_____ ХИМИЧЕСКАЯ КИНЕТИКА ____ И КАТАЛИЗ

УДК 546.814-31+546.057

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА УСТОЙЧИВОСТЬ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ Re(V) С N-ЭТИЛТИОМОЧЕВИНОЙ

© 2021 г. Ф. Дж. Джамолиддинов^{а,*}, С. М. Сафармамадзода^а, Дж. А. Давлатшоева^а

^а Таджикский национальный университет, 734025, Душанбе, Республика Таджикистан

*e-mail: Jamoliddinov_F_90@mail.ru

Поступила в редакцию 11.09.2020 г. После доработки 11.09.2020 г. Принята к публикации 15.01.2021 г.

Потенциометрическим методом исследована окислительно-восстановительная система N-этилтиомочевина (Etu) – симметричный диэтилформамидиндисульфид. С помощью платинового электрода найдены значения потенциала системы в интервале температур 273–338 К. Для реакции [ReOCl₅]^{2–} + *i*Etu = [ReOCl_{5-*i*}Etu_{*i*}][–] + *i*Cl[–]; *K_i*, (*i* = 0–5) в среде 6 моль/л HCl рассчитана функция образования Бьеррума. Определены значения констант устойчивости оксохлоро-N-этилтиомочевинных комплексов Re(V). Установлена закономерность в изменении ступенчатых констант устойчивости комплексов при повышении температуры и определены термодинамические величины процессов комплексообразования.

Ключевые слова: N-этилтиомочевина, комплексообразование, константа устойчивости, термодинамические величины

DOI: 10.31857/S0044453721080100

Для изучения процессов образования координационных соединений ряда металлов в растворе и определения констант образующихся комплексных форм широко используются окислительно-восстановительные электроды. В данном случае выбранный металл или лиганд в исследуемых условиях должны иметь окисленную и восстановленную формы.

В работе [1] спектрофотометрическим методом при ионной силе 2 моль/л перхлората натрия (Na(H)ClO₄) и температуре 293 К определены константы устойчивости монокоординированных комплексов Bi(III) типа (BiL³⁺) с тиомочевиной (Tu), N-фенилтиомочевиной (Ptu), N-фенил-N'пропилтиомочевиной (Pptu), N,N'-дифенилтиомочевиной (Bptu), N-алил-N'-пропилтиомочевиной (Aptu), а также константы протонирования этих лигандов в растворах хлорной кислоты. Установлено, что устойчивость комплексов (BiL³⁺) изменяется в ряду лигандов: Aptu > Tu > Pptu > Ptu > > Bptu, который совпадает с рядом изменения константы протонирования этих лигандов. Значение констант протонирования N,N'-дифенилтиомочевиной (Bptu), N-фенилтиомочевиной (Ptu), N-фенил-N'-пропилтиомочевиной (Pptu) оказались

меньше, чем константы протонирования тиомочевиной (Tu), что связано с сильными электроотрицательными свойствами фенильного радикала.

Спектрофотометрическим методом определены константы устойчивости монокомплексов Bi(III), In(III), Pb(II) и Cd(II) с селеномочевиной (seu) и тиомочевиной (tu) при ионной силе 1.0 (0.5 моль/л HClO₄ + NaClO₄) или 2.0 (1 моль/л HClO₄ + NaClO₄) при температурах 276 и 298 К. Для всех металлов константы устойчивости комплексов (β_1) с seu выше, чем с tu, они изменяются в ряду: Bi³⁺ > Cd²⁺ ≈ In³⁺ > Pb²⁺. Установлена корреляция между Ig β_1 (S) и Ig β_1 (Se) [2].

В работах [3–7] было изучено комплексообразование Re(V) с тиомочевиной и ряд его производных в HCl с использованием их окисленновосстановленной формы. В [3] исследовано комплексообразование Re(V) с тиомочевиной при температуре 298 К. Установлено, что комплексообразование проходит ступенчато и образуются четыре комплексные формы, а в [4] изучено влияние температуры на этот процесс в интервале температур 273–338 К. Показано, что с ростом температуры число координированных лигандов, а также значения констант устойчивости полученных комплексов уменьшаются.

Таблица 1. Значения E^0 (мВ) и tg α для окислительновосстановительной системы R–S–S–R/RS (RS–Nэтилтиомочевина) среде 6 моль/л HCl при различных температурах

№, п/п	<i>Т</i> , К	<i>Е</i> ⁰ , мВ	tg α, мВ	
1	273	177.3 ± 0.2	27.07 ± 0.01	
2	288	196.1 ± 0.1	28.56 ± 0.04	
3	298	210.5 ± 0.3	29.49 ± 0.14	
4	308	225.2 ± 0.2	30.55 ± 0.12	
5	318	238.7 ± 0.3	31.54 ± 0.13	
6	328	250.6 ± 0.7	32.53 ± 0.32	
7	338	265.1 ± 0.3	33.52 ± 0.15	

Анализ литературных данных показывает, что устойчивость комплексных соединений Re(V) с этими лигандами зависит от их состава. Другими словами, включение различных радикалов в состав тиомочевины изменяет устойчивость комплексных соединений.

В работах [5, 6] мы исследовали комплексообразование Re(V) с N-этилтиомочевиной в среде 6 моль/л HCl при температурах 298 и 308 К. Выявлено, что значение констант образующихся комплексов при 298 К больше, чем при 308 К. Это связано с отрицательным влиянием температуры на процесс комплексообразования, так как реакция комплексообразования экзотермична.

Цель данной работы — исследование процесса комплексообразования Re(V) с N-этилтиомочевиной в среде 6 моль/л HCl, установление влияния темпратуры на устойчивость комплексных соединений в интервале 273–338 К и определение термодинамических характеристик ионных равновесий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного реагента использовали H₂[ReOCl₅] (методика получения описана в работе [6]) и N-этилтиомочевину марки "х.ч.". Потеншиометрическое титрование проводили с использованием компаратора напряжения Р-3003. Индикаторным электродом служила окислительновосстановительная система, состоящая из N-этилтиомочевины и ее окисленной формы. В качестве вспомогательного электрода использовали платиновую пластинку, а электрод сравнения -Различную хлорсеребряный. концентрацию окисленной и восстановленной форм N-этилтиомочевины создавали окислением части исходной N-этилтиомочевины в среде 6 моль/л HCl 0.05 н. раствором I₂. После установления постоянного значения потенциала систему титровали раствором H₂[ReOCl₅]. Равновесные концентрации лиганда при каждой точке титрования и определение функции образования Бьеррума рассчитывали по формулам, приведенным в работах [5-7]. Потенциометрическое титрование при каждой температуре проводили 4 раза. При расчетах применяли среднее значение величин из четырех. Статистическую обработку результатов проводили по методике, рекомендованной в работе [8].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для установления процесса обратимости Nэтилтиомочевины в среде 6 моль/л HCl сначала определяли количество электронов, участвующих в процессе окисления. Затем изучали зависимости равновесного потенциала окислительновосстановительной системы от $lg([R-S-S-]/[RS]^2)$. Потенциометрическим методом с использованием I_2 установили, что окисление каждой молекулы N-этилтиомочевины сопровождается потерей одного электрона в соответствии со следующей схемой реакции:

$$2C_{2}H_{5} \xrightarrow{N} C = S \xrightarrow{-2e} C_{2}H_{5} \xrightarrow{N} C - S - S - C_{7} \xrightarrow{N} C_{2}H_{5} + 2H^{+}$$

$$H^{N} H H^{N} H H^{N} H H^{N} H$$
(1)

Во второй серии экспериментов в среде 6 моль/л HCl, создавая различные концентрации окисленной и восстановленной форм N-этилтиомочевины, измеряли равновесные потенциалы. Зависимости $E = f(lg([R-S-S-R]/[R-S]^2))$ во всем интервале температур (273–338 K) имели прямолинейный характер (рис. 1). Тангенсы угла наклона этих прямых в зависимости от температуры опыта имели величины, равные от 27.07 до 33.52 мВ и близкие к теоретическим, что еще раз подтверждает достоверность полученных результатов. Равновесие в системе устанавливается быстро, что свидетельствует об истинной обратимости процесса окисления N-

Рис. 1. Зависимости равновесного потенциала системы от логарифма отношения окисленной и восстановленной форм N-этилтиомочевины при различных температурах: I - 273, 2 - 288, 3 - 298, 4 - 308, 5 - 318, 6 - 328, 7 - 338 K.

Рис. 2. Кривые функции образования хлоро-N-этилтиомочевинных комплексов Re(V) в среде 6 моль/л HCl при различных температурах: *1* – 273, *2* – 288, *3* – 298, *4* – 308, *5* – 318, *6* – 328, *7* – 338 К.

этилтиомочевины. В табл. 1 представлены величины стандартных окислительных потенциалов (*E*⁰) и углов наклона экспериментальных зависи-

Рис. 3. Зависимости значения констант образования комплексов (pK_i) от обратной температуры; $1 - pK_1$, $2 - pK_2$, $3 - pK_3$, $4 - pK_4$, $5 - pK_5$.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 8 2021

мостей (tg α), найденные в результате обработки данных регрессионным методом [8] с использованием коэффициента Стьюдента при вероятности P = 0.95.

Установление факта обратимости процесса окисления N-этилтиомочевины позволило исследовать процессы комплексообразования рения(V) с этим лигандом при различных температурах в среде 6 моль/л HCl. В процессе потенциометрического титрования окислительновосстановительной системы R-S-S-R/RS, где RS -N-этилтиомочевина, раствором H₂[ReOCl₅] наблюдается последовательное изменение цвета раствора от прозрачного к малиновому, затем к сиреневому и светло-зеленому. Это свидетельствует о ступенчатом процессе комплексообразования. При титровании системы, состоящей из N-этилтиомочевины и ее окисленной формы, раствором H₂[ReOCl₅] наблюдается возрастание величины равновесного потенциала, что свиде-

№, п/п	<i>Т</i> , К	p <i>K</i> ₁	р <i>К</i> ₂	p <i>K</i> ₃	p <i>K</i> ₄	p <i>K</i> ₅
1	273	4.29 ± 0.04	3.39 ± 0.03	2.57 ± 0.04	2.35 ± 0.03	2.26 ± 0.03
2	288	4.16 ± 0.05	3.23 ± 0.03	2.50 ± 0.04	2.31 ± 0.03	2.22 ± 0.03
3	298	4.00 ± 0.06	3.09 ± 0.04	2.43 ± 0.02	2.26 ± 0.02	2.19 ± 0.02
4	308	3.77 ± 0.08	2.84 ± 0.08	2.36 ± 0.03	2.12 ± 0.03	2.16 ± 0.01
5	318	3.59 ± 0.04	2.70 ± 0.05	2.29 ± 0.02	2.19 ± 0.03	2.14 ± 0.02
6	328	3.46 ± 0.03	2.54 ± 0.06	2.24 ± 0.03	2.16 ± 0.03	2.11 ± 0.01
7	338	3.26 ± 0.05	2.43 ± 0.05	2.20 ± 0.03	2.12 ± 0.03	2.09 ± 0.02

Таблица 2. Значения констант устойчивости комплексных соединений Re(V) с N-этилтиомочевиной в среде 6 моль/л HCl при различных температурах

тельствует об участии в реакции комплексообразования с рением(V) N-этилтиомочевины, а не ее окисленной формы.

По данным потенциометрического титрования, определив ΔE , вычисляли значения равновесной концентрации лиганда, с использованием которой рассчитывали функцию образования. Для определения численных значений констант устойчивости использован графический метод Бьеррума (рис. 2). Из рис. 2 следует, что при приведенных температурах в среде 6 моль/л HCl рений(V) с N-этилтиомочевиной образует одинаковое количество комплексных форм.

Из полученных кривых при 0.5, 1.5, 2.5, 3.5 и 4.5 выбраны значения констант образующихся комплексов, из которых видно, что при всех температурах образуются пять комплексных частиц. В табл. 2 приведены значения констант устойчивости комплексных соединений Re(V) с N-этилтиомочевиной.

Из табл. 2 видно, что с ростом температуры значение констант устойчивости комплексов Re(V) с N-этилтиомочевиной уменьшаются. Такая закономерность соответствует теории влияния температуры на устойчивость координационных соединений, а также данным [4, 7].

Используя значения констант образующихся комплексов, можно рассчитать термодинамические характеристики реакций комплексообразования. На рис. 3 представлены зависимости р $K_i = f(1/T)$, которые носят прямолинейный характер. По тангенсу угла наклона прямых определяли величину ΔH , а величину изменения энтропии по отрезку, отсекаемому на оси ординат. Энергию Гиббса рассчитывали по уравнению:

$\Delta G = \Delta H - T \Delta S.$

Рассчитанные значения термодинамических характеристик процесса комплексообразования Re(V) с N-этилтиомочевиной представлены в табл. 3.

Из табл. 3 видно, что значения ΔH и ΔG всех пяти комплексных частиц отрицательны. Отрицательный знак ΔH указывает на то, что реакция Re(V) с N-этилтиомочевиной экзотермична. Увеличение значения ΔH показывает на постепенное уменьшение внутренней энергии системы. При координировании первой молекулы лиганда выделяется наибольшее количество энергии, которое последовательно уменьшается.

Полученные значения ΔG свидетельствуют о том, что реакция комплексообразования рения(V) с исследованным лигандом в изученном интервале температур является самопроизвольным процессом. Увеличение значения ΔG может означать, что легко соединяется первый лиганд, за которым следуют второй, затем последовательно третий, четвертый и пятый. Вхождение каждой последующей молекулы лиганда во внутреннюю координационную сферу становится все труднее, так как появляются новые пространственные затруднения, а сама система стремится к восстановлению равновесия. Кроме того, с увеличением числа молекул лиганда во внутренней сфере комплекса, как видно из табл. 3, увеличиваются значения ΔH и ΔG .

Величина энтропии ΔS постепенно возрастает от отрицательного до положительного значения (табл. 3). Отрицательные значения ΔS связаны с уменьшением беспорядочности в системе из-за координации молекулы N-этилтиомочевиной к рению(V). Положительные значения энтропии связаны с возрастанием беспорядочности в си-

Таблица 3. Значения термодинамических функций процессов комплексообразования Re(V) с N-этилтио-мочевиной в среде 6 моль/л HCl

№ п/п	Состав соединения	−∆ <i>Н</i> , кДж/моль	$-\Delta G,$ кДж/моль	Δ <i>S</i> , Дж/(моль К)
1	[ReOCl ₄ Etu] ⁻	27.83	22.94	-16.42
2	[ReOCl ₃ Etu ₂]	22.18	17.73	-14.92
3	$[\text{ReOCl}_2\text{Etu}_3]^+$	13.08	14.76	5.65
4	[ReOClEtu ₄] ²⁺	8.72	12.82	13.74
5	[ReOEtu ₅] ³⁺	6.15	10.23	13.70

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 8 2021

Рис. 4. Кривые распределения хлоро-N-этилтиомочевинных комплексов рения(V) в среде 6 моль/л HCl при 298 K; $1 - [\text{ReOL}_5]^{2-}$, $2 - [\text{ReOLCl}_4]^{-}$, $3 - [\text{ReOL}_2\text{Cl}_3]$, $4 - [\text{ReOL}_3\text{Cl}_2]^{+}$, $5 - [\text{ReOL}_4\text{Cl}]^{2+}$, $6 - [\text{ReOL}_5]^{3+}$.

Таблица 4. Величины максимумов степеней накопления (мол. доли) комплексных форм при различных температурах

№ п/п	Состав комплексов	Значения $-lg[L]$ при α_i^{max}						
		273 K	288 K	298 K	308 K	318 K	328 K	338 K
1	[ReOCl ₄ Etu] ⁻	3.9	3.8	3.7	3.5	3.3	3.2	3.1
2	[ReOCl ₃ Etu ₂]	3.1	3.0	2.9	2.8	2.7	2.6	2.5
3	$[\text{ReOCl}_2\text{Etu}_3]^+$	2.6	2.5	2.4	2.4	2.3	2.2	2.2
4	[ReOClEtu ₄] ²⁺	2.1	2.0	1.9	1.9	1.8	1.8	1.8
5	[ReOEtu ₅] ³⁺	0.1	0.1	0.1	0.1	0.1	0.1	0.1

стеме из-за высвобождения более лабильного хлоридного иона, находящегося в оксохлороренильном комплексе. Энергетически это благоприятствует процессу комплексообразования.

На основании значений ступенчатых констант образования координационных соединений построены кривые распределения всех комплексных форм, образующихся в системе (рис. 4). Найденные из кривых распределения величины максимумов степеней накопления (мольных долей) комплексных форм приведены в табл. 4.

Как видно, из данных табл. 4, с увеличением температуры мольная доля образующихся координационных соединений незначительно уменьшается. С увеличением температуры (средней энергии каждой молекулы) увеличивается вероятность их столкновения, и появляются пространственные затруднения.

Таким образом, на основании проведенных исследований установлено, что процесс образования комплексов протекает ступенчато и с выделением теплоты. Выявлено, что величина энтальпии независимо от количеств координированных молекул отрицательна. С увеличением числа координированных органических лигандов во внутренней координационной сфере величина ΔH становится более положительной. Такая же закономерность наблюдается для термодинамических величин ΔG и ΔS .

СПИСОК ЛИТЕРАТУРЫ

- 1. Головнев Н.Н., Новикова Г.В., Лешок А.А. // Журн. неорган. химии. 2009. Т. 54. № 2. С. 374.
- 2. Головнев Н.Н., Лешок А.А., Новикова Г.В., Петров А.И. // Там же. 2010. Т. 55. № 1. С. 133.
- 3. *Котегов К.В., Зегжда Т.В., Фадеева Н.В., Кукушкин* Ю.Н. // Там же. 1974. Т. 19. № 3. С. 737.
- Аминджанов А.А., Махмуд Мухамад Машали, Котегов К.В. // Межчастичные взаимодействия в растворах. Душанбе, 1991. С. 109–115.
- 5. Джамолиддинов Ф.Дж. //Вестн. ТНУ. Серия естественных наук. Душанбе: Сино, 2016. № 1/4 (216), С. 88.
- Аминджанов А.А., Джамолиддинов Ф.Дж., Сафармамадов С.М., Давлатшоева Дж.А. // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1544.
- 7. Аминджанов А.А., Сафармамадов С.М., Гозиев Э.Д. // Химия и хим. технология. 2007. Т. 50. № 7. С. 20.
- Доерфель К. Статистика в аналитической химии. М.: Мир, 1994. 268 с.