Суслова^{*a*,*}, В. В. Епишев^{*a*}, С. В. Максимов^{*a*}, К. И. Маслаков^{*a*}, О. Я. Исайкина^{*a*}, С. В. Савилов^{*a*}

 ^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, 119991, Москва, Россия
 *e-mail: suslova@kge.msu.ru
 Поступила в редакцию 09.09.2020 г.
 После доработки 13.11.2020 г.
 Принята к публикации 17.11.2020 г.

Ковалентно сшитые 3D-структуры углеродных нанотрубок (УНТ), а также УНТ с малослойными графеновыми фрагментами (МГФ) получены при гидролизе 3-аминопропилтриэтоксосилана в присутствии окисленных УНТ и/или МГФ. Полученные образцы консолидированы в нерассыпающиеся таблетки искровым плазменным спеканием при 1100° С и 30 МПа. При этом происходило элиминирование кислородсодержащих групп, а частицы МГФ превращались в смесь графеновых листов и луковичных углеродных наноструктур. Полученные консолидаты УНТ и смеси УНТ с МГФ имели плотности 0.85 и 0.81 г см⁻³, проводимость 42 и 57 См м⁻¹ соответственно. Показано, что консолидированные образцы могут быть окислены парами азотной кислоты без нарушения их 3D-структуры. С увеличением времени окислительной обработки с 3 до 6 ч содержание кислорода возрастало с 8.4 до 15.3 ат. % для 3D-сшитых структур УНТ и с 14.0 до 16.1 ат. % для 3D-сшитых структур УНТ с МГФ.

Ключевые слова: искровое плазменное спекание, углеродные наноструктуры, углеродные нанотрубки, луковичные углеродные наноструктуры, окисление в газовой фазе, ковалентная связь, механизм, 3D-каркасы

DOI: 10.31857/S0044453721070256

Большое разнообразие свойств и структур углеродных наноматериалов (УНМ) открывает широкие возможности их применения в самых различных устройствах и приложениях. В настоящее время УНМ используют в качестве катализаторов, носителей катализаторов, адсорбентов, электродов устройств хранения и накопления энергии, сенсоров, лубрикантов и т.д. [1]. Для их применения часто требуется компактизация или гранулирование. Для этого к УНМ добавляют связующие агенты [2] или ковалентно "сшивают" отдельные частицы [3]. Консолидированные образцы УНМ без связующих могут быть получены методом искрового плазменного спекания (ИПспекание) [4–22].

Консолидация методом искрового плазменного спекания описана для графита [4, 5], графена [6], малослойных графеновых фрагментов (МГФ) [7, 8], фуллеренов C_{60} [9, 10], одностенных углеродных нанотрубок (УНТ) [11], двустенных УНТ [12], многостенных УНТ [13, 14], окисленных УНТ [15], углеродных нановолокон [16], композита графита с углеродными волокнами [17]. В зависимости от условий ИП-спекания УНМ консолидируются с образованием жестких 3D-каркасов [13, 14, 18], либо происходит переход одной аллотропной модификации углерода в другую. Например, УНТ превращаются в графеновые листы при 2000–2400°С и 100 МПа [19, 20], в наноалмазы при 1500°С и 80 МПа [21], фуллерен C_{60} – в наноалмазы при 1150°С и 50 МПа [8], МГФ – в луковичные углеродные структуры (ЛУС) при 1100°С и 30 МПа [8]. В то же время наноалмазы превращаются в графит при 1200°С и 60 МПа [22].

Электропроводность ИП-спеченных УНТ, как правило, увеличивается [12, 23], а механические характеристики улучшаются [18, 24], что может быть связано с образованием новых С–С-связей между отдельными УНТ. Теоретические расчеты показали, что новые связи С–С могут образовываться при ИП-спекании, а гетероатомы в структуре УНТ способствуют этому [25]. Из прямой аналогии между процессами, происходящими при ИП-спекании, и воздействии облучения в колонне просвечивающего микроскопа, было сделано предположение, что две независимые УНТ объединяются за счет графеновых листов, формирующихся в процессе ИП-спекания [13,

Рис. 1. Фотографии ПЭМ исходных УНТ (а) и МГФ (б).

19] и оплетающих трубки в общую структуру [13]. Однако позже было установлено, что эти процессы сильно зависят от условий ИП-спекания (T, P) и природы УНТ [15]. ИП-спекание ковалентно "сшитых" УНТ не описано в литературе. Однако такой подход может представлять интерес, так как является удобным методом получения компактизатов (монолитов) УНМ, в которых между отдельными частицами уже созданы ковалентные связи, что может способствовать улучшению проводимости [26, 27].

Часто для практического применения необходимо модифицировать поверхность УНМ кислородсодержащими группами, чтобы обеспечить ее гидрофильность [28]. Окисление УНМ осуществляют в растворах азотной кислоты, пероксида водорода или O_3 , либо же в газовой фазе парами азотной кислоты, CO_2 , обработкой в кислородной плазме [28–31]. Окисление в газовой фазе может рассматриваться как практически более удобный метод, так как в этом случае не требуется стадии фильтрации, промывания и высушивания продуктов.

Цель настоящей работы — получение нерассыпающихся консолидированных методом искрового плазменного спекания образцов ковалентно "сшитых" УНТ и углерод-углеродного композита УНТ и МГФ с последующей модификацией их поверхностей кислородсодержащими группами в газовой фазе и исследование их свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали УНТ и МГФ производства ООО "Глобал СО" (Россия). УНТ с внешним диаметром ~10 нм состояли из 10–15 углеродных слоев (рис. 1а). Частицы МГФ, получение и физико-химические характеристики которых неоднократно описаны в [7, 32, 33], представляли собой графитоподобные частицы диаметром 50– 100 нм, содержащие 10-15 графеновых слоев (рис. 16).

Для получения ковалентно связанных УНТ использовали методику, приведенную в [3]. УНТ и МГФ предварительно окисляли раствором азотной кислоты ("х.ч.", "Реахим") при кипячении в течение 4 ч с последующим фильтрованием осадка и промыванием дистиллированной водой до нейтрального значения рН промывных вод. К 50 г окисленных УНТ в 250 мл спирта прибавляли 24 мл 3-аминопропилтриэтоксосилана H₂NC₃H₆Si(OEt)₃ ("х.ч.") и 12 мл муравьиной кислоты для поддержания рН среды в интервале 4-4.5. Реакционную смесь перемешивали при 60°С в атмосфере Ar в течение 24 ч. Продукт промывали дистиллированной водой и сушили при 60°С в течение 8 ч. Образец обозначен УНТ УНТ. Для получения ковалентно "сшитых" УНТ с МГФ к 50 г полученного продукта УНТ УНТ, диспергированного в растворе N,N-диметилацетамида, добавляли 50 г окисленных МГФ в диметилформамиде. Смесь обрабатывали ультразвуком при охлаждении в течение 1 ч. Остатки дисперсионной среды удаляли фильтрованием полученного материала, который сушили при 135°С в течение 8 ч. Образец обозначен УНТ_МГФ.

ИП-спекание осуществляли в установке Labox-625 (Sinterland, Japan) в течение 5 мин при 1100°С и аксиальном давлении 30 МПа [8]. Спекание проводили в листах графлекса толщиной 15 мм, который потом отслаивали с поверхности образцов. Скорость нагрева составила 100 К мин⁻¹. Спеченные образцы обозначены УНТ_УНТ_ИПС и УНТ_МГФ_ИПС.

Окисление ИП-спеченных образцов осуществляли парами азотной кислоты согласно методике [8, 31]. Для этого спеченные таблетки УНТ_УНТ_ИПС и УНТ_МГФ_ИПС в сухом открытом бюксе помещали внутрь круглодонной колбы. Колбу частично заполняли азотной кислотой ("Химмед", ~70%, плотность 1.4 г см⁻³, чи-

Таблица 1. Условия получения образцов (τ – продолжительность окисления в га	газовой фазе)
--	---------------

Образец	Методика получения	τ, ч
УНТ_УНТ	 окисление УНТ раствором HNO₃, окисленные УНТ+H₂NC₃H₆Si(OEt)₃ + HCO₂H (Ar, 60°C, 24 ч) 	_
УНТ_УНТ_ИПС	ИП-спекание (1100°С, 30 МПа) образца УНТ_УНТ	—
УНТ_УНТ_ИПС_3	окисление УНТ_УНТ_ИПС парами азотной кислоты	3
УНТ_УНТ_ИПС_6	»	6
ΥΗΤ_ΜΓΦ	 окисление УНТ и МГФ раствором HNO₃, окисленные УНТ + H₂NC₃H₆Si(OEt)₃ + HCO₂H (Ar, 60°C, 24 ч), УНТ_УНТ в CH₃CON(CH₃)₂ + окисленные МГФ в (CH₃)₂NCH. 	_
УНТ_МГФ_ИПС	ИП-спекание (1100°С, 30 МПа) образца УНТ_МГФ	—
УНТ_МГФ_ИПС_3	окисление УНТ_МГФ_ИПС парами азотной кислоты	3
УНТ_МГФ_ИПС_6	»	6

стота 99.999%) таким образом, чтобы она не попадала в бюкс и кипятили с прямым холодильником. Окисляемые таблетки при этом оказывались в парах кипящей при 122°С кислоты, которые состояли из смеси HNO₃, O₂, H₂O и оксидов азота [31]. В процессе окисления конденсат собирали в специальном приемнике. Окисление осуществляли в течение 3 и 6 ч. Условия получения всех образцов и их обозначения приведены в табл. 1.

Морфологию УНМ определяли методом сканирующей (СЭМ) и просвечивающей (ПЭМ) электронной микроскопии на приборах "JEOL JSM-6390LA" при ускоряющем напряжении 20– 25 кВ и "JEOL 2100F/Cs" ("JEOL Ltd", Япония) с ускоряющим напряжением 200 кВ соответственно.

Рентгеновскую фотоэлектронную спектроскопию (РФЭС) использовали для определения состава поверхности образцов. Спектры регистрировали на спектрометре Axis Ultra DLD ("Kratos Analytical", Великобритания) с использованием монохроматического Al K_{α} -излучения (1486.7 эВ). Обзорные РФЭ-спектры получали при энергии пропускания анализатора, равной 160 эВ, и шаге 1 эВ, а спектры высокого разрешения – с энергией пропускания 40 эВ и шагом 0.1 эВ.

Спектры комбинационного рассеяния (КР) регистрировали на УФ-спектрометре "LabRamHR800 UV" ("HoribaJobinYvon", Япония) с использованием возбуждения 5 МВт аргонового лазера с длиной волны 514.5 нм, и объектива 50х Olympus. Для каждого образца КР-спектр получали как минимум в пяти точках и усредняли.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Функционализацию поверхности УНТ различными группами, как правило, осуществляют после их окисления, так как в этом случае центрами химических реакций служат карбоксильные группы [34]. В настоящей работе ковалентные связи между отдельными УНТ формировались за счет взаимодействия поверхностных карбоксильных групп с продуктами гидролиза 3-аминопропилтриэтоксосилана (рис. 2). Гидролиз 3-аминопропилтриэтоксосилана катализирует кислая среда, в результате чего этоксогруппы превращаются в гидроксильные и мгновенно конденсируются с образованием поликремниевых производных [35] (рис. 2а). Параллельно карбоксильные группы на поверхности УНТ вступают в реакцию конденсации с ОН-группами поликремниевых производных, в результате чего отдельные УНТ оказываются ковалентно "сшиты" между собой связями (УНТ)С-О-Si-О-С(УНТ) (рис. 2б). Одновременно возможно электростатическое взаимодействие кислых карбоксильных групп с

RNH⁺₃ [3, 34, 36].

Изображения СЭМ и ПЭМ ковалентно "сшитых" материалов до и после ИП-спекания представлены на рис. 3. Отдельные УНТ ясно различимы на всех микрофотографиях СЭМ (рис. 3а, в, д, ж). Образцы УНТ_УНТ и УНТ_МГФ покрыты оболочками гидролизованного $H_2NC_3H_6Si(OEt)_3$ (рис. 3а–3г), которые исчезали после ИП-спекания (рис. 3д–3е). Все УНТ на всех стадиях сохраняли свою тубулярную структуру (рис. 3е). В случае ковалентных "сшивок" между УНТ и МГФ после ИП-спекания в образце УНТ_МГФ_ИПС появились графеновые листы (рис. 3з) и ЛУС (рис. 4).

Вследствие формирования плазмы и высоких температур происходило элиминирование кислородсодержащих групп, что ранее неоднократно наблюдали при ИП-спекании различных УНМ: оксида графена [6], карбоксилированных УНТ [15] или электрохимически эксфолиированного графита [4]. Согласно данным РФЭС, кремний в составе образцов УНТ_УНТ_ИПС и УНТ_МГФ_ИПС находился в виде оксида SiO₂, а связи С–О–Si исчезли (табл. 2).

Рис. 2. Схема гидролиза и конденсации кремниевых производных (а) и одновременного образования ковалентных мостиков C-O-Si-O-C между окисленными УНТ и гидролизованным 3-аминопропилтриэтоксосиланом (б).

При ИП-спекании возрастает доля *sp*²-гибридизованных атомов углерода (табл. 2), что свидетельствует о совершенствовании графитовой структуры УНТ [13].

В КР-спектрах УНМ присутствуют, как правило, несколько линий. Линия D (1360 см⁻¹) соответствует радиальной дыхательной моде A_{lg} ароматического кольца C_6 графеновой плоскости, в которой сопряжены sp^2 -гибридизованные атомы углерода. Эта мода резонансно возбуждается при оптических переходах π -электронов в соответствующих графеновых кластерах. Линия G (1581 см⁻¹) соответствует E_{2g} валентным колебаниям ароматического C_6 кольца [37]. Увеличение отно-

шения интенсивностей I_D/I_G , как правило, свидетельствует об увеличении дефектности и разупорядочении углеродной структуры [38]. Кроме линий *D* и *G* для УНМ характерна линия 2*D* (2700 см⁻¹), являющаяся обертоном *D*-линии [39].

После ИП-спекания УНТ_УНТ отношение I_D/I_G уменьшилось до 0.23 по сравнению с исходными УНТ ($I_D/I_G = 0.87$), кроме того, появились обертоны D + G (2960 см⁻¹) и 2G (~3200 см⁻¹) (рис. 5а). Ширина линий D и G на полувысоте стала меньше, что свидетельствует о совершенствовании графитовой структуры и возможном "залечивании" дефектов, что ранее неоднократно наблюдали при ИП-спекании многостенных

Спектр	<i>Е_В</i> , эВ		Доли	Тип срязи		
Спектр		УНТ_УНТ	УНТ_УНТ_ИПС	ΥΗΤ_ΜΓΦ	УНТ_МГФ_ИПС	Типсьязи
O1 <i>s</i>	530.9-533.9	7.7	2.6	6.2	3.0	0 ⁻ , 0=C, 0–C=0
						OH–C, O–Si
C1s	284.4-284.4	78.9	94.3	85.8	93.3	$C-C(sp^2)$
	285.1-285.4	4.2	—	1.7	—	$C-C(sp^3)$
	286.5-288.9	6.5	2.3	4.7	2.8	С-0, С=0, 0-С-0,
						0=C-0
N1s	398.3-407.0	1.8	0.3	1.1	0.5	$C=N-C, NR_3, N=C, NO_x$
Si2p	102.6	0.9	-	0.5	—	$SiO_xC_yH_z$
	103.5	—	0.5	—	0.4	SiO ₂

Таблица 2. Энергии связи (E_B) и атомные доли (ат. %) компонентов в РФЭ-спектрах высокого разрешения ковалентно "сшитых" УНТ и УНТ с МГФ до и после ИП-спекания

Рис. 3. Изображения СЭМ и ПЭМ УНТ_УНТ (а, б), УНТ_МГФ (в, г) и УНТ_УНТ_ИПС (д, е), УНТ_МГФ_ИПС (ж, з).

УНТ [12, 13]. Отношение I_D/I_G после ИП-спекания увеличилось от 0.56 для УНТ_МГФ до 0.95 для УНТ_МГФ_ИПС (рис. 56). Вероятно, такой результат — следствие появления новой фазы ЛУС после ИП-спекания [8]. Отметим, что *G*-линия в спектрах наночастиц ЛУС смещается в область 1590–1600 см⁻¹, характерную для нанокластеров углерода [40, 41] или для "сворачивания" углеродных слоев [42]. Несмотря на то, что метод ИП-спекания подразумевает формирование образцов, плотность которых приближена к теоретической, при спекании УНТ_УНТ и УНТ_МГФ не удалось получить высокоплотных образцов. Полученные значения 0.85 и 0.81 г см⁻³ намного меньше, чем значения для консолидированных при различных параметрах ИП-спекания трубок, но превосходят плотность ИП-спеченных МГФ [8] (табл. 3). При

Рис. 4. Луковичные структуры углерода, содержащиеся в УНТ_МГФ_ИПС.

Рис. 5. Спектры комбинационного рассеяния образцов ковалентно сшитых УНТ (а) и ковалентно сшитых УНТ и $M\Gamma\Phi$ (б).

спекании (1100°С, 30 МПа) МГФ наблюдалось появление смеси фаз графена, ЛУС сферической и полигональной форм, что приводило к уменьшению объемной плотности образцов. При обработке УНТ плотность, как правило, возрастала с увеличением, как температуры, так и давления ИП-спекания. Образцы УНТ_УНТ_ИПС и УНТ_МГФ_ИПС имели промежуточное значение плотности между значениями для ИП-спеченных МГФ и УНТ.

После ИП-спекания электропроводность образцов УНМ достигает, как правило, высоких значений. Например, электропроводность двустенных УНТ (ИП-спекание при 1100°С, 100 МПа) составляет 1.65 × 10⁵ См м⁻¹ [12], а многостенных (ИП-спекание при 2000°С и 25 МПа) – (3.3–5) × × 10⁴ См см⁻¹ [23], при ИП-спекании (1200–1700, 30–100 МПа) УНТ с наночастицами Со удалось получить образцы с электропроводностями (0.5–4.5) × 10³ См м⁻¹ [44]. Авторы [12, 23] связывали увеличение электропроводности с возникновением новых С–С-связей между отдельными УНТ. Однако электропроводность УНМ увели-

чивается и вследствие термической обработки [46, 25], и при прессовании [47, 26], и с увеличением плотности [48], поэтому факт увеличения электропроводности УНМ после ИП-спекания не может рассматриваться как прямое доказательство возникновения новых С–С-связей. Следуя этой логике, можно предположить, что изначально созданные ковалентные связи между отдельными УНТ будут способствовать увеличению электропроводности материалов.

Электропроводность образцов определяли в соответствии с методикой [44]. Для этого спеченные таблетки УНТ_УНТ_ИПС и УНТ_МГФ_ИПС зажимали между двумя медными электродами диаметром 2.2 мм. Сопротивление измеряли с использованием вольтметра V7-78/1 (AKIP, Россия). Электропроводности вычисляли с использованием измеренных значений сопротивления по формуле:

$\sigma = L/RS,$

где *L* –толщина образца, м; *R* – измеренное сопротивление, Ом; *S* – площадь контакта электро-

T, °C	<i>Р</i> , МПа	ρ, г см ⁻³	Ссылка
1100	30	0.85	Настоящая работа
1100	30	0.81	»
1000	22	0.97	[13]
1300	22	1.39	»
1500	10	1.10	»
1500	16	1.37	»
1500	22	1.46	»
1800	22	1.60	»
2000	100	1.56	[20]
1100	40	1.95	[43]
1100	100	0.85	[44]
1700	50	2	[45]
2000	25	1.1	[23]
1850	80	2.11	[5]
1100	30	0.42	[8]
	<i>T</i> , °C 1100 1100 1000 1300 1500 1500 1500 1800 2000 1100 1100 1700 2000 1850 1100	T, °CP, МПа11003011003010002213002215001015001615002218002220001001100401100100170050200025185080110030	$T, ^{\circ}C$ $P, M\Pi a$ $\rho, r cm^{-3}$ 1100300.851100300.811000220.971300221.391500101.101500161.371500221.461800221.6020001001.561100401.9511001000.8517005022000251.11850802.111100300.42

Таблица 3. Плотность (ρ) консолидированных образцов УНМ (*T* и *P* – условия ИП-спекания, МУНТ – Многостенные УНТ)

Таблица 4. Энергии связи (E_B) и атомные доли компонент в РФЭ-спектрах высокого разрешения окисленных в течение 3 и 6 ч образцов

	<i>Е_В</i> , эВ		Доля,			
Спектр		УНТ_УНТ_ ИПС_3	УНТ_УНТ_ ИПС_6	УНТ_МГФ_ ИПС_3	УНТ_МГФ_ ИПС_6	Тип связи
O1s	531.1	2.5	3.4	3.8	5.9	<u>0</u> =C-O
	532.1	4.1	7.6	6.1	5.7	C, H–O–C, O–Si, O–N
	533.1	2.3	4.3	4.1	4.6	0=C- <u>0</u>
C1 <i>s</i>	284.4-284.4	87.4	71.0	72.8	69.4	$C-C(sp^2)$
	285.1-285.4	0.4	6.5	6.3	6.8	$C-C(sp^3)$
	286.5-288.9	3.8	7.2	6.9	7.7	С-0, С=0, 0-С-0, 0=С-0

дов с анализируемым образцом, м². Для УНТ_УНТ_ИПС и УНТ_МГФ_ИПС значения электропроводности составили 42 и 57 См м⁻¹ соответственно.

Полученные значения существенно ниже 1.65×10^5 [12] и $(3.3-5) \times 10^4$ См см⁻¹ [23], что обусловлено, вероятно, низкой плотностью образцов (табл. 3) и отсутствием связей между отдельными УНТ. Ковалентные связи С–О–Si–О–С были разрушены вследствие элиминирования кислорода при ИП-спекании (табл. 2), а предложенный подход оказался неэффективным.

Окисление спеченных таблеток УНТ_УНТ_ИПС и УНТ_МГФ_ИПС в газовой фазе не привело к растрескиванию или какому-либо другому разрушению этих таблеток, а сам метод может быть рекомендован для функционализации карбоксильными группами поверхности ИП-спеченных УНМ [8]. С увеличением времени окисления с 3 до 6 ч происходило увеличение содержания кислорода на поверхности УНТ_УНТ_ИПС с 8.4 до 15.3 ат. %, а на поверхности УНТ_МГФ_ИПС с 14.0 до 16.1 ат. %, что подтверждено методом РФ-ЭС (табл. 4).

При деконволюции O1s РФЭ-спектров окисленных образцов [33], выделены три основных линии с энергиями 531.1, 532.1 и 533.1 эВ, соответствующих кислороду с двойной связью Q=C-O в карбоксильной группе, связям H–O–C, O–Si, O–N и кислороду с одинарной связью с углеродом O=C–O в карбоксильной группе соответственно (табл. 4). При окислении УНТ_УНТ_ИПС происходит постепенное увеличение всех типов кислородсодержащих групп, в то время как при окислении УНТ_МГФ_ИПС увеличивается лишь концентрация карбоксильных групп (табл. 4). Одновременно с увеличением содержания кислорода в образце УНТ_УНТ_ИПС увеличивается

доля sp^3 -гибридизованных атомов углерода, которым соответствует энергия связи 285.1–285.4 эВ в C1s РФЭ-спектрах (табл. 4). Это происходит за счет увеличения доли краевых атомов углерода при окислении. В образце УНТ_МГФ_ИПС при увеличении времени окисления с 3 до 6 ч количество sp^3 -атомов углерода возрастает существенно меньше, что, вероятно, связано с большим содержанием sp^3 -гибридизованных атомов С исходных МГФ.

Отметим, что установленные значения содержания кислорода превосходили ранее найденные значения при окислении УНТ различной морфологии растворами кислот-окислителей [28, 29] или же их в газовой фазе HNO₃ [31] или O₃ [29]. При окислении в газовой фазе ИП-спеченных образцов МГФ удавалось достичь существенно большего содержания кислорода на поверхности, которые составили 17.8 после 3 ч обработки и 28.8 ат. % после 6 ч [8].

При обработке УНТ и/или МГФ происходит окисление поверхности с формированием поверхностных групп – гидроксильных, карбоксильных, кето-, и др. При увеличении времени окисления с поверхности УНМ элиминируется CO_2 – продукт полного окисления углерода. После ~3 ч окисления процессы фукционализации–дефункционализации с образованием CO_2 приходят в равновесие, дальнейшая модификация поверхности приводит лишь к удалению углерода, но не к изменению концентрации кислородсодержащих групп [28, 29, 33].

Отношение интенсивностей линий I_D/I_G в КРспектрах после окисления УНТ УНТ ИПС увеличивалось до 0.45 (образец УНТ УНТ ИПС 3) и 0.86 (образец УНТ УНТ ИПС 6) (рис. 5а). У С-линии после окисления появлялось плечо (~1620 см⁻¹), что соответствует росту доли краевых атомов углерода [49]. Отношение I_D/I_G для образца УНТ_МГФ_ИПС уменьшилось до 0.63 (образец УНТ МГФ ИПС 3) и потом увеличилосьдо 0.87 (образец УНТ МГФ ИПС 6) (рис. 56). Вероятно, подобная тенденция связана с удалением из состава УНТ_МГФ_ИПС_3 всех графеновых листов и частиц ЛУС и, как следствие, с увеличением его структурированности. После дальнейшего окисления увеличивалась степень дефектности УНТ_МГФ_ИПС_6, связанная с разрушением тубулярной структуры УНТ [49].

При ИП-спекании УНМ происходят параллельно, как минимум, шесть процессов: поверхностная, объемная, межзеренная диффузии, испарение атомов и ионов с поверхности с образованием плазмы между зернами, перекристаллизация поверхности и в ряде случаев формирование новых фаз [50, 51]. Доминирование какого-либо процесса определяется температурой и давлением ИП- спекания, а также природой УНМ [15]. Ранее мы предприняли попытку разделить вклад температуры и давления, используя первое начало термодинамики, и пришли к выводу, что вклад температуры — по сути выделяющееся джоулево тепло имеет преимущественное значение [13].

Для образования новых углеродных фаз, как правило, необходимы экстремально высокие T и P [19, 21, 52]. Эффект от спекания, заключающийся в фазовом изменении, или существенное изменение физико-химических характеристик материала после спекания также в большей степени определяется температурой, так как для спекания необходим пробой, при котором будет формироваться плазма [15, 53]. Например, УНТ и фуллерены C₆₀ при 1500°С и 80 МПа превращаются в наноалмазы [21, 54], а при 2400°С и 100 МПа – в графеновые листы [19]. Присутствие примесей металлов VIII группы катализирует превращение [54].

МГФ в представленных условиях ИП-спекания (1100°С, 30 МПа) преврашались в новые фазы графен и ЛУС. При более низком давлении 16 МПа и температуре 1600°С никаких трансформаций с МГФ не происходило [7]. Отметим, что графен не превращается в ЛУС при меньших температурах ИП-спекания 200, 250, 300 или 400°С [6]. Однако этот процесс осуществим при обработке лазером УНМ [54] или МГФ [55]. При ИПспекании происходит испарение атомов углерода и кремния в газовую фазу. После перекристаллизации углерод формирует графеновые листы, а кремний остается в составе образцов в виде SiO₂. Атомы углерода, вероятно, могут также испаряться с поверхности вновь сформировавшихся графеновых листов, при этом на месте "дырок" углеродные плоскости заворачиваются, уменьшая избыточную энергию нескомпенсированных атомов углерода, что приводит к формированию ЛУС [8].

ЗАКЛЮЧЕНИЕ

Ковалентно сшитые УНТ и УНТ с МГФ получены при кислом гидролизе 3-аминопропилтриэтоксосилана в присутствии окисленных УНТ или смеси УНТ с МГФ. При последующем ИПспекании при 1100°С и 30 МПа получены консолидированные нерассыпающиеся таблетки соответствующих углеродных композитов. Методом РФЭС установлено, что во время ИП-спекания ковалентные связи между отдельными углеродными частицами не сохраняются, а кремний входит в состав консолидатов в виде SiO₂. В образце ковалентно "сшитых" УНТ и МГФ происходит фазовый переход с образованием ЛУС и графеновых листов. При ИП-спекании атомы углерода испаряются с поверхности УНТ и МГФ, после чего перекристаллизовываются с совершенствованием графитовой структуры УНТ и формированием новых фаз. Наиболее существенное влияние на данный процесс оказывает температура.

Плотность полученных консолидированных материалов равна 0.85 и 0.81 г·см⁻³, что ниже теоретически рассчитанного значения для консолидированных УНТ и графита. Значения проводимости консолидированных образцов, рассчитанных как соотношение толщины образца к сопротивлению и площади контактов, составили 42 и 57 См м⁻¹ для УНТ и УНТ-МГФ спеченных образцов соответственно. Это свидетельствует о том, что описанный подход неэффективен для получения хорошо проводящих образцов УНТ или композитов УНТ с МГФ. Показано, что при увеличении времени обработки с 3 до 6 ч при газофазном окислении содержание кислорода на поверхности материалов увеличивалось от 8.4 до 15.3 ат. % для 3D-сшитых структур УНТ и от 14.0 до 16.1 ат. % для 3D-сшитых структур УНТ с МГФ.

БЛАГОДАРНОСТИ

Авторы чрезвычайно признательны Ю.А. Тамбовцевой за помощь в получении ковалентно "сшитых" образцов УНТ и УНТ с МГФ и А.С. Тябликову за помощь в ИП-спекании. Работа выполнена при финансовой поддержке Российского научного фонда (проект № 18-13-00217) с использованием оборудования, приобретенного по программе Развития Московского университета.

СПИСОК ЛИТЕРАТУРЫ

- Li Z., Wang L., Li Y., Feng Y., Feng W. // Compos. Sci. Technol. 2019. V. 179. P. 10. https://doi.org/10.1016/j.compscitech.2019.04.028
- 2. Крючков В.А., Крючков М.В., Выморков Н.В. и др. // Композиты и наноструктуры. 2015. Т. 7 (3). С. 183.
- 3. *Cao M., Du C., Guo H. et al.* // Composites A. 2018. V. 115. P. 331.
- https://doi.org/10.1016/j.compositesa.2018.09.024
- Gong Y., Ping Y., Li D. et al. // Appl. Surf. Sci. 2017. V. 397. P. 213. https://doi.org/10.1016/j.apsusc.2016.11.153
- Nieto A., Lahiri D., Agarwal A. // Carbon. 2012. V. 50. P. 4068.
- Chakravarty D., Tiwary C.S., Woellner C.F. et al. // Adv. Mater. 2016. V. 28. P. 8959. https://doi.org/10.1002/adma.201603146
- Strokova N., Savilov S., Xia H. et al. // Z. Phys. Chem. 2016. V. 230. P. 1719. 2016. https://doi.org/10.1515/zpch-2016
- Suslova E.V., Epishev V.V., Maslakov R.I. et al. // Appl. Surf. Sci. 2020. V. 535. P. 147724. https://doi.org/10.1016/j.apsusc.2020.147724
- 9. Zhang F., Ahmed F., Holzhuter G., Burkel E. // J. Cryst. Growth. 2012. V. 340. P. 1.

- 10. Jun T.S., Park N.H., So D.S. et al. // J. Korean Cryst. Growth Cryst. Technol. 2013. V. 23. P. 27.
- Yamamoto G., Sato Y., Takahashi T. et al. // J. Mater. Res. 2006. V. 21. P. 1537.
- Laurent C., Chevallier G., Weibel A. et al. // Carbon. 2008. V. 46. P. 1812.
- Suslova E., Savilov S., Egorov A. et al. // Micropor. Mesopor. Mat. 2020. V. 293. P. 109807. https://doi.org/10.1016/j.micromeso.2019.109807
- Laurent C., Dinh T.M., Barthelemy M.C. et al. // J. Mater. Sci. 2018. V. 53. P. 3225.
- Suslova E.V., Chernuak S.A., Maksimov S.V., Savilov S.V. // Carbon. 2020. V. 168. P. 597. https://doi.org/10.1016/j.carbon.2020.07.026
- 16. Borrell A., Fernández A., Merino C., Torrecillas R. // Int. J. Mat. Res. 2010. V. 101. P. 112.
- 17. Kanari M., Tanaka K., Baba S., Eto M. // Carbon. 1997. V. 35. № 10–11. P. 1429.
- Uo M., Hasegawa T., Akasaka T. et al. // Bio Med. Mater. Eng. 2009. V. 19. P. 11.
- 19. *Ham H., Park N.H., Kang I. et al.* // Chem. Commun. (J. Chem. Soc. Sect. D). 2012. V. 48. P. 6672.
- Zhang Z.H., Qi L., Shen X.B. et al. // Mat. Sci. Eng. A. 2013. V. 573. P. 12.
- 21. Zhang F., Shen J., Sun J. et al. // Carbon. 2005. V. 43. P. 1254.
- 22. Ukhina A.V., Dudina D., Anisimov A.G. et al. // Ceram. Int. 2015. V. 41. P. 12459.
- 23. *Ma R.Z., Xu C.L., Wei B.Q. et al.* // Mater. Res. Bull. 1999. V. 34. P. 741.
- 24. *Li J.L., Bai G.Z., Feng J.W., Jiang W. //* Carbon. 2005. V. 43. P. 2649.
- 25. *Kis A., Csanyi G., Salvetat J.P. et al.* // Nat. Mater. 2004. V. 3. P. 153.
- 26. Елецкий А.В., Книжник А.А., Потапкин Б.В., Кенни *Х.М.* // Успехи физ. наук. 2015. Т. 185 (3). С. 225.
- Hooijdonk E.V., Bittencourt C., Snyders R., Colomer J.F. // Beilstein J. Nanotechnol. 2013. V. 4. P. 129. https://doi.org/10.3762/bjnano.4.14
- 28. *Савилов С.В., Иванов А.С., Егоров А.В. и др. //* Журн. физ. химии. 2016. Т. 90. № 2. С. 249.
- 29. Савилов С.В., Иванов А.С., Черняк С.А. и др. // Журн. физ. химии. 2015. Т. 89. № 11. С. 1723.
- Chernyak S.A., Ivanov A.S., Strokova N.E. et al. // J. Phys. Chem. C. 2016. V. 120. P. 17465. https://doi.org/10.1021/acs.jpcc.6b05178
- Xia W., Jin C., Kundu S., Muhler M. // Carbon. 2009. V. 47. P. 919.
- Savilov S.V., Strokova N.E., Ivanov A.S. et al. // Mat. Res. Bull. 2015. V. 69. P. 13. https://doi.org/10.1016/j.materresbull.2015.01.001
- 33. Chernyak S.A., Ivanov A.S., Podgornova A.M. et al. // PCCP. 2018. V. 20. P. 24117. https://doi.org/10.1039/C8CP05149F
- 34. Vieira K.O., Panzera T.H., Ferrari J.L., Schiavon M.A. // Mat. Res. 2018. V. 21. № 6. P. e20180291. https://doi.org/10.1590/1980-5373-mr-2018-0291
- Bechtold M.X., Vest R.D., Plambeck L. // J. Am. Chem. Soc. 1968. V. 90. № 17. P. 4590. https://doi.org/10.1021/ja01019a015

- 36. Ganguli S., Roy A.K., Anderson D.P. // Carbon. 2008. V. 46. P. 806. https://doi.org/10.1016/j.carbon.2008.02.008
- 37. Сморгонская Э.А., Звонарева Т.К., Иванова Е.И. и др. // Физика тв. тела. 2003. Т. 46. Вып. 9. С. 1579.
- Biru E.I., Iovu H. Graphene Nanocomposites Studied by Raman Spectroscopy. 2017. https://doi.org/10.5772/intechopen.73487
- Varga M., Izak T., Vretenar V. et al. // Carbon. 2017.
 V. 111. P. 54. https://doi.org/10.1016/j.carbon.2016.09.064
- Bokova-Sirosh S.N., Pershina A.V., Kuznetsov V.L. et al. // J. Nanoelectr. Optoelectr. 2013. V. 8. P. 106.
- 41. Nemanich R.J., Solin S.A. // Phys. Rev. B. 1979. V. 20. P. 392.
- 42. Obraztsova E.D., Fujii M., Hayashi S. et al. // Carbon. 1998. V. 36. P. 821.
- Wang W., Yokoyama A., Liao S. et al. // Mat. Sci. Engineer. C. 2008. V. 28. P. 1082.
- 44. Savilov S.V., Chernyak S.A., Paslova M.S. et al. // ACS Appl. Mat. Interfaces. 2018. V. 10. P. 20983.
- 45. *Qin C., Shi X., Bai S.Q. et al.* // Mat. Sci. Engineer. A. 2006. V. 420. P. 208.
- 46. Yamamoto G., Shirasu K., Nozaka Y. et al. // Carbon. 2014. V. 66. P. 219.
- 47. Marinho B., Ghislandi M., Tkalya E. et al. // Powder Technol. 2012. V. 221. P. 351.

- Суслова Е.В., Архипова Е.А., Калашник А.В. и др. // Журн. физ. химии. 2019. Т. 93 (10). С. 1551. Suslova E.V., Arkhipova E.A., Kalashnik A.V. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 1960.
- 49. Chernyak S.A., Ivanov A.S., Maslakov K.I. et al. // PC-CP. 2017. V. 19. P. 2276. https://doi.org/10.1039/c6cp04657f
- 50. Khoshghadam-Pireyousefan M., Mohammadzadeh A., Heidarzadeh A.A., Brabazon D. // Ref. Module Mat. Sci. Mat. Engineer. 2021. https://doi.org/10.1016/B978-0-12-803581-8.11907-1
- Hu Z.Y., Zhang Z.H., Cheng X.W. et al. // Mat. Design. 2020. V. 191. P. 108662. https://doi.org/10.1016/j.matdes.2020.108662
- 52. Zhang F., Adam M., Ahmed F. et al. // Diamond Rel. Mat. 2011. V. 20. P. 853. https://doi.org/10.1016/i.diamond.2011.04.006
- 53. Сивков А.А., Герасимов Д.Ю., Евдокимов А.А. // Российские нанотехнол. 2015. № 10 (9–10).
- 54. Павлюченко П.Е., Серопян Г.М., Тренихян М.В., Дроздов В.А. // Журн. общ. химии. 2020. Т. 90. С. 559. https://doi.org/10.1134/S1070363220030317
- Du J., Zhao R., Zhu Z. // Phys. Status Solidi. A. 2011. V. 208. P. 878. https://doi.org/10.1002/pssa.201026646