СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.18:544.431

МЕХАНИЗМ И ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДЕГИДРАТАЦИИ КАТИОНА Н₃SO₄⁺

© 2021 г. А. А. Дегтярев^{а,*}, Т. П. Дьячкова^а, Д. П. Ростова^а, А. В. Рухов^а

^а Тамбовский государственный технический университет, 392000, Тамбов, Россия *e-mail: ad.dycost@gmail.com Поступила в редакцию 08.10.2020 г. После доработки 24.11.2020 г. Принята к публикации 03.12.2020 г.

Представлены результаты оценки адекватности различных функционалов DFT для описания реакций изомеризации и дегидратации катиона $H_3SO_4^+$, выбран наиболее корректный метод. Проведено исследование механизма реакции образования катиона HSO_3^+ в вакууме и при неявном учете растворителя по модели COSMO, в качестве растворителя выбрана безводная серная кислота, а также олеум с 5 и 15%-ным (мас. %) содержанием SO₃. Оценены термодинамические характеристики реакции образования катиона HSO_3^+ . Показано, что в интервале температур от 25 до 100°C протекание этого процесса как в вакууме, так и в растворителе, маловероятно.

Ключевые слова: H₃SO₄⁺, HSO₃⁺, дегидратация, сульфирующий агент, DFT, COSMO **DOI:** 10.31857/S0044453721080082

Катион $H_3SO_4^+$ — продукт автопротолиза серной кислоты [1] — имеет важное значение и как самостоятельный сульфирующий агент, и как промежуточная частица при образовании более сильного сульфирующего агента — частицы HSO_3^+ [2]. Катион HSO_3^+ может получаться из $H_3SO_4^+$ путем отщепления молекулы воды. Цель настоящего исследования — установление механизма реакции дегидратации $H_3SO_4^+$, а также влияния растворителя на энергетический барьер этой реакции.

Ранее в [3] методами Хартри–Фока, DFT, теории возмущений и экспериментально изучалась газофазная дегидратация катиона $H_3SO_4^+$. Экспериментальное значение энергии превращения $H_3SO_4^+ \rightarrow H_2O + HSO_3^+$ составило 225 ± ± 18 кДж/моль, теоретическое – 148 кДж/моль (MP2/6-311+G(*d*,*p*)). Различие между реальными и вычисленными значениями объяснялось малым количеством поляризационных функций при расчете катиона $H_3SO_4^+$. В настоящей работе проведено сравнение различных функционалов DFT и метода MP2 с целью выбора наиболее корректно описывающего превращения в данной системе. В качестве эталонного метода для оценки адекватности использован метод связанных кластеров.

МЕТОДОЛОГИЧЕСКАЯ ЧАСТЬ

Катион $H_3SO_4^+$, образующийся при автопротолизе, имеет структуру с равнозначными связями S-O-H вида [1, 4]:

....

Согласно [3], при изомеризации возникает катион вида:

$$\begin{array}{c} H \\ O = S^{+} - OH \\ 0 \end{array}$$

При отщеплении от него молекулы воды образуется катион HSO_3^+ .

Таким образом, в качестве объектов моделирования выбраны:

- исходный катион (H₃SO₄);
- его изомер (H₂O-SO₂OH⁺);
- переходное состояние, соединяющее их (TS);
- отдельные частицы HSO_3^+ и H_2O_2 .

В качестве функционалов применены наиболее часто используемые из каждой группы: PBE [5] (GGA функционалы), M-06L [6] (meta-GGAфункционалы), B3LYP5 [7], PBE0 [8] (глобальные гибридные GGA-функционалы), M06, M06-2X [9] (глобальные гибридные meta-GGA-функционалы), LC-BLYP [10], ω B97x [11] (пространственно-разделенные гибридные функционалы) и B2T-PLYP [12] (дважды гибридные функционалы).

Для учета сил дисперсионного взаимодействия выбрана коррекция Гримме по методам D3BJ [131] (PBE, B3LYP5, PBE0, ω B97x), D3Zero [14] (M-06L, M06, M06-2X) и D2 [15] (LC-BLYP).

Во всех случаях использованы базисные наборы семейства Даннинга с добавлением диффузионных функций aug-cc-pVXZ [16, 17]. Для методов DFT применены наборы до трехэкспоненциальных включительно (X = D, T), для методов теории возмущений и связанных кластеров – до пятиэкспоненциальных (X = D, T, Q, 5).

При использовании метода связанных кластеров выбрана его реализация DLPNO-CCSD(T) [18]. Также использовано приближение к полному базисному набору по методу F-12 [19] (DLP-NO-CCSD(T)-F12D) в сочетании с базисом ссpVDZ-F12 [20].

Учет влияния растворителя осуществлен по континуальной модели COSMO [21]. В качестве растворителя рассмотрена безводная серная кислота в оценочных расчетах и, дополнительно, 5 и 15 (мас.)%-ные растворы SO₃ в H₂SO₄ при исследовании механизма образования HSO₃⁺. Диэлектрическая проницаемость растворителя составляла: $\varepsilon = 101 (0\% \text{ SO}_3), 259 (5\% \text{ SO}_3), 359 (15\% \text{ SO}_3)$ [22]. Эффективный радиус растворителя принят равным 1.3 Å для всех концентраций [23].

На уровне теории CCSD(Т) проведены только одноточечные расчеты, геометрии для которых получены методом MP2/aug-cc-pV5Z.

Все расчеты осуществлены в программном комплексе ORCA [24], визуализация расчетов – в программном комплексе wxMacMolPlt [25].

Для оценки точности метода использованы два параметра: значение энергии изомеризации и длина связи S1–O5 в изомере $H_2O-SO_2OH^+$. В качестве эталона сравнения использованы значение энергии, полученное на уровне теории DLPNO-CCSD(T)/aug-cc-pV5Z, и геометрия, полученная на уровне теории MP2/aug-cc-pV5Z. В качестве критерия адекватности метода принято выполнение условий "химической точности" (погрешность менее 1 ккал/моль ≈ 4.19 кДж/моль) и наименьшая погрешность расчета длины связи S1–O5.

Связь S1–O5 выбрана в качестве критерия оценки по причине сильной зависимости ее длины от метода расчета, как будет показано ниже.

Оценка энергии проведена для стадии изомеризации катиона H₃SO₄⁺:

$$H_{3}SO_{4}^{+} \rightarrow H_{2}O-SO_{2}OH^{+},$$

$$\Delta E^{\neq} = E_{TS} - E_{H_{3}SO_{4}^{+}},$$

$$\Delta E_{1} = E_{H_{2}O-SO_{2}OH^{+}} - E_{H_{3}SO_{4}^{+}},$$
(1)

для стадии отщепления молекулы воды:

$$H_2O-SO_2OH^+ \rightarrow H_2O + HSO_3^+,$$

$$\Delta E_2 = E_{H_2O} + E_{HSO_3^+} - E_{H_2O-SO_2OH^+},$$
(2)

и суммарной реакции:

$$H_{3}SO_{4}^{+} \to H_{2}O + HSO_{3}^{+},$$

$$\Delta E_{3} = \Delta E_{1} + \Delta E_{2} = E_{H_{2}O} + E_{HSO_{3}^{+}} - E_{H_{3}SO_{4}^{+}}.$$
(3)

Дополнительно оценены профили энтальпии и свободной энергии Гиббса для реакций:

$$\begin{split} \Delta H^{\neq} &= H_{\rm TS} - H_{\rm H_3SO_4^+}, \\ \Delta H_1 &= H_{\rm H_2O-SO_2OH^+} - H_{\rm H_3SO_4^+}, \\ \Delta H_2 &= H_{\rm H_2O} + H_{\rm HSO_3^+} - H_{\rm H_2O-SO_2OH^+}, \\ \Delta H_3 &= \Delta H_1 + \Delta H_2 = H_{\rm H_2O} + H_{\rm HSO_3^+} - H_{\rm H_3SO_4^+}, \\ \Delta G^{\neq} &= G_{\rm TS} - G_{\rm H_3SO_4^+}, \\ \Delta G_1 &= G_{\rm H_2O-SO_2OH^+} - G_{\rm H_3SO_4^+}, \\ \Delta G_2 &= G_{\rm H_2O} + G_{\rm HSO_3^+} - G_{\rm H_2O-SO_2OH^+}, \\ \Delta G_3 &= \Delta G_1 + \Delta G_2 = G_{\rm H_2O} + G_{\rm H_3O_3^+} - G_{\rm H_3SO_4^+}. \end{split}$$

Таблица 1. Оценка погрешности методов связанных кластеров и теории возмущений, вакуум

Базис	ΔE_1 ,	E _{err} ,	<i>r</i> (S1–O5),	r _{err} ,			
Dushe	кДж/моль	кДж/моль	Å	Å			
MP2							
aug-cc-pVDZ	27.15	41.94	2.073	0.151			
aug-cc-pVTZ	51.41	17.67	1.967	0.046			
aug-cc-pVQZ	55.43	13.66	1.936	0.014			
aug-cc-pV5Z	57.63	11.45	1.922	—			
DPLNO-CCSD(T)							
aug-cc-pVDZ	40.15	28.93	—	—			
aug-cc-pVTZ	62.58	6.51	_	—			
aug-cc-pVQZ	67.4	1.68	_	—			
aug-cc-pV5Z	69.08	—	—	—			
cc-pVDZ-F12	63.95	5.14	—	—			

Примечание: жирным выделены значения ошибок оценки энергии менее 1 ккал/моль; $E_{\rm err}$ – ошибка расчета ΔE_1 по сравнению с DPLNO-CCSD(T)/aug-cc-pV5Z; $r_{\rm err}$ – ошибка расчета r(S1-O5) по сравнению с MP2/aug-cc-pV5Z.

Рис. 1. Геометрия изомеров H₃SO₄⁺, рассчитанная методом MP2/aug-cc-pV5Z в вакууме (а) и в растворителе (б).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Геометрические параметры исходного катиона и его изомера приведены на рис. 1.

Рассчитанное расстояние S1–O5 (1.922 Å в вакууме) существенно больше длины ковалентных одинарных связей S–O (1.665 Å для пиросерных кислот [26], 1.54 Å для серной кислоты [27]). Можно предположить, что данная связь образована за счет электростатического взаимодействия частичных зарядов на атомах серы и кислорода. Значение ее длины свидетельствует о том, что эта связь слабее, чем ковалентная, следовательно, можно ожидать ее относительно легкого разрыва

с образованием катиона HSO_3^+ и молекулы воды.

При учете растворителя геометрия исходного катиона сохраняется (рис. 1), для изомера наиболее существенное изменение наблюдается в длине связи S1–O5 (уменьшение на 0.145 Å).

Результаты оценки геометрических и энергетических параметров, полученные постхартрифоковскими методами, для вакуума приведены в табл. 1.

Из табл. 1 видно, что при использовании метода теории возмущений второго порядка даже применение широких базисов не позволяет получить оценку энергии процесса с приемлемой точностью. Применение методов связанных кластеров позволяет приблизиться к точной оценке энергии на базисах не ниже QZ. Использование малых базисов приводит к завышенному значению длины связи S1–O5 и заниженному значению энергии изомеризации.

Результаты оценки геометрических и энергетических параметров, полученные методами теории функционала плотности, для вакуума приведены в табл. 2.

	aug-cc-pVDZ				aug-cc-pVTZ			
Функционал	ΔE_1	E _{err}	<i>r</i> (S1–O5)	r _{err}	ΔE_1	E _{err}	<i>r</i> (S1–O5)	r _{err}
	кДж/	иоль	Å	Å	кДж/	иоль	Å	Å
PBE	25.51	43.57	2.094	0.173	36.67	32.42	2.042	0.120
M06-L	30.34	38.75	2.090	0.168	42.68	26.4	2.008	0.086
B3LYP5	39.8	29.29	2.066	0.144	51.05	18.04	2.001	0.079
PBE0	52.85	16.23	2.001	0.079	63.69	5.4	1.935	0.014
M06	49.29	19.79	2.008	0.086	57.95	11.13	1.939	0.018
M06-2X	61.9	7.18	1.954	0.032	71.4	-2.32	1.908	-0.014
LC-BLYP	54.66	14.42	1.969	0.048	63.45	5.63	1.921	-0.0004
ωB97x	56.58	12.5	1.981	0.059	66.15	2.93	1.928	0.006
B2T-PLYP	41.15	27.93	2.050	0.129	57.18	11.91	1.970	0.048

Таблица 2. Оценка погрешности методов теории функционала плотности, вакуум

Примечание: жирным выделены значения ошибок оценки энергии менее 1 ккал/моль; E_{err} – ошибка расчета ΔE_1 по сравнению с DPLNO-CCSD(T)/aug-cc-pV5Z; r_{err} – ошибка расчета r(S1–O5) по сравнению с MP2/aug-cc-pV5Z.

Базис	$\Delta E_1,$ кДж/моль	$E_{ m err},$ кДж/моль	r(S1–O5), Å	r _{err} , Å				
MP2								
aug-cc-pVDZ	25.01	19.98	1.900	0.134				
aug-cc-pVTZ	35.87	9.12	1.803	0.037				
aug-cc-pVQZ	36.88	8.11	1.779	0.013				
aug-cc-pV5Z	37	7.98	1.770	_				
DPLNO-CCSD(T)								
aug-cc-pVDZ	31.79	13.2	-	—				
aug-cc-pVTZ	42.72	2.27	—	—				
aug-cc-pVQZ	44.68	0.31	—	_				
aug-cc-pV5Z	44.99	—	_	_				
cc-pVDZ-F12	17.01	27.98	—	—				

Таблица 3. Оценка погрешности методов связанных кластеров и теории возмущений (COSMO, 100% H₂SO₄)

Примечание: жирным выделены значения ошибок оценки энергии менее 1 ккал/моль; $E_{\rm err}$ – ошибка расчета ΔE_1 по сравнению с DPLNO-CCSD(T)/aug-cc-pV5Z; $r_{\rm err}$ – ошибка расчета r(S1-O5) по сравнению с MP2/aug-cc-pV5Z.

Из табл. 2 видна общая тенденция уменьшения ошибок при переходе к более широкому базису. В целом, можно выделить лучшие результаты для пространственно-разделенных функционалов: ω B97x попадает в условие "химической точности", LC-BLYP близок к нему. Функционал M06-2X демонстрирует изменение знака ошибки оценки энергии, что может указывать на случайное совпадение полученного значения с эталонным. Из остальных функционалов погрешность, близкую к допустимой, демонстрирует только PBE0. Для сравнения приведены значения энергии изомеризации ΔE_1 , рассчитанные в работе [3] различными методами, кДж/моль:

которые дополнительно подтверждает низкую точность моделирования данной реакции с использованием глобальных гибридных GGAфункционалов и метода теории возмущений.

Результаты оценки геометрических и энергетических параметров, полученные постхартрифоковскими методами, для растворителя приведены в табл. 3.

По результатам, представленным в табл. 3, можно сделать вывод, что при учете растворителя погрешность практически всех методов снижается. Для методов связанных кластеров достаточным становится использование трехэкспоненциального базисного набора. Исключение составляет метод DLPNO-CCSD(T)-F12D, погрешность которого, наоборот, сильно возросла. Методы теории возмущений по-прежнему не обеспечивают требуемую точность расчета.

Результаты оценки геометрических и энергетических параметров, полученные методами теории функционала плотности, для растворителя приведены в табл. 4.

Для методов теории функционала плотности также наблюдается тенденция к снижению ошибки энергии при переходе к растворителю. Для трехэкспоненциального базисного набора погрешность в пределах допустимой достигается при использовании функционалов PBE0, M06-2X, LC-BLYP и ω B97x. Однако увеличение по-

		aug-cc-pVDZ			aug-cc-pVTZ			
Функци- онал	ΔE_1	E _{err}	<i>r</i> (S1–O5)	r _{err}	ΔE_1	E _{err}	<i>r</i> (S1–O5)	r _{err}
	кДж/	моль	Å	Å	кДж/	ИОЛЬ	Ĭ	Å
PBE	19.42	25.56	1.941	0.175	25.82	19.16	1.884	0.118
M06-L	24.69	20.29	1.906	0.140	28.07	16.92	1.831	0.065
B3LYP	28.59	16.4	1.888	0.122	35.07	9.92	1.830	0.064
PBE0	39.65	5.34	1.845	0.079	42.85	2.14	1.787	0.021
M06	39.75	5.24	1.839	0.073	38.96	6.02	1.788	0.021
M06-2X	45.93	-0.94	1.815	0.049	48.23	-3.25	1.762	-0.004
LC-BLYP	37.48	7.5	1.821	0.054	41.68	3.31	1.775	0.009
ωB97x	39.59	5.4	1.828	0.062	44.35	0.63	1.781	0.014
B2T-PLYP	30.64	14.34	1.871	0.105	39.57	5.42	1.799	0.033

Таблица 4. Оценка погрешности методов теории функционала плотности (COSMO, 100% H₂SO₄)

Примечание: жирным выделены значения ошибок оценки энергии менее 1 ккал/моль; $E_{\rm err}$ – ошибка расчета ΔE_1 по сравнению с DPLNO-CCSD(T)/aug-cc-pV5Z; $r_{\rm err}$ – ошибка расчета r(S1-O5) по сравнению с MP2/aug-cc-pV5Z.

Рис. 2. Геометрия переходного состояния (TS), рассчитанная методом MP2/aug-cc-pV5Z в вакууме (а) и в растворителе (б).

грешности на функционале M06-2X при переходе к более широкому базису также может рассматриваться в пользу скорее случайного попадания ошибки в требуемый диапазон.

Таким образом, имеется один функционал, удовлетворяющий условиям адекватности как для вакуума, так и для растворителя — ω B97х, который был использован для дальнейших расчетов.

Следующий этап — расчет геометрии (рис. 2) и энергии переходного состояния, а также отдельных частиц HSO_3^+ и H_2O (табл. 5).

Погрешность метода ω B97х/aug-cc-pVTZ при расчете энергий ΔE^{\neq} и ΔE_2 в вакууме оказалась несколько выше требуемой (5.04 и 6.62 кДж/моль), однако погрешность расчета суммарной энергии ΔE_3 (3.69 кДж/моль) не превышает допустимой.

Таблица 5. Энергетические характеристики реакций (1)-(3), кДж/моль

ΔE_i	Вакуум	0% SO ₃	5% SO ₃	15% SO ₃			
ωB97x/aug-cc-pVTZ							
ΔE^{\neq}	183.83	175.23	175.09	175.06			
ΔE_1	66.15	44.35	43.94	43.86			
ΔE_2	163.6	151.96	152.01	152.02			
ΔE_3	229.75	196.32	195.95	195.88			
MP2/aug-cc-pV5Z							
ΔE^{\neq}	177.40	170.02	169.87	169.85			
ΔE_1	57.63	37.03	36.61	36.54			
ΔE_2	156.99	146.39	146.44	146.46			
ΔE_3	214.63	183.42	183.05	183.0			
	DLPNO-C	CSD(T)/au	ig-cc-pV5Z				
ΔE^{\neq}	188.87	180.01	179.87	179.84			
ΔE_1	69.08	44.99	44.57	44.50			
ΔE_2	156.98	149.23	149.30	149.31			
ΔE_3	226.06	194.22	193.87	193.80			

Таблица 6. Тепловые эффекты реакций (1)-(3), 298 К

ΔH_i	Вакуум	0% SO ₃	5% SO ₃	15% SO ₃			
ωB97x/aug-cc-pVTZ							
ΔH^{\neq}	172.24	163.21	162.89	162.87			
ΔH_1	67.81	46.75	46.31	46.25			
ΔH_2	155.02	141.45	141.54	141.52			
ΔH_3	222.83	188.20	187.85	187.77			
MP2/aug-cc-pV5Z							
ΔH^{\neq}	165.49	157.88	157.76	157.75			
ΔH_1	58.94	40.70	40.56	40.50			
ΔH_2	147.81	134.80	134.57	134.55			
ΔH_3	206.75	175.51	175.14	175.05			
	DLPNO-C	CSD(T)/au	ig-cc-pV5Z				
ΔH^{\neq}	176.96	167.86	167.76	167.74			
ΔH_1	70.39	48.66	48.52	48.45			
ΔH_2	147.79	137.64	137.44	137.40			
ΔH_3	218.18	186.30	185.95	185.85			

Рис. 3. Изменение свободной энергии Гиббса суммарной реакции (ΔG_3) в вакууме (а) и в растворителе (0% SO₃) (б), рассчитанное методом DFT/ ω B97x/augcc-pVTZ.

Метод MP2/aug-cc-pV5Z не обеспечивает требуемой точности расчетов, кроме оценки ΔE_2 . Сум-

марная энергия образования катиона HSO_3^+ , рассчитанная с использованием функционала (229.75 кДж/моль), достаточно хорошо коррелирует с экспериментальными данными (225 ± ± 18 кДж/моль). В работе [3] приведены следующие значения энергии ΔE^{\neq} газофазной реакции, кДж/моль:

> HF/6-31G(d) - 238.5,MP2/6-311+G(d, p) - 168.6,B3LYP/6-311+G(d, p) - 168.9,

которые указывают на занижение данной энергии при моделировании с использованием функ-

Таблица 7. Изменение энергии Гиббса для реакций (1)–(3), 298 К

ΔG_i	Вакуум	0% SO ₃	5% SO ₃	15% SO ₃			
ωB97x/aug-cc-pVTZ							
ΔG^{\neq}	175.22	167.53	167.26	167.18			
ΔG_1	66.53	47.98	47.71	47.60			
ΔG_2	108.41	93.12	93.18	93.14			
ΔG_3	174.94	141.11	140.89	140.74			
	MP	2/aug-cc-p	V5Z				
ΔG^{\neq}	168.56	162.44	162.38	162.39			
ΔG_1	57.07	41.11	42.16	42.10			
ΔG_2	101.45	87.94	86.68	86.65			
ΔG_3	158.52	129.05	128.83	128.75			
	DLPNO-C	CSD(T)/au	ig-cc-pV5Z				
ΔG^{\neq}	180.03	172.42	172.38	172.38			
ΔG_1	68.52	49.07	50.11	50.05			
ΔG_2	101.43	90.78	89.54	89.50			
ΔG_3	169.96	139.85	139.65	139.55			

ционала B3LYP и метода теории возмущений, хотя и неплохом согласии этих энергий между собой при использовании одинакового базисного набора.

Учет растворителя снижает энергетические барьеры реакции изомеризации (ΔE^{\neq}) на ~9 кДж/моль, реакции отрыва молекулы воды (ΔE_2) на 18 (CCSD(T)) и 12 (ω B97x) кДж/моль, суммарной реакции (ΔE_3) на 32 (CCSD(T)) и 33.5 (ω B97x) кДж/моль. Однако изменение концентрации SO₃ в растворителе мало влияет на энергетические характеристики, для всех характеристик разность энергии при варьировании концентрации составляет менее 0.5 кДж/моль.

Для метода связанных кластеров расчет гессиана не проводился, и термодинамические характеристики оценивались через электронную энергию CCSD(T) и термохимические поправки по методу MP2. Оценка термодинамических характеристик исследуемых реакций приведена в табл. 6 и 7.

Согласно данным табл. 6, учет термодинамических характеристик несколько снижает энергию активации реакции (1) (ΔH^{\neq}) и суммарный тепловой эффект (ΔH_3), однако расчетные данные по-прежнему коррелируют с экспериментальными.

Сравнение значений изменения энергии Гиббса и энтальпии реакции (табл. 6, 7) показывает, что энтропийный фактор оказывает существенное влияние на реакцию (2) (и соответственно суммарную реакцию), для реакции (1) он незначителен.

Энтропия суммарной реакции положительна, следовательно, увеличение температуры должно смещать равновесие в сторону образования катиона HSO_3^+ . Для оценки данного влияния была рассчитана величина ΔG_3 в диапазоне температур 25–100°С (298–373 K) (рис. 3).

Наибольшие значения константы равновесия суммарной реакции для выбранного диапазона температур равны 1.6×10^{-23} (вакуум) и 8.3×10^{-19} (растворитель), что крайне мало для обеспечения сколь-нибудь заметной концентрации катиона HSO₃⁺ при данных температурах.

Учет влияния растворителя в явном виде [28] показывает, что в олеуме частицы HSO_3^+ существуют преимущественно в виде ассоциатов $HSO_3^+ \cdot H_2SO_4$ (точнее $HO_3S\cdots O-SO_3H_2$, что можно рассматривать и как протонированную форму пиросерной кислоты). Отсюда можно сделать вывод, что катион HSO_3^+ в свободном виде при температурах ниже 100° С не будет оказывать какогото заметного влияния на процессы сульфирования, несмотря на то, что он — более активный сульфирующий агент по сравнению с SO_3 [29].

Таким образом, проведено сравнение адекватности методов теории функционала плотности и теории возмущений для исследования реакции изомеризации катиона $H_3SO_4^+$, выбран наиболее точный метод ($\omega B97x/aug$ -cc-pVTZ). Методами CCSD(T)/aug-cc-pV5Z, MP2/aug-cc-pV5Z и $\omega B97x/aug$ -cc-pVTZ проведено исследование реакции образования катиона HSO_3^+ в вакууме и при неявном учете растворителя по модели COSMO.

Произведен расчет термодинамических характеристик реакции образования катиона HSO_3^+ и показано, что при температурах ниже $100^{\circ}C$ его концентрация как в вакууме, так и в растворителе слишком мала, для того, чтобы рассматривать его как истинный сульфирующий агент.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Weller M., Overton T., Armstrong F., Rourke J.* Inorganic Chemistry. Oxford University Press, 2018. 943 p.
- 2. *Bruckner R*. Advanced Organic Chemistry: Reaction Mechanisms. Academic Press, 2001. 636 p.
- 3. *Pommerening C.A., Steven M.B., Lee S.S.* // J. Phys. Chem. A. 1999. V. 103. № 9. P. 1214. https://doi.org/10.1021/jp984104w
- 4. *Sinha R., Chiavarino B., Fornarini S. et al.* // J. Phys. Chem. Letters. 2010. V. 1. № 11. P. 1721. https://doi.org/10.1021/jz100458q
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Zhao Y., Truhlar D.G. // J. Chem. Phys. 2006. V. 125 (19). P. 194101. https://doi.org/10.1063/1.2370993
- Lee, C., Yang W., Parr R.G. // Phys. Rev B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Perdew J.B., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105 (22). P. 9982. https://doi.org/10.1063/1.472933
- Zhao Y., Truhlar D.G. // Theor Chem Acc. 2006. V. 120 (1-3). P. 215. https://doi.org/10.1007/s00214-007-0310-x
- Tawada Y., Tsuneda T., Yanagisawa S. et al. // J. Chem. Phys. 2004. V. 120. P. 8425. https://doi.org/10.1063/1.1688752
- Najibi A., Goerigk L. // J. Chem. Theory Comput. 2018.
 V. 14. P. 5725.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 8 2021

- Karton A., Tarnopolsky A., Lamère J.-F. et al. // J. Phys. Chem. A. 2008. V. 112. P. 12868. https://doi.org/10.1021/jp801805p
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
- Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. P. 154104. https://doi.org/10.1063/1.3382344
- 15. *Grimme S.* // J. Comput. Chem. 2006. V. 27. P. 1787. https://doi.org/10.1002/jcc.20495
- Kendall R.A., Dunning T.H., Harrison R.J. // J. Chem. Phys. 1992. V. 96. P. 6796. https://doi.org/10.1063/1.462569
- 17. Woon D.E., Dunning T.H. // Ibid. 1993. V. 98. P. 1358. https://doi.org/10.1063/1.464303
- Riplinger C., Pinski P., Becker U. et al. // Ibid. 2016.
 V. 144. P. 024109. https://doi.org/10.1063/1.4939030
- Hättig C., Schmitz G., Kossmann J. // Phys. Chem. Chem. Phys. 2012. V. 14(18). P. 6549. https://doi.org/10.1039/c2cp40400a
- Peterson K.A., Adler T.B., Werner H.-J. // J. Chem. Phys. 2008. V. 128 (8). P. 84102. https://doi.org/10.1063/1.2831537
- Klamt A., Schüürmann G. // J. Chem. Soc. Perkin Trans. 1993. V. 2. P. 799. https://doi.org/10.1039/P29930000799
- 22. Warlafen G. // J. Chem. Phys. 1964. V. 40. P. 2326. https://doi.org/10.1063/1.1725511
- Klamt A., Eckert F., Arlt W. // Ann. Rev. Chem. and Biomol. Engng. 2010. V. 1. No 1. P. 101. https://doi.org/10.1146/annurev-chembioeng-073009-100903
- 24. Neese F. // WIREs Comput Mol Sci. 2017. V. 8 (1). P. e1327. https://doi.org/10.1002/wcms.1327
- Bode B.M., Gordon M.S. // J. Mol. Graphics Mod. 1998. V. 16 (3). P. 133. https://doi.org/10.1016/S1093-3263(99)00002-9
- Givan A., Loewenschuss A., Nielsen K.J., Rozenberg M. // J. Mol. Struct. 2007. V. 830(1). P. 21. https://doi.org/10.1016/j.molstruc.2006.06.027
- Arstila H., Laasonen K., Laaksonen A. // J. Chem. Phys. 1998. V. 108 (3). P. 1031. https://doi.org/10.1063/1.475496
- Degtyarev A.A., Rostova D.P. // Butlerov Comm. 2020. V. 62. № 4. P. 51. https://doi.org/10.37952/ROI-ibc-01/20-62-4-51
- 29. Degtyarev A.A., Osetrov A.Yu., Rostova D.P. // Ibid. 2020. V. 63. № 8. P. 64. https://doi.org/10.37952/ROI-jbc-01/20-63-8-64