ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2021, том 95, № 8, с. 1189–1193

ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ =

УДК 541. 572. 128

ВЛИЯНИЕ ПРОСТРАНСТВЕННОГО ФАКТОРА НА КИНЕТИКУ ДЕСТРУКЦИИ ОКТА(4-*TPET*-БУТИЛФЕНИЛ)ТЕТРАПИРАЗИНО-ПОРФИРАЗИНА В СИСТЕМЕ АЗОТСОДЕРЖАЩЕЕ ОСНОВАНИЕ— ДИМЕТИЛСУЛЬФОКСИД

© 2021 г. О. А. Петров^{а,*}, М. В. Шиловская^а

^аИвановский государственный химико-технологический университет, Иваново, Россия

**e-mail: poa@isuct.ru* Поступила в редакцию 23.09.2020 г. После доработки 23.09.2020 г. Принята к публикации 30.09.2020 г.

Исследовано состояние окта(4-*mpem*-бутилфенил)тетрапиразинопорфиразина в диметилсульфоксиде. Обнаружено образование устойчивого во времени комплекса с переносом протонов. Показано, что введение добавок *н*-бутиламина и диэтиламина в диметилсульфоксид приводит к деструкции этого комплекса с последующим разрушением тетрапиразинопорфиразинового макроцикла. Установлено влияние *mpem*-бутильных заместителей в октафенилтетрапиразинопорфиразине на кинетические параметры процесса.

Ключевые слова: окта(4-*mpem*-бутилфенил)тетрапиразинопорфиразин, диметилсульфоксид, ациклическое азотсодержащее основание, комплекс с переносом протонов, кинетика, деструкция **DOI:** 10.31857/S0044453721080227

Порфиразины с аннелированными ароматическими гетероциклами (H_2PA) относятся к числу интенсивно исследуемых соединений в связи с их возрастающим применением в качестве оптических материалов для записи информации, компонентов цветных и оптических фильтров, флуорохромов, светоизлучающих устройств [1]. Одно из важных критериев использования H_2PA в практических целях – изучение их устойчивости в различных условиях среды, что позволяет расширить спектр полезных свойств этого класса соединений. К настоящему времени количественные данные о стабильности аннелированных порфиразинов в протоноакцепторных средах весьма немногочисленны [2, 3].

В связи с этим в данной работе исследовано состояние окта(4-*трет*-бутилфенил)тетрапиразинопорфиразина в диметилсульфоксиде и системе азотсодержащее основание (В) – диметилсульфоксид (DMSO), а также показано влияние заместителей в макроцикле на кинетические параметры деструкции окта(4-*трет*-бутилфенил)тетрапиразинопорфиразина ($H_2Pa((C_6H_4-Bu)_2Pyz)_4$) и октафенилтетрапиразинопорфиразина ($H_2Pa(Ph_2Pyz)_4$). В качестве В были взяты *н*бутиламин ($BuNH_2$), *трет*-бутиламин (Bu^1NH_2), диэтиламин (Et_2NH) и три-*н*-бутиламин (Bu_3N).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Окта(4-*трет*-бутилфенил)тетрапиразинопорфиразин синтезировали по методике [4]. Бензол, диметилсульфоксид и азотсодержащие основания (ACROS) использовали без дополнительной очистки. Для проведения кинетических измерений в термостатируемую кювету спектрофотометра SHIMADZU-UV-1800 помещали свежеприготовленный раствор $H_2Pa((C_6H_4Bu)_2Pyz)_4$ в DMSO с постоянной концентрацией и добавляли переменные количества азотсодержащих оснований. Скорость деструкции комплекса с переносом протонов $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO$ определяли по уменьшению оптической плотности раствора на длине волны $\lambda = 664$ нм. Текущую концентрацию комплекса определяли по формуле:

$$C = C^{\circ}(A_0 - A_{\infty}) / (A_{\tau} - A_{\infty}), \qquad (1)$$

где A_0 , A_τ и A_∞ — оптические плотности растворов в начальный момент времени, в момент времени τ и после завершения реакции (τ_∞); C° и C — начальная и текущая концентрации комплекса H_2 -Pa(($C_6H_4Bu_2Pyz$)₄ · 2DMSO. Все измерения проводили в условиях реакции псевдопервого порядка, поэтому наблюдаемую (экспериментальную) константу скорости деструкции $H_2Pa((C_6H_4 Bu)_2Pyz)_4 · 2DMSO рассчитывали по формуле:$

$$k_{\rm H} = (1/\tau) \lg(C^{\circ}/C).$$
 (2)

Точность кинетических параметров оценивали с помощью обычных методов статистики при доверительном интервале 95%. Использование метода Стьюдента позволило определить относительные ошибки в значениях $k_{\rm H}$ и $E_{\rm a}$, которые составили не более 4 и 10% соответственно.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Предварительными исследованиями установлено, что электронный спектр поглощения (ЭСП) H₂Pa((C₆H₄Bu)₂Pyz)₄ в среде нейтрального бензола имеет в видимой области расщепленную Q-полосу с $\lambda_{\rm I} = 674$ и $\lambda_{\rm II} = 646$ нм, соответствующую D_{2h} -симметрии π -хромофора молекулы (рис. 1). При замене бензола на слабоосновный диметилсульфоксид в ЭСП $H_2Pa((C_6H_4Bu)_2Pyz)_4$ регистрируется нерасщепленная *Q*-полоса с λ = = 664 нм, характерная для D_{4h} -симметрии тетрапиразинопорфиразинового макроцикла (рис. 2). Повышение симметрии молекулы от D_{2h} до D_{4h} , происходящее в результате изменения энергий высшей заполненной и низшей вакантной молекулярных орбиталей [5], указывает на то, что H₂-Ра((C₆H₄Bu)₂Pyz)₄, как и H₂Pa(Ph₂Pyz)₄ [2], в присутствии DMSO проявляет свойства двухосновной NH-кислоты и образует комплекс с переносом протонов $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DM$ -SO. Следует ожидать, что в этом комплексе делокализованные протоны NH-групп, связанные с двумя внутрициклическими атомами азота и атомом кислорода молекул DMSO, располагаются над и под плоскостью макроцикла [6, 7], а перенос протонов ограничивается стадией образования Н-связанной ионной пары (II). Этому способствует выраженная NH-кислотность тетрапиразинопорфиразинового макроцикла (р $K_{1a} = 5.82$ [8]) и ионизирующая способность DMSO [9]. При этом не исключается возможность реализации кислотно-основного равновесия с Н-комплексом (H-ассоциатом I):

Перенос протонов от $H_2Pa((C_6H_4Bu)_2Pyz)_4 \kappa$ DMSO с образованием разделенных растворителем ионных пар с последующей их диссоциацией представляется маловероятным [10].

Дальнейшие исследования показали, что комплекс $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO$ обладает достаточно высокой устойчивостью во времени. Характер его ЭСП в DMSO остается без изменений в течение ~ 90 ч при 318 К. Качественно другая картина наблюдается при введении в DMSO добавок *н*-бутиламина и диэтиламина. В ЭСП $H_2Pa((C_6H_4Bu)_2Pyz)_4$ независимо от природы основания с течением времени регистрируется уменьшение интенсивности нерасщепленной

Рис. 1. Электронный спектр поглощения $H_2Pa((C_6H_4Bu)_2Pyz)_4$ в бензоле при 298 К.

Рис. 3. Зависимости $lg(C^{\circ}/C)$ от времени деструкции комплекса $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO$ в системе азотсодержащее основание – DMSO при *T* = 323 K и $C_{BuNH_2}^{\circ} = 0.51$ моль/л (*1*), $C_{Et,NH}^{\circ} = 7.23$ моль/л (*2*).

Q-полосы при $\lambda = 664$ нм (рис. 2). Одновременно с этим наблюдается изменение ярко-зеленой окраски раствора до бесцветной.

В интервале $C_{BuNH_2}^{\circ} = 0.13 - 2.00$ и $C_{Et_2NH}^{\circ} = 1.20 - 7.23$ моль/л в DMSO процесс деструкции H₂-Pa((C₆H₄Bu)₂Pyz)₄ · 2DMSO имеет первый порядок по комплексу с переносом протонов (рис. 3) и близкий к единице (в пределах экспериментальной ошибки) по основанию (рис. 4). Следовательно,

$$k_{\rm H} = kC_{\rm B},\tag{4}$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 8 2021

Рис. 2. Изменение электронного спектра поглощения $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO$ в системе *н*-бутиламин – DMSO в течение 15 мин при $C_{BuNH_2}^{\circ} = 0.51$ моль/л, T = 323 K.

Рис. 4. Зависимости $\lg k_{\rm H}$ от $\lg C_{\rm B}^{\rm o}$ для деструкции комплекса $H_2 {\rm Pa}((C_6 H_4 {\rm Bu})_2 {\rm Pyz})_4 \cdot 2 {\rm DMSO}$ в системе азотсодержащее основание – DMSO при 303 К в присутствии *н*-бутиламина (*1*) и диэтиламина (*2*).

$$-dC_1/d\tau = kC_1C_{\rm B},\tag{5}$$

где $k_{\rm H}$ и k — наблюдаемая константа скорости деструкции и константа скорости деструкции второго порядка соответственно; В — BuNH₂ и Et₂NH; C_1 — концентрация H₂Pa((C₆H₄Bu)₂Pyz)₄. Аналогичным кинетическим уравнением второго порядка описывается деструкция комплекса H₂-Pa(Ph₂Pyz)₄ · 2DMSO [2].

Наиболее вероятная причина распада макроцикла связана с протеканием конкурентной реакции за протон:

$$H_{2}Pa((C_{6}H_{4}Bu)_{2}Pyz)_{4} \cdot 2DMSO + B \xrightarrow{k_{1}} \\ \xrightarrow{k_{1}} [HPa((C_{6}H_{4}Bu)_{2}Pyz)_{4} \cdot DMSO]^{-} + HB^{+} + DMSO,$$
(6)

$$[HPa((C_6H_4Bu)_2Pyz)_4 \cdot DMSO]^- + B \xrightarrow{k_2} (7)$$

$$\xrightarrow{k_2} [Pa((C_6H_4Bu)_2Pyz)_4]^{2-} + HB^+ + DMSO.$$

На стадиях (6) и (7) молекулы азотсодержащего основания, благодаря выраженной протоноакцепторной способности, вытесняют молекулы DMSO. При этом высокая ионизирующая способность среды благоприятствует диссоциации комплекса с переносом протонов с образованием дианионной формы $[Pa((C_6H_4Bu)_2Pyz)_4]^{2-}$. Она относится к группе симметрии D_{4h} [5], и поэтому не отличается от электронного спектра поглощения $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO$. Из-за отсутствия компенсации избыточного заряда в макроцикле дианионная форма окта(4-*трет*-бутилфенил)тетрапиразинопорфиразина подвергается самопроизвольному распаду с образованием низкомолекулярных бесцветных продуктов реакции. Изменение ЭСП H_2 Pa((C₆H₄Bu)₂Pyz)₄ · 2DMSO в присутствии значительного избытка основания происходит без спектральной регистрации промежуточного комплекса $[HPa((C_6H_4Bu)_2Pyz)_4$ · · DMSO]⁻. Этот факт позволяет полагать, что $k_1 <$ < k₂. Однако детальный механизм деструкции тетрапиразинопорфиразинового макроцикла представляется чрезвычайно сложным и требует специального углубленного изучения.

Из данных (табл. 1) видно, что процесс деструкции $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO$ в системе основание – DMSO характеризуется низкими значениями констант скорости и достаточно высокими значениями энергии активации (Е_а) процесса. Причина этого явления связана с особенностями строения тетрапиразинопорфиразинового макроцикла. Непрерывное π,π -перекрывание по внутреннему 16-членному контуру (C_8N_8), а также увеличение числа π -электронов в ароматической системе за счет мезо-атомов азота и ее расширение в результате аннелирования четырех пиразиновых колец способствует увеличению затрат энергии на преодоление сил электростатического отталкивания с молекулами основания. Наряду с этим, объемные трет-бутилфенильные заместители, находящиеся в частичном сопряжении с ароматической π -системой макроцикла, создают пространственные помехи для благоприятного контакта молекул-партнеров, что, по-видимому, вносит основной вклад в кинетические параметры деструкции $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO.$

Как и следовало ожидать, пространственное экранирование неподеленной электронной пары атома азота в амине объемными алкильными за-

Таблица 1. Кинетические параметры реакции деструкции $H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO$ в системе азотсодержащее основание – DMSO, $([H_2Pa((C_6H_4Bu)_2Pyz)_4 \cdot 2DMSO]_0 = 1.05 \times 10^{-5} \text{ моль/л})$

- 0		• •		
$C_{\rm B}^{\circ}$,		$k_{\rm H} \times 10^4$,	$k \times 10^4$,	E _a ,
моль/л	1, К	c^{-1}	л/(моль с)	кДж/моль
	Н	-Бутилами	Ή	
0.13	298	0.30	2.20	46
	303	0.40	2.95	
	313	0.70	5.10	
	323	1.25	9.00	
0.26	298	0.60	2.10	45
	303	0.80	2.80	
	313	1.40	4.90	
	323	2.40	8.60	
0.51	298	1.10	2.10	47
	303	1.51	2.86	
	313	2.65	5.00	
	323	4.80	9.00	
1.01	298	2.05	2.00	46
	303	2.77	2.75	
	313	4.90	4.85	
	323	8.60	8.50	
2.00	298	4.15	2.15	46
	303	5.60	2.90	
	313	9.85	5.10	
	323	17.50	9.05	
	Į	Циэтиламин	H	1
1.20	298	0.03	0.03	70
	303	0.05	0.04	
	313	0.13	0.11	
	323	0.28	0.23	
2.41	298	0.06	0.02	72
	303	0.09	0.04	
	313	0.23	0.10	
	323	0.53	0.23	
4.82	298	0.12	0.03	70
	303	0.20	0.04	
	313	0.47	0.10	
	323	1.11	0.25	
7.23	298	0.16	0.02	73
	303	0.26	0.04	
	313	0.72	0.11	
	323	1.57	0.24	

Примечание. Значения $k_{\rm H}$ при 298 К рассчитаны по уравнению Аррениуса.

Таблица 2. Кинетические параметры реакции деструкции $H_2Pa(Ph_2Pyz)_4 \cdot 2DMSO$ в системе азотсодержащее основание – DMSO [2] ($[H_2Pa(Ph_2Pyz)_4 \cdot 2DMSO]_0 = 1.20 \times 10^{-5} \text{ моль/л}$)

Основание (В)	$C_{\mathrm{B}}^{\circ},$ моль/л	$k_{\rm H}^{298} \times 10^4,$ c ⁻¹	<i>k</i> ²⁹⁸ × 10 ⁴ , л/(моль с)	<i>Е</i> _а , кДж/моль
н-Бутиламин	0.63	1.71	2.48	28
Диэтиламин	4.82	0.28	0.04	62

местителями ингибирует процесс деструкции комплекса с переносом протонов, поскольку затрудняет протекание стадий (6) и (7). Так, максираспада комплекса H₂ мальная скорость $Pa((C_6H_4Bu)_2Pvz)_4 \cdot 2DMSO$ наблюдается в присутствии *н*-бутиламина (р $K_a^{298} = 10.60$ [11]). При переходе к близкому по протоноакцепторной способности диэтиламину (р $K_a^{298} = 10.84$ [11]) скорость деструкции, судя по величинам k^{298} (табл. 1), уменьшается более, чем в 60 раз на фоне роста Е_а процесса. В случае три-*н*-бутиламина $(pK_a^{298} = 10.97 [11])$ комплекс $H_2Pa((C_6H_4Bu)_2Pyz)_4$. · 2DMSO не подвергается деструкции. На это указывает характер ЭСП окта(4-трет-бутилфенил)тетрапиразинопорфиразина в системе DMSO – Bu₃N. Интенсивность *Q*-полосы с λ = = 664 нм не изменяется в течение ~58 ч при 333 К. Наряду с увеличением числа алкильных заместителей в амине дестабилизации комплекса с переносом протонов противодействует разветвление углеводородной цепи в молекуле основания. В системе DMSO – Bu^tNH₂ комплекс H₂Pa((C₆H₄Bu)₂Pyz)₄ · 2DMSO обладает аналогичной устойчивостью, как и в DMSO.

Анализ кинетических данных (табл. 1, 2) показывает, что деструкция комплексов с переносом протонов замещенных тетрапиразинопорфиразина характеризуется достаточно близкими значениями констант скорости. При этом значение E_a процесса возрастает при переходе от H₂. Pa(Ph₂Pyz)₄ · 2DMSO к H₂Pa((C₆H₄Bu)₂Pyz)₄ · 2DMSO. Этот факт не является неожиданным, если принять во внимание, что *трет*-бутилфенильные заместители в отличие от фенильных проявляют более сильный экранирующий эффект и, как следствие, приводят к росту энергетических затрат в ходе протекания конкурентной реакции за протон.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Novakova V., Donzello P.A., Ercolani C. et al.* // Coord. Chem. Rev. 2018. V. 361. № 4. P. 1.
- 2. Петров О.А., Стужин П.А., Иванова Ю.Б. // Журн. физ. химии. 2008. Т. 82. № 2. С. 266.
- 3. *Осипова Г.В., Петров О.А., Ефимова С.В. //* Журн. общ. химии. 2013. Т. 83. Вып. 3. С. 510.
- 4. Иванова Ю.Б., Дмитриева О.А., Хрушкова Ю.В. и др. // Там же. 2020. Т. 90. № 5. С. 760.
- Stuzhin P., Khelevina O., Berezin B. // Phthalocyanines: Properties and Applications. N.Y.: VCH Publ. Inc., 1996. V. 4. P. 23.
- 6. Kokareva E.A., Petrov O.A., Khelevina O.G. // Macroheterocycles. 2009. V. 2. № 2. P. 157.
- Петров О.А., Аганичева К.А., Гамов Г.А., Киселев А.Н. // Журн. физ. химии. 2020. Т. 94. № 9. С. 1379.
- Stuzhin P.A. // J. Porphyrins Phthalocyanines. 2003. V. 7. № 12. P. 813.
- 9. *Райхардт К.* Растворители и эффекты среды в органической химии. М.: Мир, 1991. 764 с.
- 10. Молекулярные взаимодействия / Под ред. Г. Ратайчака, У. Орвилл-Томаса. М.: Мир, 1984. 599 с.
- 11. CHC Handbook of Chemistry and Physics / Ed. by *William M. Haynes*. 2013. 2668 p.