_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.35

СТРУКТУРНО-ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАЛЕИНОВОЙ КИСЛОТЫ В ВОДНО-ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЯХ

© 2021 г. Н. В. Тукумова^{а,*}, Н. В. Белова^а, Т. Р. Усачева^а, Чан Тхи Зьеу Тхуан^{b,**}

^а Ивановский государственный химико-технологический университет, 153000 Иваново, Россия ^b Индустриальный университет города ХоШиМина, Го Вап, Вьетнам

> *e-mail: oxt@isuct.ru **e-mail: tranthidieuthuan@iuh.edu.vn Поступила в редакцию 02.08.2020 г. После доработки 02.08.2020 г. Принята к публикации 10.11.2020 г.

Представлены результаты изучения структуры малеиновой кислоты, процессов газофазного протонирования, а также кислотно-основных равновесий с участием малеиновой кислоты в водно-этанольных и водно-диметилсульфоксидных растворах. Определены величины рK диссоциации малеиновой кислоты в водно-этанольных и водно-диметилсульфоксидных растворителях. Установлено, что с ростом содержания неводного компонента в водно-органической смеси значения рK увеличиваются. Анализ сольватационных вкладов всех реагентов, участвующих в процессе кислотной диссоциации малеиновой кислоты в водно-этанольных и водно-диметилсульфоксидных растворителях, показал, что основной вклад в увеличение значений р K_1 и р K_2 вносит десольватация анионов.

Ключевые слова: малеиновая кислота, водно-этанольный растворитель, водно-диметилсульфоксидный растворитель, изменения энергии Гиббса переноса

DOI: 10.31857/S0044453721070268

Малеиновая кислота относится к широко распространенным биолигандам и входит в состав многих лекарственных препаратов. Анализ литературных источников показывает, что интерес к исследованиям процессов с участием малеиновой кислоты и практическим аспектам ее применения в различных наукоемких технологиях выходит за рамки традиционного применения в фармацевтике. Например, малеиновая кислота используется в качестве эффективного лиганда для связывания цинка, никеля, циркония в координированных полимерах при создании новых наноматериалов для катализа [1] и при активации регенерированных CoMo/Al₂O₃ катализаторов [2]. Исследования термодинамического поведения малеиновой кислоты необходимы для разработки селективных хемосенсоров для ее определения в смеси органических компонентов и дальнейшего выделения из растворов [3] и при исследовании модельных процессов транспорта через липидные мембраны наночастиц полимеров, содержащих малеиновую кислоту [4]. Для эффективного использования малеиновой кислоты в составе наноматериалов необходима информация о структуре и термодинамических свойствах малеиновой кислоты в различных средах.

Повышенное внимание исследователей привлекают процессы депротонирования, в том числе газофазного. Энергия газофазного депротонирования является отражением кислотности соединения в отсутствие влияния среды. Процессы диссоциации кислоты в газовой фазе $H_2L \leftrightarrow HL^- +$ $+ H^+ (HL^- \leftrightarrow L^{2-} + H^+)$ сопровождаются изменением энтальпии и энергии Гиббса [5–12]. Анализ изменения этих величин позволяет выделить эффекты, непосредственно связанные только с влиянием конформационных особенностей или введения заместителей на кислотность соединений, не искаженные действием среды (см., например, [13]). Определение энергий газофазного депротонирования позволяет выстроить шкалу кислотности, выявить соединения со сверхкислыми свойствами, установить связь энергий депротонирования с величинами рКа. Авторы [14] ввели классификацию кислот, согласно которой кислота считается сверхсильной, если энергия Гиббса газофазного депротонирования менее 300 ккал/моль.

Настоящая работа продолжает исследования, начатые в работах [15–17], и представляет результаты изучения структуры малеиновой кислоты, процессов газофазного протонирования, а также кислотно-основных равновесий с участием малеиновой кислоты в водно-этанольных и водно-диметилсульфоксидных растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для нахождения величин рК диссоциации малеиновой кислоты в водно-органических растворах использовали метод потенциометрического титрования, основанный на измерении разности потенииалов межлу стеклянным инликаторным электродом и хлорсеребряным электродом сравнения. Исследования проводили при ионной силе 0.1 на фоне перхлората натрия при температуре 298 К. В качестве титранта использовали безкарбонатный раствор гидроксида натрия с концентрацией 0.1 М. аналогичный по содержанию органического компонента раствору в ячейке. Содержание этанола в растворах изменялось от 0 до 0.7 мол. доли, диметилсульфоксида от 0 до 0.3 мол. доли. Ограничение содержания органических растворителей в водно-органических растворах вызвано ухудшением растворимости в нем, как малеиновой кислоты, так и шелочи. Подробное описание методики проведения потенциометрического титрования приведено в работах [15-17].

Математическую обработку полученных в ходе потенциометрического титрования данных, проводили по универсальной программе "PHMETR", предназначенной для расчета равновесий с произвольным числом реакций в растворе, алгоритм которой приведен в [18].

Стехиометрическая модель системы учитывала следующие равновесия:

$$H_2L \leftrightarrow H^+ + HL^-, \tag{1}$$

$$\mathrm{HL}^{-} \leftrightarrow \mathrm{H}^{+} + \mathrm{L}^{2-}, \qquad (2)$$

 $Na^{+} + L^{-} \rightarrow NaL^{-}, \qquad (3)$

$$H_2O \leftrightarrow H^+ + OH^-.$$
 (4)

Значение lg β_{NaL}⁻ было получено авторами работы [19] при температуре 298.15 К и ионной силе 0.25, и при пересчете на ионную силу 0.1 по уравнению с одним индивидуальным параметром [20] составило 0.73. Данные об исследовании процессов комплексообразования иона натрия с малеиновой кислотой в водно-этанольных и водно-диметилсульфоксидных растворах в литературе отсутствуют.

Значение константы равновесия процесса (4), приведенное в работе [21] при нулевой ионной силе, было также пересчитано на ионную силу 0.1 по уравнению с одним индивидуальным параметром [20] с учетом процесса ионизации воды в водно-органических растворителях [22, 23]. Анализ сольватационных вкладов участников реакций кислотной диссоциации малеиновой кислоты при переносе из воды в водно-органические смеси проводили с использованием уравнений:

$$\Delta_{\rm tr} G_{\rm r1}^{0} = \Delta_{\rm tr} G_{\rm r1(H_2O-opr.KOMII)}^{0} - \Delta_{\rm tr} G_{\rm r1(H_2O)}^{0} =$$

$$= [\Delta_{\rm tr} G^{0}({\rm HL}^{-}) - \Delta_{\rm tr} G^{0}({\rm H_2L})] + \Delta_{\rm tr} G^{0}({\rm H}^{+}),$$
(5)

$$\Delta_{\rm tr} G_{\rm r2}^{\rm o} = \Delta_{\rm tr} G_{\rm r2(H_2O-opr.kom)}^{\rm o} - \Delta_{\rm tr} G_{\rm r2(H_2O)}^{\rm o} = = [\Delta_{\rm tr} G^{\rm 0}({\rm L}^{2-}) - \Delta_{\rm tr} G^{\rm 0}({\rm HL}^{-})] + \Delta_{\rm tr} G^{\rm 0}({\rm H}^{+}),$$
(6)

где $\Delta_{tr} G^0(L^{2-})$, $\Delta_{tr} G^0(HL^{-})$ – величины изменения энергии Гиббса переноса анионов малеиновой кислоты из воды в водно-органические смеси.

 $\Delta_{\rm tr}G^0({\rm H}^+)$ – величины изменения энергии Гиббса переноса протона из воды в водно-этанольные [24] и водно-диметилсульфоксидные растворы [25]; $\Delta_{\rm tr}G^0_{\rm r1(H_2O)}$, $\Delta_{\rm tr}G^0_{\rm r2(H_2O)}$, $\Delta_{\rm tr}G^0_{\rm r1(H_2O-opr.komn)}$, $\Delta_{\rm tr}G^0_{\rm r2(H_2O-opr.komn)}$ – значения изменения энергии Гиббса для первой и второй ступеней диссоциации малеиновой кислоты в воде и в водно-органических смесях, соответственно.

Значения $\Delta_{tr}G_{r1}^0$ и $\Delta_{tr}G_{r2}^0$ для процессов (5) и (6) рассчитывали по уравнению:

$$\Delta_{\rm tr} G_{\rm ri}^0 = -2.303 RT \, \lg K_i, \tag{7}$$

где lg K_i — логарифмы констант диссоциации малеиновой кислоты по первой (1) и второй (2) ступени.

Квантово-химические расчеты в данной работе выполнялись с использованием пакета программ GAUSSIAN 03 [26] в приближении теории функционала электронной плотности (функционал B3LYP [27-31]). Во всех расчетах использовались корреляционно-согласованные валентнотрехэкспонентные базисы сс-рVTZ [32]. Для каждой рассмотренной конфигурации проведена оптимизация геометрических параметров с последующим вычислением матрицы вторых произэнергии водных полной по декартовым координатам ядер. Изучение распределения электронной плотности в молекулах проводилось в рамках анализа натуральных орбиталей (NBO) с помощью программы NBO 3.1 [33], входящей в состав программного комплекса GAUSSIAN 03. Визуализация полученных структур выполнена с помощью программы ChemCraft [34]. Изучение строения изомеров и энергий депротонирования в сольватированном состоянии выполнено в рамках модели реактивного поля РСМ [35].

При исследовании процесса депротонирования по первой ступени (уравнение (1)) энергии диссоциации изомеров $\Delta_r E$ оценивали как разность электронных энергий депротонированных форм кислот $E(HL^-)$ и энергий их молекулярных

Рис. 1. Стабильные цис-, (с), и транс-, (t), конфигурации малеиновой кислоты, соответствующие минимумам на ППЭ, и их относительные энергии газовой фазе – ΔE и в водном растворе – ΔE_w (ккал/моль) по данным квантовохимических расчетов (B3LYP/cc-pVTZ).

форм $E(H_2L)$: $\Delta_r E = E(HL^-) - E(H_2L)$. При этом принимали: $E^0_{H^+,0} = 0$.

Величины $\Delta_{\rm r} H^0_{298}$, $\Delta_{\rm r} G^0_{298}$ рассчитывали по уравнениям :

$$\Delta_{\rm r} H_{298}^0 = H_{298}^0 ({\rm HL}^-) - H_{298}^0 ({\rm H}_2 {\rm L}) + + 1.48, \, \text{ккал/моль,}$$
(8)

$$\Delta_{\rm r} G_{298}^0 = G_{298}^0 ({\rm HL}^-) - G_{298}^0 ({\rm H}_2 {\rm L}) - -6.27, \, {\rm ккал/моль.}$$
(9)

Здесь принято, что при 298 К энергия протона определяется только поступательной составляющей: $E_{\text{H}^+,298}^0 = E_{\text{trans}} = (3/2)RT = 0.89$ ккал/мол, соответствующая энтальпия $H_{\text{H}^+,298}^0 = (5/2)RT =$ = 1.48 ккал/моль. Энергия Гиббса, рассчитывалась с учетом $D_{\text{H}^+,298}^0 = 26.0$ кал/(моль K) [36], $G_{\text{H}^+,298}^0 = -6.27$ ккал/моль.

Расчеты для диссоциации по второй ступени проводили подобным образом.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1 представлены конфигурации малеиновой кислоты, соответствующие минимумам на поверхности потенциальной энергии, а также их относительные энергии в газовой фазе и в водном растворе. Наиболее низкой относительной энергией обладает транс-изомер (t1). Относительное содержание изомеров в газовой фазе, рассчитанное на основании теоретических значений относительных энергий Гиббса, ΔG^0 , составляет 76.0%, 23.0%, 0.2%, 0.8% для конфигураций t1, t2, с1 и с2 соответственно. Наличие двойной связи С2=С3 обеспечивает плоскостность углерод-кислородного каркаса, в результате все четыре изомера в газовой фазе обладают симметрией C_s. В водном растворе незначительно увеличивается содержание цис-изомеров: 57.0%, 40.0%, 2.3%, 0.2% для конфигураций t1, t2, c1 и c2 соответственно. Причем, если для первых трех изомеров. как и в газовой фазе, минимуму на ППЭ соответствует конформация с плоским строением, для изомера с2 структура симметрии С₈ является седловой точкой первого порядка. Форма колебаний, отвечающая мнимой частоте, соответствует отклонению от плоскостности углерод-кислородного каркаса. Движение по этой координате позволило найти минимум на ППЭ.

В табл. 1 представлены основные геометрические параметры равновесных структур. В табл. 2–4 сведены результаты анализа распределения электронной плотности. Таблица 2 представляет величины натуральных зарядов на атомах, табл. 3– индексы Вайберга, которые могут служить характеристикой порядков связей. В рамках схемы NBO перераспределение электронной плотности в результате донорно-акцепторного взаимодействия между заполненными натуральными орбиталями (Льюисового типа) и формально незаня-

Рис. 2. Зависимости изменения энергии Гиббса реагентов реакции диссоциации малеиновой кислоты по первой ступени при переносе из воды в водные растворы этанола от состава водно-этанольного растворителя: $1 - [\Delta_{tr}G^0(HL^-) - \Delta_{tr}G^0(H_2L)], 2 - \Delta_{tr}G^0_{r1}, 3 - \Delta_{tr}G^0(H^+).$

тыми орбиталями молекулы приводит к стабилизации. В табл. 5 представлены наибольшие рассчитанные значения энергий взаимодействия по типу "донор—акцептор" $E^{(2)}$, полученные в NBO-анализе с использованием теории возмущения второго порядка для изученных структур. Во всех изомерах малеиновой кислоты наблюдается гиперсопряжение между связывающей орбиталью π(C2-C3) и разрыхляющими орбиталями $\pi^*(C1-O2)$ и $\pi^*(C4-O3)$, что приводит к понижению энергии и дополнительной стабилизации молекулярной системы. Наличие гиперсопряжений в углерод-кислородном каркасе приводит к изменению соответствующих межъядерных расстояний (табл. 1), а также индексов Вайберга (табл. 3) по сравнению с величинами, характерными для одинарных или двойных связей. Кроме того, наличие взаимодействия неподеленной пары атома кислорода с $\sigma^*(O-H)$ в цис-изомерах является доказательством наличия водородной связи, о чем свидетельствуют и величины межъядерных расстояний r(O...O), которые меньше суммы ван-дер-ваальсовых радиусов атомов кислорода ($r_{\text{в-д-в}}(O) = 1.4 \text{ Å}$), а также — значения r(O…H). Интересно отметить, что согласно результатам расчетов, в водном растворе во всех изомерах происходит усиление сопряжения в углерод-кислородной цепи, а также немного увеличивается сила водородной связи в цис-изомерах.

В таблице 5 представлены величины р*К* диссоциации в водно-этанольных и водно-диметилсульфоксидных растворах.

Рис. 3. Зависимости изменения энергии Гиббса реагентов реакции диссоциации малеиновой кислоты по второй ступени при переносе из воды в водный раствор этанола от состава водно-этанольного растворителя: $1 - [\Delta_{tr}G^0(L^{2-}) - \Delta_{tr}G^0(HL^-)], 2 - \Delta_{tr}G_{r2}, 3 - \Delta_{tr}G(H^+).$

Следует отметить, что темпы роста констант диссоциации малеиновой кислоты в системе вода—ДМСО выше, чем в системе вода—этанол, что можно объяснить различием в величинах диэлектрической проницаемости этанола (24.3) и диметилсульфоксида (46.68). Отметим, что значения pK_1 и pK_2 диссоциации малеиновой кислоты сильно различаются друг от друга.

Значения $\Delta_{tr} G^0(L^{2-})$ и $\Delta_{tr} G^0(HL^{-})$ в литературе на данный момент отсутствуют. Зависимости величин изменения энергии Гиббса реагентов и реакции диссоциации малеиновой кислоты по первой и второй ступени от состава водно-этанольного и воднодиметилсульфоксидного растворителей представлены на рис. 2-5. Как видно из рис. 2-5 при переходе от воды к водно-органическим смесям рост величин $\Delta_{tr} G_r^0$ реакций кислотной диссоциации малеиновой кислоты определяется различиями в изменении сольватных состояний протонированной и депротонированной форм малеиновой кислоты по обеим ступеням диссоциации: $[\Delta_{tr}G^{\circ}(HL^{-}) - \Delta_{tr}G^{\circ}(H_{2}L)]$ и $[\Delta_{tr}G^{\circ}(L^{2-})]$ $-\Delta_{tr}G^{\circ}(HL^{-})]$. Можно предположить, что увеличение значений рК диссоциации малеиновой кислоты с ростом содержания неводного компонента в растворах связано главным образом с дестабилизацией анионов.

При исследовании диссоциации уксусной кислоты в водных растворах этанола и ДМСО, авторами работы [37] отмечалось, что основной вклад в уменьшение ее силы при увеличении содержания неводного компонента в растворе вносит дестаби-

ТУКУМОВА и др.

Свазі	Изомер (t1)		Изомер (t2)		Изомер (с1)		Изомер (с2)	
Связь	газ	раствор	газ	раствор	газ	раствор	газ	раствор
	Межъядерные расстояния, Å							
C1-C2	1.492	1.488	1.493	1.490	1.482	1.481	1.505	1.498
C2–C3	1.329	1.329	1.330	1.330	1.339	1.338	1.339	1.338
C3–C4	1.483	1.484	1.479	1.480	1.508	1.500	1.478	1.480
C1-01	1.356	1.347	1.357	1.347	1.344	1.332	1.334	1.330
C1-O2	1.199	1.207	1.199	1.207	1.212	1.220	1.205	1.212
C4–O3	1.206	1.209	1.205	1.210	1.207	1.214	1.202	1.205
C4–O4	1.350	1.344	1.355	1.344	1.324	1.324	1.365	1.354
C2-H	1.084	1.083	1.083	1.082	1.085	1.083	1.083	1.082
С3-Н	1.081	1.081	1.081	1.081	1.082	1.082	1.082	1.082
O1–H	0.964	0.966	0.964	0.966	0.964	0.967	0.973	0.979
О4—Н	0.969	0.970	0.968	0.969	0.989	0.999	0.969	0.970
Н…О					1.631	1.578	1.713	1.680
0…0					2.610	2.569	2.668	2.639
		I		Валентные	углы, град.		I	I
01-C1-C2	115.3	115.8	115.3	116.0	115.6	116.3	121.0	121.4
C1-C2-C3	121.1	121.1	120.7	120.6	128.4	128.5	136.1	135.0
C2-C3-C4	120.7	121.0	124.4	124.4	133.8	133.0	133.6	133.1
C3-C4-O4	111.1	111.1	113.5	113.8	120.2	120.3	115.9	115.6
O1-C1-O2	120.5	119.8	120.4	119.8	118.5	118.1	121.1	120.2
O3-C4-O4	123.3	123.5	122.9	123.3	122.4	121.2	121.2	122.0
H-01-C1	111.0	111.8	111.1	111.9	111.5	112.3	111.8	112.0
H-C2-C1	119.9	119.0	119.3	118.8	115.3	115.2	108.3	109.2
Н-С3-С4	118.6	117.9	115.3	115.0	109.5	110.4	109.6	110.3
H-O4-C4	107.2	108.3	106.7	108.1	111.9	111.4	107.8	109.6
				Торсионные	е углы, град			,
01-C1-C2-C3	180.0	180.0	180.0	180.0	180.0	180.0	0.0	-6.8
C1-C2-C3-C4	180.0	180.0	180.0	180.0	0.0	0.0	0.0	0.4
C2-C3-C4-O4	180.0	180.0	0.0	0.0	0.0	0.0	0.0	13.1
O2-C1-C2-C3	0.0	0.0	0.0	0.0	0.0	0.0	180.0	173.2
C2-C3-C4-O3	0.0	0.0	180.0	180.0	180.0	180.0	180.0	167.7
H-O1-C1-C2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
H-O4-C4-C3	180.0	180.0	180.0	180.0	0.0	0.0	180.0	178.6

Таблица 1. Основные геометрические параметры изомеров малеиновой кислоты по данным квантово-химических расчетов (B3LYP/cc-pVTZ)

лизация ацетат-иона. В работе [38] авторы делают вывод, что изменения величин констант кислотной диссоциации глицина определяются влиянием растворителя на сольватацию всех участников кислотно-основного равновесия, а различия в характере зависимостей для pK_1 и pK_2 связаны с различным изменением сольватации протонированной и депротонированной форм глицина.

В табл. 6 представлены результаты расчетов энтальпий ($\Delta_r H_{298}^0$) и энергий Гиббса ($\Delta_r G_{298}^0$) де-

протонирования малеиновой кислоты при диссоциации по первой и второй ступени в газовой фазе и водном растворе (в рамках модели РСМ). Несмотря на достаточную близость полученных величин, можно отметить некоторые закономерности. Депротонированные транс-формы H_2L , образованные при разрыве связи O4–H, соответствующие минимуму на ППЭ, как и нейтральные изомеры, имеют плоское строение, в то время как при разрыве связи O1–H плоская структура соот-

1022

Атомы	Изомер (t1)		Изомер (t2)		Изомер (с1)		Изомер (с2)	
	газ	раствор	газ	раствор	газ	раствор	газ	раствор
C1	0.750	0.765	0.750	0.765	0.769	0.783	0.734	0.750
C2	-0.253	-0.246	-0.263	-0.253	-0.316	-0.281	-0.205	-0.219
C3	-0.226	-0.221	-0.217	-0.216	-0.175	-0.192	-0.284	-0.256
C4	0.749	0.761	0.745	0.758	0.732	0.748	0.749	0.762
O 1	-0.654	-0.661	-0.654	-0.661	-0.634	-0.634	-0.660	-0.669
O2	-0.541	-0.596	-0.539	-0.596	-0.577	-0.613	-0.537	-0.597
O3	-0.578	-0.607	-0.551	-0.594	-0.543	-0.603	-0.540	-0.571
O4	-0.657	-0.658	-0.680	-0.670	-0.655	-0.672	-0.712	-0.700
H(O1)	0.475	0.501	0.473	0.501	0.481	0.509	0.496	0.507
H(C2)	0.212	0.225	0.208	0.226	0.200	0.227	0.225	0.230
H(C3)	0.236	0.233	0.239	0.233	0.223	0.231	0.228	0.235
H(O4)	0.487	0.503	0.490	0.506	0.496	0.498	0.507	0.526

Таблица 2. Натуральные заряды на атомах (в долях элементарного заряда) в изомерах малеиновой кислоты, полученные в результате квантово-химических расчетов (B3LYP/cc-pVTZ)

Таблица 3. Индексы Вайберга для связей в конформерах малеиновой кислоты по данным квантово-химических расчетов (B3LYP/cc-pVTZ)

	Изомер (t1)		Изомер (t2)		Изомер (с1)		Изомер (с2)	
	газ	раствор	газ	раствор	газ	раствор	газ	раствор
C1-01	1.030	1.059	1.029	1.059	1.070	1.107	1.084	1.101
C1-O2	1.769	1.719	1.772	1.719	1.672	1.620	1.740	1.694
C1-C2	1.008	1.015	1.006	1.013	1.036	1.038	1.000	1.012
C2–C3	1.860	1.857	1.856	1.854	1.852	1.852	1.857	1.859
C3–C4	1.012	1.013	1.023	1.024	0.992	1.007	1.036	1.030
C4–O3	1.741	1.714	1.755	1.714	1.722	1.681	1.774	1.746
C4–O4	1.053	1.072	1.034	1.066	1.117	1.125	0.986	1.015

Таблица 4. Энергии донорно-акцепторного взаимодействия в конформерах малеиновой кислоты (*E*², ккал/моль) по данным квантово-химических расчетов (B3LYP/cc-pVTZ)

Сразь	Изомер (t1)		Изомер (t2)		Изомер (с1)		Изомер (с2)	
СБАЗБ	газ	раствор	газ	раствор	газ	раствор	газ	раствор
$\pi(C2-C3) - \pi^*(O2-C1)$	16.6	17.9	16.6	17.8	20.0	20.2	12.6	14.6
$\pi(C2-C3) - \pi^*(O3-C4)$	17.5	17.8	17.5	18.1	11.3	14.0	18.7	17.6
$lp(O1) - \pi^*(O2 - C1)$	44.5	47.9	44.3	47.9	48.6	53.3	51.2	53.3
$lp(O4) - \pi^*(O3 - C4)$	47.1	49.5	45.2	49.2	56.1	57.0	39.8	42.7
$lp(O2) - \sigma^*(O1-C1)$	34.6	32.0	34.9	32.0	31.4	28.1	31.8	29.9
$lp(O2) - \sigma^*(C1-C2)$	21.7	20.4	21.6	20.5	14.2	12.0	21.0	19.3
$lp(O3) - \sigma^*(O4-C4)$	32.8	31.5	33.4	31.4	30.0	28.7	35.4	33.5
$lp(O3) - \sigma^*(C3-C4)$	21.1	20.5	20.1	19.2	21.7	19.8	19.8	19.3
$lp(O2) - \sigma^*(O4-H)$					23.7	31.4		
$lp(O4) - \sigma^*(O1-H)$							15.5	17.7

<i>Y</i> мол лоли	Вода—	этанол	Вода-ДМСО		
л _{р-ля} , мол. доли	p <i>K</i> ₁	p <i>K</i> ₂	p <i>K</i> ₁	p <i>K</i> ₂	
0	1.76 ± 0.04	5.78 ± 0.04	1.76 ± 0.04	5.78 ± 0.04	
0.1	1.80 ± 0.04	5.90 ± 0.06	2.15 ± 0.08	7.31 ± 0.08	
0.3	1.83 ± 0.08	6.53 ± 0.07	2.48 ± 0.12	8.90 ± 0.08	
0.4	1.96 ± 0.04	7.50 ± 0.06	_	—	
0.5	2.20 ± 0.07	7.89 ± 0.07	—	—	
0.7	2.44 ± 0.08	8.38 ± 0.10	_	_	

Таблица 5. Величины констант диссоциации малеиновой кислоты в смесях вода—этанол и вода—диметилсульфоксид

ветствует седловой точке первого порядка. В равновесной конформации HL⁻ в последнем случае происходит разворот фрагмента О1-С1-О2 от плоскости молекулы на 39.0°, 45.7° в изомерах t1 и t2. соответственно. Причем, энергии лепротонирования в обоих транс-изомерах выше в случае разрыва связи О4-Н. Интересно отметить, что депротонирование транс-изомеров по второй ступени приводит к стабилизации плоской структуры с симметрией C_s. В случае цис-изомеров разрыв внутримолекулярной водородной связи (ВВС) несколько повышает энергию депротонирования. Кроме того, лиссоциация по первой ступени, протекающая с разрывом ВВС приводит к изменениям в структуре молекулы: фрагмент ОСО, в котором произошел отрыв протона, разворачивается относительно плоскости молекулы на 93.0°. В равновесной конфигурации депротонированной цис-формы L²⁻ один из фрагментов

ОСО составляет единый плоский каркас с остальными атомами, в то время как другой фрагмент ОСО остается развернутым относительно плоскости молекулы на 94°.

Общие закономерности в изменении структуры при депротонировании, а также в величинах энтальпий ($\Delta_r H_{298}^0$) и энергий Гиббса ($\Delta_r G_{298}^0$) сохраняются и при переходе в водный раствор. Можно отметить общую тенденцию к значительному уменьшению $\Delta_r H_{298}^0$ и $\Delta_r G_{298}^0$ в растворе.

Очевидно, что сумма энергий Гиббса сольватации ионов H^+ и L^{2-} в растворителе во много раз превышает вклад от энергии сольватации Гиббса самой кислоты HL^- , что значительно понижает энергетический барьер ее диссоциации. Поэтому энергия Гиббса газофазной диссоциации HL^- в общем случае всегда больше, чем в растворе. В то же время, заметим, что применяемая здесь мо-

Рис. 4. Зависимости изменения энергии Гиббса реагентов реакции диссоциации малеиновой кислоты по первой ступени при переносе из воды в водный раствор диметилсульфоксида от состава водно-диметилсульфоксидного растворителя: $1 - [\Delta_{tr}G^0(L^{2-}) - \Delta_{tr}G^0(HL^{-})]$, $2 - \Delta_{tr}G^0_{t2}$, $3 - \Delta_{tr}G^0(H^+)$.

Рис. 5. Зависимости изменения энергии Гиббса реагентов реакции диссоциации малеиновой кислоты по второй ступени при переносе из воды в водный раствор диметилсульфоксида от состава водно-диметилсульфоксидного растворителя: $1 - [\Delta_{tr}G^0(L^{2-}) - \Delta_{tr}G^0(HL^{-})], 2 - \Delta_{tr}G^0_{r2}, 3 - \Delta_{tr}G^0(H^+).$

Изомер	Диссоциация по	первой ступени	Диссоциация по второй ступени			
(разрыв связи на первой ступени)	$\Delta_{ m r} H_{298}^0$	$\Delta_{ m r}G_{298}^0$	$\Delta_{ m r} H^0_{298}$	$\Delta_{ m r}G_{298}^0$		
	в газовой фазе					
c1(O1-H)	313.8	306.9	454.6	445.2		
c1(O4–H)	313.8	306.9	454.6	445.2		
c2(O1-H)	335.6	328.1	432.8	424.8		
c2(O4–H)	313.8	307.8	454.6	445.2		
t1(O1-H)	333.6	325.7	422.6	415.5		
t1(O4–H)	335.9	327.7	420.4	413.5		
t2(O1-H)	332.9	325.0	422.6	415.5		
t2(O4–H)	335.1	327.0	420.4	413.5		
	в водном растворе					
c1(O1-H)	272.6	265.3	308.2	299.6		
c1(O4–H)	287.6	279.3	293.2	285.6		
c2(O1-H)	283.5	275.9	295.0	287.5		
c2(O4–H)	270.3	263.8	308.2	299.6		
t1(O1–H)	283.3	275.7	293.0	285.1		
t1(O4–H)	285.6	277.8	290.8	283.0		
t2(O1-H)	283.2	275.6	292.8	285.0		
t2(O4–H)	285.2	277.6	290.8	283.0		

Таблица 6. Энтальпии и энергии Гиббса (ккал/моль) депротонирования малеиновой кислоты в газовой фазе и водном растворе по данным квантово-химических расчетов (B3LYP/cc-pVTZ)

дель (PCM) учитывает только неспецифические типы взаимодействий "растворитель-растворенное вещество", тогда как экспериментальные значения pK_a зависят в значительной степени от специфической сольватации.

Исследование проведено в рамках государственного задания Министерства науки и высшего образования Российской Федерации (проект FZZW-2020-0009).

СПИСОК ЛИТЕРАТУРЫ

- Amaro-Gahete J., Esquivel D., Ruiz J.R. et al. // Applied Catalysis A. General 2019. V. 585. P. 117190.
- Bui N.-Q., Geantet C., Berhault G. //Applied Catalysis A: General. 2019. V. 572. P. 185.
- Kim E. J., Haldar U., Lee H.-il // Polymer 2020. V. 186. P. 122040.
- Voskoboynikova N., Orekhov P. S. et al. // Biochimica et Biophysica Acta (BBA) – Biomembranes. 2020. V. 1862. № 5. 183207.
- 5. Yamdagni R., McMahon T.B., Kebarle P. // J. Am. Chem. Soc. 1977. V. 99:7. P. 2222.
- Koppel I.A., Burk P., Koppel I. et al. // J. Am. Chem. Soc. 2000. V. 122. № 21. P. 5114.
- Shubin L., Schauer C.K., Pedersen L.G. // J. Chem. Phys. 2009. V. 131. P. 164107.
- Koppel I.A., Taft R.W., Anvia F. et al. // J. Am. Chem. Soc. 1994. V. 116. № 7. P. 3047.

- Fiedler P., Bohm S., Kulhanek J., Exner O. // Org. Biomol. Chem. 2006. V. 4. P. 2003.
- Bohm S., Fiedler P., Exner O. // New J. Chem. 2004. V. 28. № 1. P. 67.
- 11. Wiberg K.B. // J. Org. Chem. 2002. V. 67. P. 4787.
- 12. Vianello R., Maksic Z.B. // Tetrahedron. 2006. V. 62. P. 3402.
- Иванов С.Н., Гиричева Н.И., Нуркевич Т.В., Федоров М.С. // Журн. физ. химии. 2014. Т. 88. № 4. С. 647.
- Koppel I.A., Taft R.W., Anvia F. et al. // J. Am. Chem. Soc. 1994. V. 116. № 7. P. 3047.
- 15. Тукумова Н.В., Усачева Т.Р., Чан Тхуан, Шарнин В.А. // Изв. вузов. Хим. хим. технология. 2011. Т. 54. № 4. С. 34.
- 16. Тукумова Н.В., Чан Тхи Зьеу Тхуан, Усачева Т.Р., Шарнин В.А. // Там же. 2012. Т. 55. № 9. С. 16.
- 17. *Тукумова Н.В., Усачева Т.Р., Чан Тхи Зьеу Тхуан, Шарнин В.А. //* Журн. физ. химии. 2014. Т. 88. № 10. С. 1512.
- 18. Бородин В.А., Васильев В.П., Козловский Е.В. // Журн. неорган. химии. 1986. Т. 31. № 1. С. 10.
- Daniele P.G., De Robertis A., De Stefano C. et al. // J. Chem. Soc., Dalton Trans. 1985. P. 2353.
- 20. Васильев В.П. Термодинамические свойства растворов электролитов / М.: Высш. школа, 1982. 320 с.
- Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1989. 448 с.

- 22. *Wooley E.M., Hurkot D.G., Hepler L.G.* // J. Phys. Chem. 1970. V. 74. № 22. P. 3908.
- 23. Ferroni G., Galea J. // Ann. Chim. 1975. V. 10. № 1. P. 41.
- 24. *Kalidas C., Hefter G., Marcus Y. //* Chemical reviews. 2000. V. 100. № 3. P. 820.
- 25. *Wells C.F.* // J. Chem. Soc. Faraday Trans. 1979. V. 75. P. 53.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 03, Revision B.03, Gaussian, Inc. 2003, Pittsburgh PA.
- 27. Bauschlicher C.W., Partridge H. // Chem. Phys. Lett. 1994. V. 231. P. 277.
- 28. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 29. Becke A.D. // Phys. Rev. A. 1998. V. 38. P. 3098.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1998. V. 37. P. 785.

- Vosko S.H., Wilk L., Nusair M. // Can. J. Phys. 1980. V. 58. P. 1200.
- 32. Dunning T. H. J.// J. Chem. Phys. 1989. V. 90. P. 1007.
- Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F. // QCPE Bull. 1990. V. 10. P. 58.
- Zhurko G.A., Zhurko D.A. ChemCraft version 1.6 (build 312) ed. http://www.chemcraftprog.com/index.html
- 35. Foresman J.B., Keith T.A., Wiberg K.B. et al. // J. Chem. Phys. 1996. V. 100. № 40. P. 16098.
- Смирнова Н.А. Методы статистической термодинамики в физической химии. М.: Высш. школа, 1973. 480 с.
- 37. Исаева В.А., Шарнин В.А., Шорманов В.А. // Журн. физ. химии. 1997. Т. 71. № 8. Р. 1371.
- 38. Исаева В.А., Леденков С.Ф., Шарнин В.А., Шорманов В.А. // Там же. 1993. Т. 67. № 11. С. 2202.