= ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ =

УДК 577.3 577.34 544.52

РОЛЬ НЕОРГАНИЧЕСКОГО ФОСФАТА В ФОТОГЕНЕРАЦИИ ПЕРОКСИДА ВОДОРОДА В ВОДНЫХ РАСТВОРАХ ПРОИЗВОДНЫХ АДЕНИНА ПРИ 77 К

© 2021 г. Т. А. Лозинова^{*a*,*}, А. В. Лобанов^{*b*,*c*}, Е. Н. Дегтярев^{*a*,*b*}, О. Н. Бржевская^{*a*}, А. В. Ландер^{*d*}

^а Российская академия наук, Институт биохимической физики им. Н.М. Эмануэля, Москва, Россия ^bРоссийская академия наук, Федеральный исследовательский центр химической физики им. Н.Н. Семенова,

Москва, Россия

^сРоссийский экономический университет имени Г.В. Плеханова, Москва, Россия

^d Российская академия наук, Институт теории прогноза землетрясений и математической геофизики,

Москва, Россия

**e-mail: taloz@mail.ru* Поступила в редакцию 11.10.2020 г. После доработки 14.12.2020 г. Принята к публикации 14.12.2020 г.

Выполнено сравнительное исследование влияния неорганического фосфата (P_i) на образование пероксида водорода в водных растворах 2×10^{-4} M производных аденина (AX) – аденина, аденозина и аденозин-5'-дифосфата, облученных при 77 К ближним УФ в диапазонах длин волн $\lambda = 260-400$ и 290–460 нм. Установлено, что выход H_2O_2 в облученных образцах увеличивается при добавлении 5×10^{-4} M P_i; выход H_2O_2 , как правило, возрастает в присутствии NaCl; 10-кратное увеличение [P_i] приводит лишь к умеренному возрастанию [H_2O_2]. Показано, что влияние облучения на выход H_2O_2 зависит как от AX, так и от соотношения [NaCl] и [P_i]. Полученные данные сопоставлены с результатами измерений спектров ЭПР облученных растворов перед размораживанием. Обсуждены возможные механизмы фотоинициируемых процессов образования H_2O_2 в исследованных системах.

Ключевые слова: производные аденина, фотолиз, пероксид водорода, ЭПР, пероксильные радикалы, неорганический фосфат

DOI: 10.31857/S0044453721080185

Ранее было показано, что при определенных условиях замораживания водных растворов производных аденина (AX, где X = H для аденина (A), X =рибоза для аденозина (Ado), X =рибозо-5'дифосфат для аденозин-5'-дифосфата (ADP)) под действием облучения ближним УФ при 77 К происходит довольно интенсивное образование пероксида водорода (H_2O_2), определяемое при размораживании образцов [1–6]. Облучение в тех же условиях растворов тимина и производных других оснований нуклеиновых кислот (исследовали гуанозин-5'-монофосфат и цитидин) практически не приводит к образованию H₂O₂ [1, 2]. Таким образом, вероятно, что среди производных различных оснований нуклеиновых кислот АХ могут служить основными фотоиндуцируемыми источниками образования Н₂О₂.

В цитированных работах было рассмотрено влияние на выход H₂O₂ состава среды и условий облучения. На основании сопоставления результатов с оценками общего количества парамагнитных продуктов в облученных образцах при 77 К, полученных методом ЭПР, а также состава сигналов ЭПР (определяемого путем их компьютерного моделирования), был сделан вывод о существовании двух различных путей фотоиндуцируемого образования H_2O_2 в замороженных растворах АХ. Путь I преимущественно реализуется при относительно высоком содержании АХ (1×10^{-3} M) в растворах АХ + 0.1 M NaCl и, соответственно, относительно высоких интенсивностях суммарных сигналов ЭПР, регистрируемых в области g ≈ 2.00 (сигналы S). Интегральная интенсивность сигналов S (Int_s) в этих случаях и относительное содержание в них сигналов перок-

сильных радикалов $O_2^{-\bullet}$ и HO_2^{\bullet} достаточно велико. (Высокая доля данных пероксильных радикалов в фотоиндуцируемых в наших системах суммарных сигналах ЭПР при 77 К была показана ранее [7].) Предположено, что этот путь, по-видимому, мо-

жет состоять во взаимодействии радикалов O₂^{-•} и

 HO_2^{\bullet} , с участием воды, возможно, в процессе размораживания образцов [1, 2].

Путь II проявляется при низких Ints сигналов ЭПР (низкие концентрации AX (2×10^{-4} M), отсутствие NaCl, ограничение интенсивности облучения (*I_{hv}*) и минимальной длины волны возбуждения λ_{min} от ~260 до ~290 нм). Этот путь приводит к увеличению выхода H_2O_2 при падении Int_s сигналов ЭПР и, соответственно, без существенного выхода пероксильных радикалов в окружающую среду. Мы предполагаем, что он тесно связан с самоассоциативными свойствами АХ [3-6]. Сопоставление результатов определения выхода H₂O₂ в облученных растворах после размораживания и данных ЭПР в соответствующих облученных растворах при 77 К указывает на существенность и, возможно, предпочтительность этого пути.

В [6] было показано увеличение выхода пероксида водорода в облученных ближним УФ с $\lambda_{min} \sim 260$ нм при 77 К образцах АХ (2 × 10⁻⁴ M) при внесении небольшого количества неорганического фосфата (5 × 10⁻⁴ M) в растворы на фоне присутствовавшего в растворах 0.1 M NaCl. Этому увеличению сопутствовало падение Int_s сигналов ЭПР в облученных растворах, наблюдавшееся при 77 К. В случае Аdо подобное влияние фосфата (P_i) показано также при [P_i] = 5 × 10⁻⁵ М. Цель данной работы — более подробное исследование влияния среды и полосы облучения на данный эффект.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали препараты A, Ado и ADP фирмы "Serva", B качестве неорганического фосфата (P_i) использовали соль NaH₂PO₄ · 2H₂O класса "extra pure", остальные реактивы — класса "х.ч.". Для приготовления растворов применяли воду, очищенную на установке Millipore. Эксперименты выполняли в слабокислой среде (pH 6.6), доведение pH растворов до этой величины производили добавлением HCl и NaOH. В исследованных растворах [AX] = 2×10^{-4} M, [NaCl] 0, 0.05 и 0.1 М.

Образцы замораживали в тефлоновых контейнерах быстрым погружением в жидкий азот (77 К) и освобождали непосредственно перед освещением. Облучение производили ртутной лампой сверхвысокого давления ДРШ-1000 со светофильтрами УФС-5 (стандартное значение 40%-го пропускания в диапазоне 260–400 нм) и ФС-6 (стандартное значение 40%-го пропускания в диапазоне 290–470 нм). Интенсивность освещения $I_{\rm hv}$ ограничивалась до ~0.6 от максимальной интенсивности источника облучения при помощи решеток, калиброванных на спектрофотометре, аналогично [3–5]. Это было связано с тем,

что эффективность фотопродукции H_2O_2 (α), определяемая как отношение количества образующегося пероксида $[H_2O_2]$ к Int_s, существенно снижается при увеличении I_{hv} [3, 4].

Образцы облучали при 77 К в кварцевом дьюаре. Время облучения составляло 16 мин. Спектры ЭПР регистрировали при 77 К на ЭПРспектрометре Bruker EMX-8 и, в ряде случаев, – на изготовленном в лаборатории ЭПР-спектрометре (частота 9.5 ГГц), использовавшемся в работах [1-7]. Мощность СВЧ-излучения составляла W = 200 мкВт, амплитуда модуляции – 2 Гс. Результаты, полученные на различных приборах, приведены с учетом пересчета на соответствующие параллельные измерения в идентичных образцах, приводившиеся в наших предыдущих работах. Регистрация спектров ЭПР на спектрометре Bruker EMX-8, обладающем более высокой чувствительностью, чем лабораторный ЭПРспектрометр, позволила приблизительно оценить соотношение интегральных интенсивностей довольно слабых сигналов фотосенсибилизируе-

мых атомов Н[•] (дублет с расщеплением ~507 Гс, обычно не накладывающийся на сигналы S) и сигналов S. Соответствующие измерения выполняли при W = 10 мкВт и пересчитывали с учетом соответствующих коэффициентов (табл. 1).

Методика оценки вклада различных компонент в сигналы S, выполнявшаяся на основании построения модельного сигнала, идентична описанной в [7] и применявшейся во всех цитированных выше работах. Основными составляющими ("базисными сигналами"), вносящими вклад в регистрируемые спектры облученных растворов AX, являются сигналы пероксильных радикалов —

 $O_2^{-\bullet}$ и HO₂, электрондефицитных радикалов аденина A[•]; радикалов рибозы Ri[•] в Ado и ADP, (ло-

кализованных преимущественно на C5'); C8OHаддуктов аденина – AOH[•]; сигналы $Cl_2^{-•}$; (наблю-

даемые в присутствии NaCl в замораживаемых растворах), сигналы стабилизированных в матри-

це электронов e^- и радикалов NO_2^{\bullet} (присутствие которых в спектрах обусловлено, по-видимому, вероятными примесями нитратов в компонентах растворов). В присутствии в растворах добавок P_i попытка внесения в базисную систему сигналов

фосфатных радикалов и радикалов OH[•], вносящих существенный вклад в анализируемые спектры при более высоких концентрациях реагентов [8], при используемых концентрациях оказалась безуспешной.

После записи спектров ЭПР облученные образцы хранили в течение суток в жидком азоте (77 K) вплоть до определения H_2O_2 . Определение H_2O_2 проводили спектрально-иодометрическим

Систе-	Систе- [NaCl].		А				Ado				ADP		
ма	M	M	[H ₂ O ₂]	Int _S	α	$[H^{\bullet}]$	[H ₂ O ₂]	Int _S	α	$[H^{\bullet}]$	[H ₂ O ₂]	Int _S	α
Ι	0	0	12	62	0.19	10	55	91	0.60	7	_	_	_
			18#	$\sim 0^{\#}$	—	_	65#	41#	1.54#	_	41#	48#	0.85#
Π	0.05	0	19	256	0.07	_	130	444	0.29	33	40	380	0.10
III	0.1	0	31	304	0.10	12	190	401	0.47	21	_	_	_
			27#	489#	0.06#	_	109#	409#	0.27#	_	46#	228#	$0.20^{\#}$
			28##	469##	0.06##	_	141##	448##	0.31##	—	41##	268##	0.15##
IV	0	0.0005	32	84	0.38	1	260	75	3.47	4	13	117	0.11
V	0.05	0.0005	49	114	0.43	5	400	230	1.74	_	52	154	0.34
VI	0.1	0.0005	43	146	0.29	10	490	_	_	_	160	138	1.16
			274##	122##	2.25##	_	435##	184##	2.36##	_	158##	152##	1.04##
VII	0	0.005	46	88	0.52	14	305	79	3.86	24	42	428	0.10
VIII	0.05	0.005	44	207	0.21	20	525	278	1.89	27	160	174	0.92
IX	0.1	0.005	39	129	0.30	9	575	308	1.87	30	180	140	1.29

Таблица 1. Результаты определения H_2O_2 , Int_s и Int_H в спектрах ЭПР образцов АХ, облученных со светофильтром УФС-5, $I_{hv} = 0.6$

Примечание. Время облучения – 16 мин. Приведены средние значения результатов, полученных в параллельных опытах; $\alpha = [H_2O_2]$, мкM/Int_S; Int_S, усл. ед.; [H[•]], усл.ед.; # – данные [4], ## – [6].

методом [9], аналогично выполнявшемуся в цитированных выше работах [1-6]. С этой целью образцы после фотолиза размораживали при комнатной температуре, для чего каждый образец помещали в отдельную пробирку объемом 5 мл. После таяния образцов к ним добавляли 1 мл Н₂₋ SO₄ (0.2 М), вытесняли растворенный кислород продувом углекислым газом, после чего смешивали с 2 мл деаэрированного 5%-го водного раствора иодида калия и вновь продували СО₂. Выделение иода, образующего с избытком иодид-аниона комплексный анион I_3^- , регистрировали методом спектрофотометрии ($\lambda_{max} = 351$ нм, $\epsilon =$ $= 26400 \text{ M}^{-1} \text{ см}^{-1}$). Точность определения концентрации пероксила водорода <1 мкМ. Параллельно с облученными образцами в каждом из опытов выполняли определение Н2О2 в контрольных, не облучавшихся образцах, хранившихся то же время при 77 К. Пероксид водорода в этих образцах практически отсутствовал ($[H_2O_2] <$ <1 мкМ).

Среднеквадратичная ошибка определения H_2O_2 в облученных образцах составляет ~24%; среднеквадратичная ошибка определения Int_s составляет ~33%. Количество параллельных образцов в различных опытах варьировало от 3 до 7.

РЕЗУЛЬТАТЫ

Результаты определения количества H_2O_2 в размороженных образцах АХ, облученных при 77 К с светофильтрами УФС-5 и ФС-6, приведе-

ны в табл. 1, 2. Там же представлены результаты определения интегральных интенсивностей сигналов ЭПР в этих образцах перед размораживанием (Int_s). Во всех исследованных системах выход H₂O₂ увеличивается при добавлении 5 × 10⁻⁴ M P_i в соответствующие растворы как в случае облучения со светофильтром УФС-5, так и при ограничении полосы возбуждения до $\lambda_{min} \sim 290$ нм (светофильтр ФС-6). В присутствии 0.05 M NaCl максимальное увеличение выхода H₂O₂ при внесении в растворы 5 × 10⁻⁴ M P_i наблюдалось в растворах Ado и составляло 3.1–2.8 раза при облучении образцов с указанными светофильтрами, соответственно.

10-кратное увеличение [P_i] приводит лишь к относительно слабому возрастанию выхода H_2O_2 . (При этом максимальное увеличение выхода H_2O_2 в 3.1–2.1 раза наблюдалось в растворах ADP + 0.05 M NaCl при облучении со светофильтрами УФС-5 и ФС-6, соответственно, что согласуется с высокой оценкой константы ассоциации ADP с P_i [6].)

Необходимо отметить существенное расхождение между результатами влияния P_i при его низком содержании (5 × 10⁻⁴ M) на фоне 0.1 M NaCl на выход H_2O_2 при облучении образцов A со светофильтром УФС-5, полученными в [6] и в данной работе. Оценка выхода H_2O_2 в [6] превышает приводимое в этой работе значение в ~7 раз. Наблюдаемые в обеих работах величины Int_s сигналов ЭПР близки. В связи с этим в данных усло-

Систе-	[NaCl],	[P _i],	А				Ado				ADP		
ма	М	М	[H ₂ O ₂]	Ints	α	Int _H	$[H_2O_2]$	Ints	α	Int _H	[H ₂ O ₂]	Int _S	α
Ι	0	0	9	79	0.11	7	20	42	0.48	_	_	_	_
			25#	~0#	_	—	85#	47#	1.83#	_	52#	$\sim 0^{\#}$	_
II	0.05	0	19	86	0.22	1	110	_	_	_	47	110	0.43
III	0.1	0	23	61	0.38	30	110	159	0.69	10	_	_	_
			34#	80#	0.29#	—	65#	107#	0.61#	—	48#	80#	0.63#
IV	0	0.0005	32	67	0.48	4	190	73	2.60	9	14	65	0.22
V	0.05	0.0005	42	68	0.62	15	305	196	1.56	8	66	83	0.80
VI	0.1	0.0005	31	75	0.41	11	430	_	_	_	180	73	2.47
VII	0	0.005	35	148	0.24	8	255	61	4.18	10	48	108	0.44
VIII	0.05	0.005	28	134	0.21	6	450	220	2.04	16	136	62	2.19
IX	0.1	0.005	52	148	0.35	12	405	111	3.65	15	110	62	1.77

Таблица 2. Результаты определения H_2O_2 , Int_s и Int_H в спектрах ЭПР образцов АХ, облученных со светофильтром Φ C-6, $I_{hv} = 0.6$

Примечание. Время облучения 16 мин. Приведены средние значения результатов, полученных в параллельных опытах; α = [H₂O₂], мкМ/ Int_S, условные единицы. # – данные [4].

виях было произведено два независимых эксперимента, средние значения выхода H₂O₂ в которых оказались достаточно близки (47 и 38 мкМ), так же, как и оценки Ints сигналов ЭПР. Таким образом, результат определения выхода H₂O₂ в растворах А, приведенный в [6], по-видимому, ошибочен (в табл. 1 выделен курсивом). Следует заметить, что приготовление образцов в [6] и в данной работе осуществлялось различными операторами. Представляется вероятным, что результаты экспериментов могут существенно зависеть от процесса приготовления растворов для замораживания — времени нахождения смешанного раствора в жидком состоянии и интенсивности перемешивания как исходного раствора, так и в ходе доведения рН до требуемой величины (рН 6.6). Принципиальная возможность влияния способа приготовления растворов на результаты опытов отмечена в [10].

Наблюдавшееся в [6] снижение Int_s сигналов ЭПР в облученных со светофильтром УФС-5 растворах АХ при добавлении 5×10^{-4} М Р_i на фоне 0.1 M NaCl, сопровождающееся увеличением выхода H₂O₂ в растворах при их размораживании, подтверждено в данной работе для 0.05 M NaCl (высокие Int_s). Это, по нашему мнению, может свидетельствовать об определяющей роли пути II в рассматриваемых системах [6]. Однако, данный эффект не всегда заметен при небольших величинах Int_s. Нам представляется, что описанные выше результаты могут объясняться совокупностью четырех факторов.

 Влияние процесса замораживания растворов.
Известно, что замораживание водных растворов ароматических органических молекул приводит к их агрегации [11, 12]. Очевидно, что степень агрегации молекул АХ в замораживаемых растворах должна существенно зависеть от их исходного состояния – состава раствора (содержания относительно "нейтральных" составляющих, в данных экспериментах – присутствия солей NaCl, P_i) и степени возможной самоассоциации основных (фоточувствительных) компонентов. Показано, что в присутствии неорганических солей происходит дезагрегация этих соединений ([11, 12] и ссылки в этих работах). Принципиальное влияние процесса замораживания водных растворов тимина на выход свободных радикалов в случае γоблучения при 77 К продемонстрировано в [13].

2. Самоассоциация АХ. Абсолютные значения констант самоассоциации АХ (K_{sa}^{AX}) в жидких водных растворах, получаемые различными методами и, следовательно, в различных диапазонах [АХ], могут различаться на порядки [14]. Тем не менее, их последовательность для рассматриваемых нами соединений, в достаточной степени согласуется, по крайней мере, в случае образования димерных ассоциатов (K_{sa2}^{AX}). Эта последовательность, по литературным данным, по-видимому, такова: $K_{sa}^{Ado} > K_{sa}^{ADP}$ [15] и $K_{sa2}^{Ado} > K_{sa2}^{A}$ [16]. (Дополнительные ссылки на литературные данные приведены в [3].)

Последовательность изменения фотопродукции H_2O_2 в растворах AX при одинаковых условиях облучения (в отсутствие P_i) в целом совпадает с последовательностью изменения констант самоассоциации AX. Для $[AX] = 2 \times 10^{-4}$ M в присутствии 0.1 M NaCl выход H_2O_2 снижается в ряду Ado > ADP > A: 0.7–1.3/0.3/0.2 при облучении со

светофильтром УФС-5 и 0.4-0.8/0.3/0.2 при облучении с ФС-6 (Результаты нормированы на среднее значение выхода H_2O_2 в растворах Ado + + 0.1 M NaCl, облученных со светофильтром УФС-5, полученное по измерениям в [4-6] и в данной работе (147 мкМ).) При этой же нормировке в отсутствие NaCl выход H_2O_2 в растворах Ado/ADP/A составляет: 0.4/0.3/0.1 и 0.1-0.6/0.4/0.1-0.2 при облучении образцов со светофильтрами УФС-5 и ФС-6, соответственно.

3. Дезагрегирующее действие солей. Дезагрегирующее действие ряда солей в замораживаемых водных растворах АХ продемонстрировано в [11, 12] и ссылках в этих работах. Показано, что в качестве дезагрегирующих агентов соли P_i менее эффективны, чем NaCl [11]. Из АХ наиболее "стойким" по отношению к дезагрегирующим агентам показан нуклеотид (AMP).

4. Комплексообразование АХ с P_i . В условиях проведенных в данной работе экспериментов (pH 6.6) в растворах присутствуют преимущественно две ионных формы $P_i - H_2 PO_4^-$ и HPO_4^{2-} (p $K_1 \sim 2.1$, $pK_2 \sim 7.2$ [17]) в соотношении ~ 4 : 1. Результаты расчета соотношения различных ионных форм P_i в зависимости от кислотности раствора приведены в [18].

При рН 6.6 в водных растворах преимущественно содержатся только нейтральные формы A и Ado (р $K_1^{A.Ado} \sim 4.2-3.5$ и р $K_2^{A.Ado} \sim 9.8-12.5$, соответственно [19]). В случае ADP значение р K_2^{ADP} (депротонирование гетероцикла) лежит в тех же пределах, что и р $K_1^{A.Ado}$; величина р K_1^{ADP} (первичное депротонирование фосфатного фрагмента) лежит в более кислой области. При рН 6.6 в водном растворе преимущественно содержатся формы ADP²⁻ и ADP³⁻ (р $K_3^{ADP} = 7.2$, депротонированные по фосфатным группам [17, 20]). (Дальнейшее депротонирование ADP происходит по рибозной группе (р $K_4^{ADP} > 12.5$), что согласуется с р $K_2^{Ado} \sim 12.5$ [19, 20]).

Возможное комплексование AX с P_i показано в [6] для A и ADP. Однако, этот эффект наблюдался в 0.05 M цитратном буфере (pH 5.6). В отсутствие достаточного количества противоионов (в отсутствие буфера либо NaCl) в растворах ADP, даже при доведении pH растворов ADP + P_i до использовавшейся в предыдущих работах величины (pH 6.6) количества ионов Na⁺, по-видимому, не вполне достаточно для предотвращения отталкивания отрицательно заряженных фосфатных групп ADP и P_i при [P_i] = 5×10^{-4} M. На фоне 0.05 M NaCl увеличение выхода H₂O₂ при [P_i] = $= 5 \times 10^{-4}$ M в ряду A : Ado : ADP составляет 2.6– 2.2 : 3.1–2.8 : 1.3–1.4 (светофильтры УФС-5–ФС- 6). Десятикратное увеличение $[P_i]$ приводит в этих же условиях к заметному изменению этого соотношения: 0.9-0.7:1.3-1.5:3.1-2.1 (табл. 1, 2).

Влияние полосы облучения неоднозначно и, повидимому, зависит как от АХ, так и от соотношения [NaCl] и [P_i] (табл. 1, 2). Показано, что в жидких водных растворах в условиях преимущественного стэкинг-взаимодействия АХ наблюдаются гипохромный эффект в области $\lambda \approx 260$ нм и некоторое возрастание оптического поглощения при $\lambda > 290$ нм [21, 22] (Большее количество ссылок приведено в [4].) Хотя приводимые в цитируемых работах результаты получены на аналогах динуклеотидов [18] и олигомере дезоксиаденозина $(dA)_{20}$ [22], они, по-видимому, вполне применимы к нашим системам, особенно в случае возможного преимущественного образования диассоциатов 23]. Константы мерных [16, самоассоциации ароматических органических молекул заметно возрастают при снижении температуры растворов. В [24] для растворов пурина показано увеличение K_{sa} в ~2.7 раза при снижении температуры раствора от 26 до 5°С. Нами наблюдалось в [25] увеличение оптического поглощения в области $\lambda \sim 300 - 325$ нм в водном растворе ADP при его охлаждении до ~4°С.

В отсутствие P_i в случае Ado на фоне 0.1 M Na-Cl падение выхода H_2O_2 при облучении образцов со светофильтром Φ C-6 по сравнению с результатами облучения со светофильтром У Φ C-5 практически совпадает с данными [4] (~40% от выхода при облучении с У Φ C-5). Падение выхода H_2O_2 при облучении со светофильтрами Φ C-6/У Φ C-5 в присутствии P_i несколько меньше и соизмеримо при [P_i] = 5 × 10⁻⁴ и 5 × 10⁻³ M (12–24% от выхода при облучении с У Φ C-5) вплоть до использования максимальных [NaCl] и [P_i] (табл. 1, 2).

В случае ADP как в отсутствие P_i , так и при низкой концентрации P_i наблюдается превышение выхода H_2O_2 при облучении со светофильтром Φ C-6 по сравнению с результатами облучения со светофильтром У Φ C-5. Это качественно совпадает с результатами [4]. Однако при $[P_i] = 5 \times 10^{-3}$ M в присутствии NaCl наблюдается, наоборот, значительное падение выхода H_2O_2 при облучении со светофильтром Φ C-6 по сравнению с результатами облучению с светофильтром Φ C-6 по сравнению с результатами облучения со светофильтром Φ C-6 по сравнению с результатами облучения со светофильтром У Φ C-5 (табл. 1, 2), достигающее 39% при максимальной величине [NaCl]. Таким образом, в этом случае, по-видимому, могут играть существенную роль вторичные взаимодействия между фотоинициируемыми интермедиатами.

Результаты оценки относительного содержания различных компонент сигналов S в растворах Ado и ADP (одинаковые компоненты, используемые при моделировании спектров ЭПР) приведены в табл. 3, 4. Во всех доступных для сравнения в

Таблица 3. Результаты анализа спектров ЭПР и определения концентрации H_2O_2 в образцах Ado | ADP, облученных со светофильтром УФС-5, $I_{hv} = 0.6$, время облучения 16 мин, Per – суммарное относительное содержание пероксильных радикалов $O_2^{-\bullet}$ и HO_2^{\bullet}

Система	[NaCl], M	[P _i], M	Per	A•	Ri	AOH•	$Cl_2^{-\bullet}$	Int _S	[H ₂ O ₂], мкМ
Ι	0	0	0.24 -	0.23 -	0.27 -	0.15 -	- -	91 -	55 -
II	0.05	0	0.52 0.45	0.19 0.03	0.10 0.38	0.11 0.07	0.03 0.07	444 380	130 40
III	0.1	0	0.54 -	0.18 -	0.13 -	0.07 -	0.04 -	401 -	190 -
IV	0	0.0005	0.42 0.45	0.25 0.03	0.03 0.38	0.02 0.09	_ _	75 117	260 13
V	0.05	0.0005	0.63 0.57	0.26 0.15	0.00 0.14	0.02 0.00	0.02 0.07	230 154	400 52
VI	0.1	0.0005	- 0.45	- 0.16	- 0.12	- 0.12	- 0.06	- 138	490 160
VII	0	0.005	0.28 0.46	0.19 0.00	0.18 0.31	0.15 0.09	_ _	79 428	305 42
VIII	0.05	0.005	0.44 0.31	0.05 0.00	0.22 0.33	0.08 0.07	0.03 0.14	278 174	525 160
IX	0.1	0.005	0.45 0.51	0.04 0.00	0.22 0.19	0.06 0.06	0.08 0.02	308 140	575 180

Таблица 4. Результаты анализа спектров ЭПР и определения концентрации H₂O₂ в образцах Ado | ADP, облученных со светофильтром Φ C-6, $I_{hv} = 0.6$

Система	[NaCl], M	[P _i], M	Per	A•	Ri	AOH•	$Cl_2^{-\bullet}$	Int _S	H ₂ O ₂
Ι	0	0	0.54 -	0.14 -	0.15 -	0.12 -	_	42 -	20 -
II	0.05	0	- 0.54	- 0.26	- 0.00	- 0.11	- 0.03	- 110	110 47
III	0.1	0	0.45 -	0.06 -	0.14 -	0.16 -	0.09 -	159 -	110 -
IV	0	0.0005	0.33 0.50	0.03 0.07	0.38 0.28	0.09 0.09	_	73 65	190 14
V	0.05	0.0005	0.48 0.66	0.12 0.16	0.24 0.04	0.01 0.00	0.02 0.05	196 83	305 66
VI	0.1	0.0005	- 0.51	- 0.00	- 0.28	- 0.00	- 0.09	- 73	430 180
VII	0	0.005	0.24 0.46	0.16 0.00	0.03 0.29	0.23 0.08	_	61 108	255 48
VIII	0.05	0.005	0.64 0.39	0.00 0.14	0.00 0.05	0.00 0.25	0.02 0.00	220 62	450 136
IX	0.1	0.005	0.43 0.39	0.05 0.04	0.13 0.17	0.10 0.10	0.08 0.05	111 62	405 110

Примечание. Время облучения 16 мин. Приведены средние значения результатов, полученных в параллельных опытах; Per – суммарное относительное содержание пероксильных радикалов $O_2^{-\bullet}$ и HO₂.

данной работе случаях отношение содержания компонент A к Ri при облучении образцов со светофильтром УФС-5 оказывается существенно ниже в растворах ADP, чем в соответствующих растворах Ado. Этот эффект, по-видимому, отсутствует в растворах, облученных со светофильтром ФС-6.

В растворах ADP (но не Ado) в ряде случаев наблюдается увеличение выхода H₂O₂ при облучении со светофильтром ФС-6 по сравнению с результатами облучения образцов со светофильтром УФС-5 (табл. 3, 4, системы II, IV, V, VI, VII). Хотя причины наблюдаемого различия не выяснялись, можно предполагать определяющую роль в нем фотоиндуцируемого поглощения первичных интермедиатов наблюдаемых фотопроцессов.

Оценки коэффициентов экстинкции свободных радикалов, фиксируемых методом ЭПР при 77 К и их возможных предшественников (по литературным данным), приведены в [4]. В присутствии NaCl наибольшими коэффициентами экстинкции (є) в области $280 \ge \lambda \le 300$ нм обладают свободные радикалы $\operatorname{Cl}^{\bullet}$ и $\operatorname{Cl}_{2}^{-\bullet}$, фиксируемые при 77 К методом ЭПР в наших работах (ε ~ 3000 и ~1200 M^{-1} см⁻¹, соответственно, при $\lambda = 280$ нм). Оптическое поглощение радикалов $\operatorname{Cl}_2^{-\bullet}$ увеличивается при $\lambda > 300$ нм, поглощение Cl[•] падает. Следует отметить также возможность поглощения света в области $\lambda \sim 280$ нм в замороженных водных растворах первоначально образующими-

ся свободными радикалами ОН[•], не связанными

или слабо связанными водородными связями с молекулами воды [26].

Оптическое поглощение других свободных радикалов, обусловленных образованием Cl[•] и Cl₂^{-•}, и возможных интермедиатных радикалов ClOH^{-•} [27] увеличивается при $\lambda > 310$ нм (ссылки в [4]). Максимальное поглощение этих радикалов наблюдается в области $\lambda \sim 350$ нм, включающей интенсивную линию излучения ртутной лампы при $\lambda \sim 366$ нм и пропускаемой обоими использовавшимися светофильтрами. В доступных для сравнения случаях при облучении со светофильтром УФС-5 относительное содержание радикалов Cl₂[•] в растворах ADP несколько выше, чем в рас-

творах Ado, за исключением системы с максимальным содержанием P_i и NaCl (табл. 3).

Ряд реакций, провоцируемых образованием

радикалов Cl[•] в водных растворах при комнатных температурах (по литературным данным), а также, вероятно, при отжиге облученных при 77 К образцов (использованном в [1]), приведен в цитируемой работе. В частности, распад возможных

интермедиатных радикалов ClOH^{-•} может при-

водить к образованию радикалов OH^{\bullet} и тем самым влиять на выход H_2O_2 . Неизвестно, однако, в какой мере приведенные в [1] реакции, тем более под действием дополнительного облучения, могут осуществляться при 77 К.

Столь же направленные различия в выходах H_2O_2 в растворах Ado и ADP при облучении со светофильтрами УФС-5 и ФС-6, по-видимому, существуют и в растворах, не содержащих NaCl (системы IV, VII). Можно предположить, что эти различия связаны с отмеченным выше возможным оптическим поглощением свободных ради-

калов OH[•], не связанных или слабо связанных с молекулами H₂O, в области $\lambda \sim 280$ нм [26].

Следует отметить, что образование Н₂О₂, как под действием видимого света, так и под действием инфракрасного облучения в полосах поглощения растворенного в воде О2 наблюдалось в отсутствие фотосенсибилизаторов в воде при комнатной температуре [28]. Использовавшиеся в наших работах светофильтры (УФС-5, ФС-6) пропускают свет с $\lambda > 700$ нм, что не позволяет полностью исключать из рассмотрения возможность предполагаемых в этой работе процессов, обусловленных образованием ${}^{1}O_{2}$. Однако, выход $H_{2}O_{2}$ в отсутствие фотосенсибилизаторов в этой работе при лазерном облучении с $\lambda \approx 633$ нм и даже с $\lambda \approx$ ≈ 1260 нм не превышает 20 нМ, что вообще значительно ниже чувствительности использовавшегося нами метода определения $[H_2O_2]$.

Приведенные результаты, полученные в отсутствие в замораживаемых растворах P_i либо при низкой концентрации P_i , подтверждают ранее сделанный вывод о существенности пути II в рассматриваемых процессах. Введение небольших количеств P_i (до 5 × 10⁻⁵ M в случае Ado [6]), таким образом, существенно влияет на состояние растворов AX перед замораживанием, и *микроструктура водных растворов, по-видимому, – основной фактор, влияющий на фотопродукцию H_2O_2 в наших системах.*

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Хотя основным механимом ассоциации АХ предполагается стэкинг-взаимодействие мономеров [14–16, 21, 22], отмечается существенность физико-химических факторов среды (pH, состав растворов, присутствие ионов металлов, диапазоны исследуемых концентраций АХ и добавок) [15, 23]. Перечисленные факторы влияют на конформацию мономеров, связывание их (в том числе, посредством водородных связей) с соседними молекулами, включая, безусловно, и молекулы растворителя. В случае полимеров эта конфигурация "оказывает решающее влияние на конформацию, которую принимает макромолекула при заданных физических условиях и которая, в свою очередь, связана с надмолекулярной структурой" [29].

Известно существование в водных растворах кластеров (наноассоциатов [30]). Ссылки на существование различных типов кластерных структур (от димерных до октамерных и более высоких порядков) приведены в [31, 32]. В замороженных водных растворах доминируют гексамерные кластеры в различных конформациях.

Размеры наноассоциатов воды в жидких водных растворах варьируются от 1-10 нм до 200 [33] и даже тысяч нм [30] в зависимости от состава растворов. Их структура существенно зависит от растворенных веществ, в том числе – NaCl [30, 33]. Возможное влияние биомолекул на структуру водных кластеров отмечалось ранее (например, в [34]). В образовании водных кластеров определяющую роль, по-видимому, играет способность молекул воды образовывать водородные связи с соседними молекулами [33]. Протоны, участвующие в образовании водородных связей, расположены между двумя атомами О (собственной и соседней молекул H₂O). Водородная связь между атомами Н и О носит отчасти ковалентный характер (10%, [35]). Состояние, когда протон оказывается приближенным к соседнему атому кислорода, типично для границ раздела (вода-газ, водатвердое тело) [32]. Представляется вероятным, что поверхность ассоциатов АХ также можно рассматривать как некую поверхность раздела.

В [36] (и ссылках в этой работе) продемонстрировано, что поверхность льда может быть как источником, так и стоком ориентационных дефектов Бьеррума [37]. Кроме того, она способна аккумулировать возможные ионные дефекты структуры льда – как гидрониум-, так и гидроксид-ионы [36]. В [38] сделано заключение, что, несмотря на расхождение экспериментальных результатов с теоретическими оценками, при pH > 3 суммарный заряд поверхности воды на границе с воздухом отрицателен. Предполагается, что структура поверхностного слоя воды / льда оказывает существенное влияние на протекание в них химических реакций вследствие зависимости от нее энергетических характеристик идентичных молекул, находящихся в этом слое [36].

Необходимо заметить, что все указанные в [36] особенности поверхностного слоя льда проявляются при температурах в диапазоне ~ 110–150 К. Однако, как при приготовлении исследовавшихся образцов, так и при их размораживании после облучения, данный температурный интервал неизбежно проходится.

Особенность поверхностного слоя воды и ассоциатов АХ, по-видимому, может играть важную роль в фотопродукции Н₂O₂ в замороженных водных растворах. Расстояние межлу стэкинг-ассоциированными молекулами АХ (~3.4 Å [20]) позволяет, в принципе, внедрение в них одномолекулярного слоя H_2O (размер молекулы $H_2O \sim 3$ Å), а также – молекул О₂ (размер ~3 Å [39]). В присутствии NaCl это допускает возможность внедрения в ассоциаты ионов Na⁺ (размер ионного радиуса ~1 Å) однако не позволяет внедрения ионов Cl^- (размер ионного радиуса ~1.8 Å) [40]. В то же время в [36] показано, что ионы Na⁺ имеют тенденцию к проникновению внутрь замораживаемого раствора, тогда как ионы Cl⁻, напротив, склонны оставаться на границе. Таким образом, в присутствии NaCl возможность зарядового различия между пограничным слоем АХ и внешней водной средой достаточно неопределенна.

В [41] приведены результаты анализа изменения редокс-потенциала жидкой воды под действием УФ-облучения, влияния растворенных в воде газов и влияния длительного времени хранения образцов после облучения. Показано, что присутствие растворенных газов в воде и сильно разбавленных водных средах может существенно влиять на свойства растворов, а структурная и динамическая упорядоченность системы растет со временем, прошедшим после облучения жидких образцов.

Первоначальный продукт реакций, образующийся под действием УФ-облучения — атомы Н[•] [41], наблюдался методом ЭПР при 77 К в присутствии P_i (0.5 M, pH 4.5) [42]. Значительно большая интенсивность сигналов Н[•] показана в присутствии фотоиндуцируемого донора электрона (e⁻) триптофана (Trp), $\lambda > 240$ нм и возможных "промежуточных" акцепторов e⁻, включая ионы фосфата [43, 44]. При рН 5.0, [Trp] = 5 × 10⁻⁴ М, и [KNO₃] (конечный акцептор e⁻) = 0.01 М показана практически линейная зависимость увеличения выхода H[•] и продукта восстановления конечного акцептора — радикалов NO₂[•] от [P_i] [42]. Константа скорости взаимодействия e⁻ с ионами NO₃⁻ в жидких водных растворах составляет k > 9 ×× 10⁹ M⁻¹ c⁻¹ [45]. Взаимодействие e⁻ с ионами NO₃⁻ приводит к разнообразным процессам, однако, преимущественно не приводящим к образованию H[•] [46].

Таким образом, вероятно, что увеличение вы-

хода Н[•] в рассматриваемой системе обусловлено, в основном, взаимодействием фотоиндуцируемого электрона с ионами P_i:

$$e^{-} + H_2 PO_4^{-} \rightarrow H_2 PO_4^{2-\bullet} \rightarrow H^{\bullet} + HPO_4^{2-}.$$
(1)

Для взаимодействия е⁻ с ионами PO₄⁻ $k = 2.8 \times 10^6$ M⁻¹ c⁻¹ [47]. Ориентируясь на возможное состояние реагентов в жидких водных растворах, можно предполагать, что при [P_i] = 0.5 M скорость взаимодействия е⁻ с ионами NO₃⁻ превышает скорость его взаимодействия с ионами H₂PO₄⁻ (реакция (1)) в ~64 раза.

Среднее расстояние между фотоактивируемым донором e⁻ (Trp) и молекулами акцептора $H_2PO_4^-$ при его концентрациях 0.05–0.5 M составляет от ~16 до 7.5 Å, что значительно меньше возможных средних расстояний между фотоиндуцируемым донором e⁻ AX и этим акцептором в наших работах. При [P_i] = 5 × 10⁻⁴ M среднее расстояние между молекулами AX и молекулами P_i составляет ~75 Å. В данной работе при такой концентрации P_i показано увеличение фотопродукции H₂O₂ в 2.7 раза в растворах A и в 4.7 раза в растворах Ado по сравнению с растворами, не содержавшими добавок P_i (при облучении со светофильтром УФС-5, табл. 1).

В присутствии более слабого конкурирующего реагента, взаимодействующего с фотоиндуцируемым е⁻ (0.1 M NaCl; $k < 10^6 \text{ M}^{-1} \text{ c}^{-1}$ [48]) увеличение выхода H_2O_2 при включении в растворы P_i снижается. В этой работе при добавлении в растворы 5 × 10⁻⁴ M P_i наблюдаемое увеличение выхода H_2O_2 составляет для A - в 1.4 раза, для Ado – в 2.6 раза. В [6] для Ado показано увеличение выхода H_2O_2 на фоне 0.1 M NaCl в присутствии

Рис. 1. Примеры спектров ЭПР, регистрируемых при 77 К в облученных растворах Ado $(2 \times 10^{-4} \text{ M})$, $I_{hv} = 0.6$, $t_{hv} = 16$ мин; а – светофильтр УФС-5, W = 200 мкВт, б – то же при W = 10 мкВт, в – спектры ЭПР, регистрируемые при W = 200 мкВт в образцах, облученных со светофильтром ФС-6. На рис. (а) и (в) экспериментальные спектры ЭПР – серые линии, модельные – обычно накладывающиеся на них тонкие черные линии. Слева римскими цифрами показаны номера систем, соответствующие табл. 1–4. В квадратных рамках – выход H₂O₂ в мкМ в соответствующих системах; (*) – сигнал дьюара, в спектрах (б), зарегистрированных при низкой мощности W, этот сигнал удален вычитанием; в моделировавшихся спектрах включен в систему базисных сигналов.

 5×10^{-5} М P_i (в 2.3 раза). В этом случае среднее расстояние между молекулами Ado и P_i может составлять уже ~160 Å.

Таким образом, существуют основания для предположения о том, что наблюдаемое нами увеличение выхода H₂O₂ при внесении в замораживаемые растворы АХ неорганического фосфата в умеренных концентрациях ($[P_i] = 5 \times 10^{-4}$ М и ниже) связано в значительной степени с изменением структуры замораживаемых водных растворов. Изменение кластерной структуры водных растворов в присутствии P_i и, вероятно, возможное изменение состояния поверхностного слоя как на границах растворителя с агрегатами АХ, так и, возможно, с "внутриагрегатными" слоями растворителя, предположенное в [6], по-видимому, могут играть значительную роль в увеличении фотопродукции H₂O₂ в наших системах в присутствии различных добавок.

Ранее отмечалось, что в ряде случаев выход пероксида водорода в рассматривавшихся системах может заметно превосходить растворимость О₂ в водных и водно-солевых системах [6] и ссылки в этой работе. Это может, в частности, объясняться адсорбцией О2 на поверхности образцов в процессе их приготовления к облучению. Однако, оценка количества спинов в спектрах ЭПР образцов Ado + 0.05 M NaCl + 5 × 10^{-3} M P_i (система VIII), облученных со светофильтром УФС-5, дает содержание в них ~ 2.8×10^{14} спинов. Это означает, что определяемое количество молекул Н₂O₂ в тех же образцах превышает количество свободных радикалов в них, регистрируемое перед их размораживанием в ~300 раз. Таким образом, возникает вопрос о возможном участии H₂O в наблюдаемых процессах.

Возможные свободнорадикальные механизмы, предполагавшиеся нами для фотоиндуцируемого увеличения выхода H_2O_2 в присутствии различных добавок, приведены в цитируемых работах. В частности, в условиях, когда основным путем образования H_2O_2 может быть путь II, предполагаются реакции:

$$\mathrm{HO}_{2}^{\bullet} + \mathrm{H}^{\bullet} \to \mathrm{H}_{2}\mathrm{O}_{2} \tag{2}$$

И

$$OH^{\bullet} + OH^{\bullet} \rightarrow H_2O_2.$$
 (3)

Реакция (2) представляется более вероятной, чем реакция (3) [5, 6], поскольку следовые количества атомов Н[•] обнаруживаются в спектрах ЭПР (рис. 1, табл. 1, 2). Возможные способы фотоиндуцируемого образования радикалов HO_2^{\bullet} рассмотрены в [1, 2, 5–7].

Не исключено, что определенную роль в образовании H_2O_2 в рассматриваемых системах могут играть процессы, связанные с переносом энергии. Обращает на себя внимание близость оптических характеристик АХ и воды (полос возбуждения флуоресценции и спектров флуоресценции).

При облучении водных растворов АХ при 77 К светом с $\lambda \sim 260$ нм наблюдается флуоресценция с $\lambda_{max} \approx 348-362$ нм, отнесенная на счет эксимеров АХ [11], что в целом соответствует результатам, полученным в жидких растворах (dA)₂₀ ($\lambda_{max} \approx 362$ нм) [21]. Положение максимума коротковолновой флуоресценции воды, возбуждаемой светом в области $\lambda \sim 260$ нм, варьирует в пределах 345–360 нм [49, 50].

При облучении растворов (dA)₂₀ в UVA-диапазоне (возбуждение при $\lambda \sim 330$ нм) максимум флуоресценции наблюдается при 420 нм [21]. Максимум длинноволновой флуоресценции воды, возбуждаемой светом с $\lambda \sim 310$ нм, расположен при 410–425 нм [49, 50]. Вследствие большой ширины полос регистрируемые спектры флуоресценции (dA)₂₀ и воды хорошо перекрываются (ширина их на полувысоте максимума составляет ~100 нм [21, 50]).

В [50] показано, что интенсивность эмиссионных спектров воды существенно зависит от присутствия в ней O_2 . Предположено, что наблюдаемые отличия в эмиссионных спектрах, регистрируемых в присутствии O_2 , обусловлены образованием нанопузырьков газа и адсорбцией содержащихся в следовых количествах примесей на водно-пузырьковых границах растворов.

В [51] продемонстрировано существенное влияние микрогетерогенности среды, обусловленной, в частности, образованием микропузырьков растворенного O_2 на наблюдаемые спектры флуоресценции. При этом наблюдалось отсутствие однозначного соответствия между степенью очистки воды и параметрами ее флуоресценции; причем как интенсивность длинноволновой флуоресценции воды, так и положение ее максимума существенно зависело от условий приготовления растворов. Таким образом, несмотря на принципиальную возможность процессов переноса энергии в рассматриваемых системах, предсказать их направленность без проведения специальных исследований не представляется возможным.

Системы, содержащие микро/нанопузырьки O_2 , безусловно, можно отнести к разряду "*органи-зованных сред*" [52, 53]. "Организованные среды — это прозрачные, оптически однородные растворы, в которых в основной массе растворителя присутствуют наноразмерные системы, образующие собственную нанофазу". Эти среды во многом подобны мицеллярным растворам, они гомогенны и однофазны в макромасштабе, но микрогетерогенны и двухфазны на наноуровне [52]. Соответствующие микровключения могут считаться микро / нанореакторами [53] (и ссылки в цитируемых работах).

Приведенные в данной работе исследования выполнены с использованием ЭПР-спектрометра Bruker EMX-8 ЦКП "Новые материалы и технологии" ИБХФ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Журн. физ. химии. 2015. Т. 89. № 8. С. 1329.
- 2. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Там же. 2016. Т. 90. № 11. С. 1739.
- 3. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Там же. 2017. Т. 91. № 12. С. 2146.
- 4. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Там же. 2018. Т. 92. № 10. С. 1653.
- 5. Лозинова Т.А., Лобанов А.В., Ландер А.В. // Там же. 2019. Т. 93. № 5. С. 757.
- 6. Лозинова Т.А., Лобанов А.В., Ландер А.В., Бржевская О.Н. // Там же. 2020. Т. 94. № 2. С. 306.
- 7. Лозинова Т.А., Ландер А.В. // Там же. 2014. Т. 88. № 1. С. 120.
- Лозинова Т.А., Ландер А.В. // Биофизика. 2013. Т. 58. № 3. С. 445.
- 9. Лобанов А.В., Рубцова Н.А., Веденеева Ю.А., Комиссаров Г.Г. // Докл. РАН. 2008. Т. 421. № 6. С. 773.
- 10. Лобышев В.И. // Рос. хим. журн. 2007. Т. 51. № 1. С. 107.
- Kleinwachter V. // Collection Czechoslov. Chern. Cornrnun. 1972. V. 37. P. 1622.
- Physico-chemical Properties of Nucleic Acids / Ed. by Duchesne. London: Academic Press Inc., 1973. P. 119–142.
- Szajdzinska-Pietek E., Bednarek J., Plonka A. et al. // Res. Chem. Intermed. 2001. V. 27. № 9. P. 937.
- Beshnova D.A., Lantushenko A.O., Davies D.B., Evstigneev M.P. // J. Chem. Phys. 2009. V. 130. P. 165105.

- 15. *Scheller K.H., Hofstetter F., Mitchell P.R. et al.* // J. Am. Chem. Soc. 1981. V. 103. № 2. P. 247.
- Morcillo J., Gallego E., Peral F. // J. Mol. Struct. 1987. V. 157. P. 353.
- 17. *Мецлер Д.* Биохимия. Т. 1. М.: Мир, 1980. 497 с. (D.E. Metzler. Biochemistry. Academic Press. New York San Francisco London. 1977.)
- 18. Бржевская О.Н., Дегтярев Е.Н., Левин П.П. и др. // Докл. АН. 2005. Т. 405. С. 259.
- Краткая химическая энциклопедия. Т. 1 / Под ред. И.Л. Кнунянца, Г.Я. Бахаровской, А.И. Бусева и др. М.: Советская энциклопедия, 1961. С. 31.
- Зенгер В. Принципы структурной организации нуклеиновых кислот. М.: Мир, 1987. 583 с. (Saenger W. Principles of Nucleic Acid Structure. Springer-Verlag New York, 1984).
- 21. Browne D.T., Eisinger J., Leonard N.J. // J. Am. Chem. Soc. 1968. V. 90. P. 7302.
- 22. Banyasz A., Vaya I., Changenet-Barret P. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 5163.
- 23. Peral F., Gallego E. // Biophys. Chem. 2000. V. 85. P. 79.
- 24. Van Holde K.E., Rossetti G.P. // Biochemistry. 1967. V. 6. № 7. P. 2189.
- Лозинова Т.А. Фотохимическая модель синтеза аденозинтрифосфата: Дис. ...канд. физ.-мат. наук. М.: МГУ, 1989.
- 26. *Ghormley J.A., Hochanadel C.J.* // J. Phys. Chem. 1971.V. 75. № 1. P. 40.
- Kläning U.K., Wolff T. // Ber. Bunsenges. Phys. Chem. 1985. V. 89. P. 243.
- 28. *Гудков С.В., Карп О.Э., Гармаш С.А. и др.* // Биофизика 2012. Т. 57. № 1. С. 5.
- Инфракрасная спектроскопия полимеров / Под ред. И. Деханта (Пер. с нем.). М.: Химия, 1976. 472 с.
- 30. Коновалов А.И., Рыжкина И.С. // Изв. АН. Сер. хим. 2014. № 1. С. 1.
- 31. Raghavaiah P. Supramolecular Assembles of Amine-Based Compounds in Combination with Different Counter Systems Ranging from Inorganic Anions, a Heteropoly Anion and Substituted Organic Acids: A Thesis Submitted In partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy. Department of Chemistry Goa University Taleigao Plateau Goa 403 206 India. 2007. 190 p.
- 32. *Ignatov I., Mosin O. //* Journal of Health, Medicine and Nursing. 2014. V. 6. P. 50.
- Sedlak M., Rak D. // J. Phys. Chem. B. 2013. V. 117. P. 2495.

- Cole D.R., Herwig K.W., Mamontov E., Larese J.Z. // Reviews in Mineralogy & Geochemistry. 2006. V. 63. P. 313.
- Isaacs E.D., Shukla A., Platzman P.M. et al. // J. Phys. Chem. Solids. 2000. V. 61. P. 403.
- 36. Park S.-C., Moon E.-S., Kang H. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 12000.
- 37. Головин Ю.А. // СОЖ. 2000. Т. 6. № 9. С. 66.
- 38. Chaplin M. // Water. 2009. V. 1. P. 1.
- Полине Л., Полине П. Химия. М.: Мир, 1978. 683 с. (L. Pauling, P. Pauling. Chemistry. W. H. Freeman & Co., San Francisco. 1975.)
- Бугаенко Л.Т., Рябых С.М., Бугаенко А.Л. // Вестн. Моск. ун-та. Сер. 2. Химия. 2008. Т. 49. № 6. С. 363.
- 41. Belovolova L.V., Vinogradov E.A., and Glushkov M.V. // Phys. Wave Phenom. 2013. V. 21. № 3. P. 183.
- 42. Неделина О.С., Бржевская О.Н., Дегтярев Е.Н. и др. Проблемы зарождения и эволюции биосферы / Под ред. Э.М. Галимова. М.: Книжный дом "ЛИБ-РОКОМ", 2008. С. 179.
- 43. Неделина О.С., Бржевская О.Н., Дегтярев Е.Н., Зубков А.С. // Докл. АН. 2012. Т. 442. № 4. С. 501.
- 44. Неделина О.С., Бржевская О.Н., Дегтярев Е.Н. и др. Проблемы зарождения и эволюции биосферы / Под ред. Э.М. Галимова. М.: КРАСАНД, 2013. С. 347.
- 45. Chen R., Avotinsh Y., Freeman G.R. // Can. J. Chem. 1994. V. 72. P. 1083.
- Пикаев А.К. Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986. 440 с.
- 47. Левин П.П., Бржевская О.Н., Неделина О.С. // Изв. АН. Сер. хим. 2007. № 7. С. 1277.
- 48. *Thomas J.K., Gordon S., Hart E.J.* // J. Phys. Chem. 1964. V. 68. № 6. P. 1524.
- 49. Lobyshev V.I., Shikhlinskaya R.E., Ryzhikov B.D. // J. Mol. Liq. 1999. V. 82. P. 73.
- Vallée P., Lafait J., Mentré P. et al. // J. Chem. Phys. 2005. V. 122. P. 114513.
- Беловолова Л.В., Глушков М.В., Виноградов Е.А. // 2009. Сборник избранных трудов V Международного конгресса "Слабые и сверхслабые поля и излучения в биологии и медицине". СПб., 2009. С. 10. www.biophys.ru/archive/congress2009/prop10.pdf
- 52. Штыков С.Н. Люминесцентный анализ / Под ред. Г.И. Романовской (Научн. Совет РАН по аналит. химии. Проблемы аналитической химии. Т. 19). М.: Наука. 2015. С. 127.
- 53. Штыков С.Н. // Журн. аналит. химии. 2002. Т. 57. № 10. С. 1018.