_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.35,537.86

СОБСТВЕННОЕ ИЗЛУЧЕНИЕ ВОДНЫХ РАСТВОРОВ СИЛЬНЫХ КИСЛОТ В МИЛЛИМЕТРОВОЙ ОБЛАСТИ СПЕКТРА

© 2021 г. А. К. Лященко^{а,*}, И. М. Каратаева^а, В. С. Дуняшев^а, А. Ю. Ефимов^а

^а Российская академия наук, Институт общей и неорганической химии им. Н.С. Курнакова, 119991 Москва, Россия

**e-mail: aklyas@mail.ru* Поступила в редакцию 13.10.2020 г. После доработки 17.10.2020 г. Принята к публикации 20.10.2020 г.

Рассмотрены экспериментальные и расчетные методы определения радиояркостных контрастов водных растворов в миллиметровой области спектра. В качестве модельных систем использованы растворы соляной и азотной кислот. Выделены особенности данного диапазона частот. Исследованы связи СВЧ- и КВЧ-диэлектрических спектров с изменениями квазиоптических параметров растворов и их радиояркостных характеристик. На основании обобщения материала и сравнения с данными для других водных растворов электролитов и неэлектролитов обоснован новый метод дистанционного изучения свойств растворов.

Ключевые слова: диэлектрическая спектроскопия, радиометрия, водные растворы кислот **DOI:** 10.31857/S0044453721080197

С расширением возможностей радиотехнической аппаратуры и появлением высокочувствительных радиометров миллиметрового (мм) диапазона проявляется еще одно аномальное свойство водных растворов, связанное с изменением коэффициентов собственного излучения и радиояркостных контрастов в растворах электролитов. Специфика мм-диапазона здесь выступает достаточно наглядно как с теоретических, так и с прикладных позиций. В последнем случае это связано с биологическими и медицинскими эффектами мм-волн и экологическим мониторингом [1-5]. В теоретическом плане анализ поляризации водного диэлектрика позволяет выделить гидратационные составляющие и раздельно оценить вклады ориентационной поляризации и поляризационные эффекты динамики ионной атмосферы в комплексной диэлектрической проницаемости раствора. В работах [6–9] радиояркостные характеристики были изучены экспериментально с помощью радиометра на частоте 61.2 ГГц для растворов с одно- и многозарядными ионами в растворе. Они определяются квазиоптическими коэффициентами растворов. В начальной области концентраций в согласии с экспериментом их значения были рассчитаны из экспериментальных данных о дипольных и ионных потерях в области основного максимума дисперсии комплексной проницаемости растворов и исходных данных электропроводности растворов. Представляет интерес оценить рассматриваемые эффекты в случае водных растворов сильных кислот, обладающих аномально высокой элек-тропроводностью, связанной с эстафетным меха-низмом подвижности протона.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования образцов воды и растворов в лабораторных условиях проводили с использованием высокочувствительного радиометра с фиксированной частотой 61.2 ГГц (ИРЭ РАН, НПО Ис-Фрязино). Устройство радиометра ток, И методики проведения измерений и расчетов описаны ранее [6, 7, 10, 11]. Показания прибора оцифровывают и передают на ПК, где с помощью специальной программы ведется запись и дальнейшая обработка сигнала. Измеряется радиофизический отклик U (напряжение на выходе рупора в вольтах). Эффект перехода от воды к раствору проявляется в виде величин $\Delta U = U_{\text{раствора}} - U_{\text{воды}}$. На рис. 1 представлены измеренные значения ΔU для растворов HCl и HNO₃ разных концентраций. Градуировка шкалы прибора с использованием эталонов описана в [7]. Исходя из нее, можно рассчитать относительные изменения излучения растворов по сравнению с водой. Интенсивность собственного излучения раствора у целесообразно выражать через квазиоптические коэффициенты и радиояркостную температуру T_{g} ($T_{g} = \chi T$, где *T* – термодинамическая температура). В данной работе весь эксперимент проведен при T =

Рис. 1. Разности показаний радиометра $\Delta U = U_{\text{раство-ра}} - U_{\text{волы}}$ в зависимости от концентраций HNO₃ (**П**) и HCl (**●**) на частоте 61.2 ГГц.

= 298.15 К. Соответствующие параметры радиояркости, полученные методом радиометрии, представлены в табл. 1.

Таблица 1. Разность сигналов $\Delta U = U_{\text{раствора}} - U_{\text{воды}}$, коэффициенты излучения χ и радиояркостные температуры $T_{\text{я}}$ растворов HCl и HNO₃, полученные с помощью радиометра на частоте 61.2 ГГц (c – концентрация кислоты)

Система	с, моль/л	ΔU , мВ	χ	<i>Т</i> _я , К
H ₂ O	0	0	0.506	150.9
HCl	1.17	-2.5	0.479	142.8
	1.60	-3.9	0.465	138.8
	2.65	-5.6	0.448	133.70
	5.09	-7.6	0.428	127.67
	6.66	-6.8	0.436	129.9
	8.29	-5.8	0.446	132.9
	9.80	-3.9	0.465	138.76
HNO ₃	1.58	-2.2	0.482	143.71
	3.76	-5.1	0.453	135.1
	5.39	-6.5	0.439	130.9
	6.49	-7.1	0.433	129.1
	8.17	-6.5	0.439	130.9
	10.10	-5.5	0.449	133.9
	11.14	-4.4	0.460	137.1

МЕТОДИКА РАСЧЕТОВ

Существует связь между диэлектрическими свойствами и квазиоптическими характеристиками растворов. Зная комплексную диэлектрическую проницаемость водных растворов $\varepsilon^*(v)$ на частоте v, можно найти их квазиоптические параметры. Коэффициент отражения R(v) рассчитывается из $\varepsilon^*(v)$ с помощью формулы Френеля (случай нормально падающей волны):

$$R(\mathbf{v}) = \left| \frac{\sqrt{\varepsilon^*(\mathbf{v})} - 1}{\sqrt{\varepsilon^*(\mathbf{v})} + 1} \right|^2.$$

При полном поглощении излучения образцом коэффициент отражения (в условиях термодинамического равновесия) будет связан с измеряемым в радиометрическом эксперименте коэффициентом излучения $\chi(v)$ простым соотношением: $\chi(v) = 1 - R(v)$. Основной радиометрический показатель – радиояркостная температура $T_{g}(v)$ на частоте v находится из выражения: $T_{g}(v) = \chi(v)T$.

По техническим причинам прямые измерения диэлектрических параметров на интересующей нас частоте затруднены. Поэтому использовали экстраполяцию известных диэлектрических данных для частот 7–25 ГГц на частоту 61.2 ГГц.

Комплексная диэлектрическая проницаемость на частоте v определяется как $\varepsilon^*(v) = \varepsilon'(v) - -i\varepsilon''(v)$, где $\varepsilon' - диэлектрическая проницаемость,$ $<math>\varepsilon'' - диэлектрические потери, i - мнимая едини$ ца. В случае неэлектролитов для воспроизведения $спектра <math>\varepsilon^*(v)$ в диапазоне частот обычно используют функцию Дебая, модифицированную Коулом и Коулом [12]:

$$\varepsilon^*(\mathbf{v}) = \varepsilon_{\infty} + \frac{\varepsilon_S - \varepsilon_{\infty}}{1 + (i2\pi v\tau)^{1-\alpha}},\tag{1}$$

где \mathcal{E}_{∞} — высокочастотный предел для рассматриваемой области дисперсии; \mathcal{E}_s — статическая диэлектрическая проницаемость; τ — время релаксации; α — параметр распределения времен релаксации. Значение $\mathcal{E}''(\nu)$ для воды определяется дипольной релаксацией молекул и может быть получено из выражения (1). В случае растворов электролитов поглощение идет уже по двум механизмам, связанным как с переориентациями дипольных молекул воды, так и со смещениями заряженных ионов в переменном электромагнитном поле. Вклад ионных потерь рассчитывается с использованием экспериментальных данных по низкочастотной электропроводности [13]:

$$\varepsilon_i''(v) = \frac{\sigma}{2\pi\varepsilon_0 v},\tag{2}$$

где ε_0 – электрическая постоянная (8.854 × 10⁻¹² Φ /м), σ – удельная электропроводность раствора, См/м. Таким образом, для растворов электро-

литов общие диэлектрические потери находятся как сумма потерь, рассчитанных по (1) и (2):

$$\varepsilon''(\mathbf{v}) = \varepsilon_d''(\mathbf{v}) + \varepsilon_i''(\mathbf{v}),$$

где $\varepsilon_d^{"}(v)$ – дипольные, а $\varepsilon_i^{"}(v)$ – ионные диэлектрические потери.

Ранее проведенные измерения комплексной диэлектрической проницаемости растворов HCl и HNO₃ в области максимума дисперсии растворов (7–25 ГГц) были использованы для определения параметров функции (1) [14, 15]. Полученные значения приведены в табл. 2.

Оба вклада в є"(v) зависят от частоты, при этом вид зависимостей є_d"(v) и є_i"(v) различен. Ионные потери превалируют на низких частотах, сравнимы с дипольными в области максимума дисперсии воды и заметно меньше дипольных потерь в миллиметровой области. На рис. 2 это показано на примере двух растворов с разными концентрациями HNO₃. Там же указана частота 61.2 ГГц, на которой были проведены радиометрические измерения.

Ионный вклад в $\varepsilon''(v)$ быстро уменьшается с ростом частоты, поэтому им часто пренебрегают в миллиметровой области частот. В связи с этим представляет интерес сопоставить оба варианта расчета радиояркостных характеристик растворов. В одном случае учитываются как ионные, так и дипольные диэлектрические потери (χ , T_{s}), а в другом — только дипольный вклад в ε'' ($\chi(d)$, $T_{s}(d)$). В табл. 3 приведены рассчитанные из имеющихся экспериментальных данных по ε^* коэффициенты излучения и радиояркостные температуры для дипольных и полных потерь.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Имеющийся экспериментальный материал и оценки параметров из диэлектрических данных в области максимума дисперсии воды растворов позволяют более подробно рассмотреть изменения χ в начальной области концентраций. Как видно из рис. 3 и 4 при невысоких концентрациях наблюдается согласие этих величин с расчетными значениями. Это свидетельствует о правильности выбора релаксационных моделей и значений параметров для ионных и гидратационных вкладов на рассматриваемых частотах мм диапазона. Тем самым, в начальной области концентраций они оказываются пригодными и для растворов кислот с высокими ионными потерями. Для растворов HNO₃ согласие несколько хуже. В то же время следует отметить, что оно определяется не только экспериметальными радиояркостными характеристиками, но и точностью подбора релаксационной модели для описания спектров в см-области.

Таблица 2. Значения параметров моделей диэлектрических спектров, использованных при экстраполяции диэлектрических данных из диапазона частот 7— 25 ГГц на частоту 61.2 ГГц

Система	<i>с</i> , моль/л	σ, См/м	ϵ_S	τ, пс	α
H ₂ O	0	0	78.4	8.25	0
HCl	0.25	9.35	70.7	8.0	0.02
	0.50	18.00	65.0	7.9	0.08
	1.00	33.84	51.4	7.2	0.17
	1.50	44.80	39.8	6.5	0.15
HNO ₃	0.25	9.80	70.36	7.74	0
	0.50	20.04	63.04	7.23	0.02
	1.00	37.41	49.76	6.51	0.07

Сравнение с данными для других растворов электролитов показывает, что наблюдается падение излучения при переходе от воды к раствору, как и в растворах хлорида калия. Причем здесь оно проявляется даже в большей степени, чем в

Рис. 2. Частотные зависимости разных вкладов диэлектрических потерь в 0.25 М (I) и 1.0 М (2) водных растворах HNO₃: ионные потери (сплошные линии), дипольные потери (пунктирные линии), полные диэлектрические потери (утолщенные сплошные линии). Показана частота радиометрических экспериментов.

Таблица 3. Коэффициенты излучения χ и радиояркостная температура $T_{\rm g}$ водных растворов HCl и HNO₃ на частоте 61.2 ГГц, полученные экстраполяцией диэлектрических данных из диапазона частот 7–25 ГГц

Система	с, моль/л	$\chi(d)^*$	χ	$T_{\mathfrak{g}}(d)^*, \mathbf{K}$	<i>Т</i> я, К
H ₂ O	0	0.506	0.506	150.9	150.9
HCl	0.25	0.520	0.496	155.0	148.0
	0.50	0.534	0.491	159.3	146.2
	1.00	0.567	0.485	169.1	144.7
	1.50	0.604	0.481	180.0	143.4
HNO ₃	0.25	0.516	0.491	153.8	146.5
	0.50	0.528	0.479	157.5	142.9
	1.00	0.561	0.469	167.3	139.7

* Расчет без учета ионной составляющей.

случае других систем. В случае растворов солей такое уменьшение связано со слабой гидратацией ионов. В то же время гидратацию иона H⁺ ни в коей мере нельзя считать слабой. Здесь образуются

устойчивые гидратные комплексы. С другой стороны, аномально высокая подвижность протона определяет повышенную электропроводность и большие ионные потери (понижающая составляющая в χ). Отмеченное относится к первой области концентраций, где присутствует исходная тетраэдрическая структура воды и аномальная подвижность протона. Минимум на зависимостях у объясняется с этих позиций. Как и в случае электропроводности, он определяется, в первую очередь, образованием сложных ионно-водных агрегатов в условиях отсутствия исходной структуры воды и пониженных значениях диэлектрических констант [16]. Этот эффект проявляется при концентрации растворов HCl 5-6 M, а для растворов HNO₃ – при 6–7 М. При больших концентрациях низкочастотная электропроводность падает при увеличении концентрации, так же, как и величины γ . Таким образом, в концентрированных растворах кислот проявляется добавочный механизм взаимодействий, определяющий изменения радиояркостных контрастов. Развиваемый подход создает возможности развития нолистанционного вого метода исследования свойств агрессивных водных сред в широкой области концентраций.

Рис. 3. Концентрационные зависимости коэффициента излучения χ на частоте 61.2 ГГц для растворов HCl: экспериментальные измерения (\bullet), расчеты χ из диэлектрических данных с учетом ионных потерь (∇) и без учета ионных потерь (\blacksquare).

Рис. 4. Концентрационные зависимости коэффициента излучения χ на частоте 61.2 ГГц для растворов HNO₃: экспериментальные измерения (\bullet), расчеты χ из диэлектрических данных с учетом ионных потерь (\mathbf{V}) и без учета ионных потерь (\mathbf{I}).

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований и при частичной поддержке РФФИ (грант № 19-03-00033а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бецкий О.В., Кислов В.В., Лебедева Н.Н. Миллиметровые волны и живые системы. М.: "Сайнс-Пресс", 2004. 271 с.
- Тамбиев А.Х., Киркоров Н.Н., Бецкий О.В. Миллиметровые волны и фотосинтезирующие организмы. Монография / Под ред. Ю.В. Гуляева и А.Х. Тамбиева. М.: Радиотехника, 2003. 175 с.
- 3. Лященко А.К. // Биомедицинская радиоэлектроника. 2007. № 8–9. С. 62.
- 4. Шутко А.М. СВЧ-радиометрия водной поверхности. М.: Наука, 1986. 188 с.
- Садовский И.Н., Шарков Е.А., Кузьмин А.В. и др. // Исследование земли из космоса. 2014. № 6. С. 79. https://doi.org/10.7868/S0205961414060050
- Лященко А.К., Каратаева И.М., Козьмин А.С., Бецкий О.В. // Докл. АН. 2015. Т. 462. № 5. С. 561. https://doi.org/10.7868/S0869565215170168
- 7. Лященко А.К., Каратаева И.М., Дуняшев В.С. // Журн. физ. химии. 2019. Т. 93. № 4. С. 552. https://doi.org/10.1134/S0044453719040204

- Лященко А.К., Ефимов А.Ю., Дуняшев В.С., Каратаева И.М. // Журн. неорган. химии. 2020. Т. 65. № 2. С. 237. https://doi.org/10.31857/S0044457X20020099
- 9. Лященко А.К., Ефимов А.Ю., Дуняшев В.С., Ефименко И.А. // Там же. 2020. Т. 65. № 11. С. 1565. https://doi.org/10.31857/S0044457X20110112
- 10. *Криворучко В.И.* // Изв. вузов. Радиофизика. 2003. Т. 46. № 8–9. С. 782.
- 11. *Козьмин А.С.* Низкоинтенсивное электромагнитное излучение миллиметрового диапазона воды и водных растворов. Дисс. ... канд. физ.- мат. наук. Волгоград, 2011. 180 с.
- 12. *Cole K.S., Cole R.H.* // J. Chem. Phys. 1942. V. 10. P. 98. https://doi.org/10.1063/1.1723677
- 13. *Hasted J.B.* Aqueous Dielectics. L.: Chapman and Hall, 1973. 302 p.
- Lileev A.S., Loginova D.V., Lyashchenko A.K. // Mendeleev Commun. 2007. № 17. P. 364. https://doi.org/10.1016/j.mencom.2007.11.024
- Lyashchenko A.K., Lileev A.S. // J. Chem. Eng. Data. 2010. V. 55. № 5. P. 2008. https://doi.org/10.1021/je900961m
- 16. Лященко А.К., Иванов А.А. // Журн. структур. химии. 1981. Т. 22. № 5. С. 69.