_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.03.032.76

ИССЛЕДОВАНИЕ ПРОЦЕССА КОМПЛЕКСООБРАЗОВАНИЯ МЕДИ(II) С ТИОСЕМИКАРБАЗИДОМ В ВОДНОМ РАСТВОРЕ

© 2021 г. А. С. Самадов^{а,*}, И. Г. Горичев^а, Г. З. Казиев^а, Э. Ф. Файзуллозода^b, А. Ф. Степнова^а

^а Московский педагогический государственный университет, 129164 Москва, Россия

^b Таджиксий национальный университет, Республика Таджикистан, 734025 Душанбе, Таджикистан

**e-mail: s.s.rasul@mail.ru* Поступила в редакцию 26.11.2020 г. После доработки 28.12.2020 г. Принята к публикации 11.01.2021 г.

Потенциометрическим и спектрофотометрическим методами изучен процесс комплексообразования меди(II) с тиосемикарбазидом (Tsc) в водном растворе при $t = 25^{\circ}$ С (в среде 0.1 М HClO₄ и 1.0 М HCl). Установлено, что в среде 0.1 М HClO₄ и 1.0 М HCl образуются стабильные тиосемикарбазидные комплексы состава CuTsc₂²⁺ при соотношении $C_{Tsc}/C_{Cu}^{2+} \ge 2.0$. В среде хлороводородной кислоты проходит ступенчатое замещение лигандов по уравнению: $[CuCl_x]^{+2-x} + iTsc = [CuCl_{x-1}Tsc_i]^{+2-(x-1)} + xCl^-, \beta_i$. Рассчитанные константы устойчивости тиосемикарбазидных и хлорозамещенных тиосемикарбазидных и клорозамещенных тиосемикарбазидных сомплексов меди(II) из спектрофотометрических данных равны $\lg \beta_1 = 3.96 \pm 0.10$, $\lg \beta_2 = 8.01 \pm 0.10$ (0.1 М HClO₄); $\lg \beta_1 = 4.19 \pm 0.06$, $\lg \beta_2 = 7.87 \pm 0.08$ (1.0 М HCl).

Ключевые слова: комплексообразование, медь(II), тиосемикарбазид, хлорозамещенный комплекс, константа устойчивости, потенциометрия и спектрофотометрия

DOI: 10.31857/S0044453721090223

Тиосемикарбазид (NH₂NH-(C=S)-NH₂) является бидентатным лигандом, координируется с переходными металлами через атомы азота и серы как в нейтральной, так и в анионной формах [1-3]. Тиосемикарбазид и его производные (основания Шиффа) представляют особый интерес исследователей из различных областей, таких как катализ, фармацевтическая химия и электрохимия. Они обладают широким спектром свойств, применяются в качестве катализаторов окислительно-восстановительных реакций, как антибактериальные, противогрибковые, противоопухолевые и противомалярийные средства и используются в качестве электрохимических сенсоров [4-10]. Комплексы меди (II) с семикарбазидом и тиосемикарбазидом привлекают большое внимание из-за их применения в качестве противовирусных агентов, демонстрируя более высокую активность по сравнению с лигандами, не входящими в комплекс. Их также используют при лечении опухолей, в том числе болезни Ходжкина (лимфогранулематоз) [11]. Антимикробные свойства тиосемикарбазидных комплексов меди(II) изучены в работе [12]. Оказалось, что комплексы меди(II) проявляют более эффективную антибактериальную и противогрибковую активность в отличие от лиганда.

Авторы работ [13-17] синтезировали и структурно охарактеризовали ряд комплексов меди(II) с тиосемикарбазидом и различными анионами, такими как 1,5-нафталиндисульфонат ($[Cu(Tsc)_2](Nds)$), салициловая кислота ([Cu(Tsc)₂](HSal)₂), цистеинат и 5-сульфосалицилат ($[Cu(Tsc)_2](H_2SSal)_2$). При взаимодействии цистеината меди(II) с тиосемикарбазидом (Tsc) в воде образуется роданидный тиосемикарбазидный комплекс меди(II) состава [Cu(Tsc)₂(SCN)₂] [15]. В работах [12, 18] описаны синтезы комплексных соединений хлорида, нитрата и ацетата меди(II) с тиосемикарбазидом. Во всех случаях атом меди(II) координирован по квадратичной геометрии бидентатнохелатно (N, S) с тиосемикарбазидом. Таким образом, в литературе мы не обнаружили данные о равновесиях комплексообразования в системе меди(II) с тиосемикарбазидом.

Цель настоящей работы заключается в исследовании процессов комплексообразования ионов меди(II) с тиосемикарбазидом в среде 0.1 М HClO₄ и 1.0 М HCl.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных веществ использовали оксид меди(II) "ч.д.а.", хлорную кислоту "х.ч.", двухлористую медь(II) "х.ч.", соляную кислоту "х.ч.", тиосемикарбазид (Tsc) "ч.д.а." и прокипяченную дистиллированную воду. Раствор $Cu(ClO_4)_2$ готовили из оксида меди(II) в хлорной кислоте (CuO + $HClO_4$). Исследование проводили потенциометрическим и спектрофотометрическим методами. Потенциометрическое исследование системы " $Cu(ClO_4)_2 + Tsc + HClO_4 + во$ да" выполняли с переносчиками. Для этого измеряли ЭДС цепей:

Cu
$$C_{Cu(ClO_4)_2}$$
, C_{Tsc} KNO₃ Hac. KCl Hac. AgCl, Ag
0.1 M HClO₄,

В качестве электрода сравнения использовали насыщенный хлорсеребряный электрод, и все потенциалы в работе приведены относительно данного электрода (≈200 мВ). Индикаторным электродом служила медная проволока (99.999). Потенциометрические исследования проведены только в среде хлорной кислоты. Величина E^{\emptyset} из уравнения $E = E^{\emptyset} + \theta \lg C_{Cu^{2+}} (\theta = 29.58 \pm 2)$ в среде хлорной кислотой равна 130.0 мВ, что с учетом потенциала НХСЭ соответствует стандартному потенциалу пары Cu²⁺/Cu. Перед каждым экспериментом медный электрод очищали концентрированной азотной кислотой. ЭДС измеряли с помощью прибора ЭКСПЕРТ-001. Все измерения потенциалов проводились при температуре 25.0 ± $\pm 0.1^{\circ}$ С в термостатированной ячейке. В ходе эксперимента раствор с заданной C_{Cu}^0 титровали раствором тиосемикарбазида с измерением потен-

циала медного электрода.

В работе использовались растворы CuX_2 (X = = ClO₄⁻ и Cl⁻) и тиосемикарбазид (Tsc) с концентрациями $C_{\rm Cu^{2+}}=1\times10^{-3}{-}5\times10^{-2}$ моль/л и $C_{\rm Tsc}=$ $= 2 \times 10^{-4} - 1 \times 10^{-1}$ моль/л. Для поддержания постоянства ионной силы раствора использовали 0.1 M HClO₄ и 1.0 M HCl.

Спектры поглощения записывали на спектрофотометре "UV-1700 SHIMADZU" при длине волны 190-900 нм, для растворов с C_{Cu} и C_{Tsc} от 2×10^{-4} до 1×10^{-1} моль/л, l = 0.1 - 1.0 см.

Константы устойчивости комплексов из потенциометрических данных были рассчитаны итерационно с использованием функции Ледена, имеющей вид [19]:

$$F(\text{Tsc}) = \sum \beta_i [\text{Tsc}]^{i-1} = \frac{C_{\text{Cu}^{2+}} - [\text{Cu}^{2+}]}{[\text{Cu}^{2+}][\text{Tsc}]}, \qquad (1)$$

где $C_{C_{v}^{2+}}$ – общая концентрация ионов Cu^{2+} ; [Cu²⁺] и [Tsc] – равновесные концентрации ионов меди(II) и тиосемикарбазида. Величины [Cu²⁺] в ходе титрования рассчитывали из значений потенциалов при помощи уравнения Нернста: 29.58 lg([Cu²⁺]/ C_{Cu}^0) = $\Delta E = E - E^0$, где $E^0 -$ по-тенциал электрода в исходном растворе с концентрацией $C_{C_{\mu}}^{0}$ при отсутствии лиганда.

Расчет константы комплексов из спектрофотометрических данных проводился по методу соответственных растворов (МСР) [20, 21]. В соответствии МСР растворы, характеризующиеся одним и тем же значением ε^* (ε^* – молярный коэффициент поглощения частицы в растворе) имеют одинаковые концентрации лиганда [L]. Поскольку $\varepsilon^* = A/C_M$ зависит только от [Tsc], то [Tsc] можно легко рассчитать из МСР. В качестве вспомогательных функций определены функции образования $\overline{n} = (C_{\text{Tsc}} - [\text{Tsc}])/C_{\text{сu}^{2+}}$ (Бьеррума), значение которых варьировалось от 0 до 2 в среде хлорной и хлороводородной кислоты. Стандартные отклонения lgβ, оценивали с доверительными интервалами P = 0.95. Расчет констант равновесия из экспериментальных данных проводился с использованием программ Excel.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Комплексы Си(ClO₄)₂ с тиосемикарбазидом (Tsc). При титровании раствора тиосемикарбазида в системе, содержащей Cu(ClO₄)₂, происходят комплексообразовательные реакции в соответствии с уравнением:

$$Cu^{2+} + iTsc = CuTsc_i^{2+}, \beta_i, \qquad (2)$$

о чем свидетельствует уменьшение потенциала системы. Проведенные исследования в области $C_{C_{12}^{2+}} = (0.1-5.0) \times 10^{-2}$ показали, что при соотношении $C_{\text{Tsc}}/C_{\text{Cu}^{2+}} \ge 2.0$ наблюдается скачок-потенциал, свидетельствующий о нахождении комплекса состава $CuTsc_2^{2+}$ в системе. Кроме того, не пересечение обычных функций Ледена $F = C_{Cu} / [Cu^{2+}]$ в зависимости от C_{Tsc} для разных C_{Cu} указывает на присутствие в системе моноядерного комплексообразования. Зависимости E от $\lg C_{Tsc}$ приведены на рис. 1.

Следует отметить, что потенциал данной системы в отличие от систем Cu²⁺ с тиомочевиной [22] стабильный и проявляет воспроизводимый характер. Полученные потенциометрическим методом константы устойчивости комплексов имеют значения: $\lg \beta_1 = 3.31$, $\lg \beta_2 = 7.90$.

Спектрофотометрические исследования проведены методом сдвига равновесия, т.е. при по-

Рис. 1. Зависимости потенциала медного электрода (*E*) от $\lg C_{Tsc}$ для $C_{Cu^{2+}}$: 1 - 0.05 M, 2 - 0.01 M, 3 - 0.005 M (в среде 0.1 M HClO₄).

стоянной концентрации комплексообразователя (Cu²⁺) варьировали $C_{\rm Tsc}$ с соотношением лиганда к металлу от 0.2 до 10.0. Исследование проводилось в области $C_{\rm Cu^{2+}} = (1.0-10.0) \times 10^{-3}$ и $C_{\rm Tsc} = (0.02-10) \times 10^{-2}$ моль/л. На основе спектральных данных построили зависимость $A - C_{\rm Tsc}/C_{\rm Cu}$. Наблюдающийся на кривой излом при соотношении концентраций $C_{\rm TSC}/C_{\rm Cu} = 2$ хорошо согласуется с потенциометрическими данными (рис. 1). Зависимость оптической плотности от длины волны приведена на рис. 2.

Из рис. 2 видно, что в системе преобладают две формы комплексных частиц, спектры поглощения которых равны при длине волны 675.0 (CuTsc²⁺) и 565.0 (CuTsc²⁺) нм, где металл и лиганд не поглощают света. Полоса *d*-*d*-перехода для ионов Cu²⁺ наблюдалась при $\lambda = 807.0$ нм. Коэффициенты экстинкции (є) комплексов равны: $\varepsilon_1 = 5070$ и $\varepsilon_2 = 6280$ моль/(л см).

Полученные константы комплексов равны: $\lg \beta_1 = 3.96 \pm 0.10$, $\lg \beta_2 = 8.01 \pm 0.10$.

Комплексы CuCl₂ с тиосемикарбазидом (Tsc). Исследование процессов комплексообразования проведены в среде 1.0 моль/л HCl спектрофотометрическим методом. При такой кислой водной среде ионы меди(II) находятся в координированном состояний с хлорид-ионами и при добавлении раствора Tsc в системе проходит замещение лигандов

$$[CuCl_{x}]^{+2-x} + iTsc =$$

$$= [CuCl_{x-1}Tsc_{i}]^{+2-(x-1)} + xCl^{-}, \beta_{i}.$$
(3)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 95 № 9 2021

Рис. 2. Зависимости *A* от λ_{nm} при образовании тиосемикарбазидных комплексов меди(II) в среде 0.1 моль/л HClO₄; $C_{Cu^{2+}} = 0.01$ моль/л = const, *I* – 0.01 моль/л Cu²⁺, *2*–*15* – соотношение $C_{Tsc}/C_{Cu^{2+}}$ от 0.19 до 10, *I* = 1 см.

Проведенные спектрофотометрические исследования с методом сдвига равновесий показали, что в данной системе наблюдается такой же излом кривых, как в среде хлорной кислоты, т.е. при соотношении $C_{\text{Tsc}}/C_{\text{сu}^{2+}} \ge 2.0$. Зависимости *A* от λ_{nm} представлены на рис. 3.

В данной системе при $C_{\mathrm{CuCl}_2} \ge 0.005$ моль/л и $C_{\text{Tsc}}/C_{\text{Си}^{2+}} \ge 2.0$ через 5—7 мин выпадают нерастворимые коричневые кристаллы, состав [CuTsc₂Cl₂] которых определен в работе [12]. Спектры раствора хлорозамещенного комплекса меди (II) с Тsc можно снимать в диапазонах, аналогичных для исследования системы $Cu(ClO_4)_2 + Tsc$, т.е. при λ 450-200 нм и λ 900-450 нм. Выбор диапазона длины волны объясняется тем, что в системе хлорозамещенного комплекса меди (II) с Тѕс с ростом концентрации хлорида меди(II) в растворе при $C_{\text{Tsc}}/C_{\text{Cu}^{2+}} \ge 2.0$ выпадают в осадок нерастворимые соединения ([CuTsc₂Cl₂]), что затрудняет снятие спектров при 900-450 нм. При $C_{\rm CuCl_2} \leq$ ≤ 0.001 М осадок выпадает через 30 мин. Соответственно исследование системы CuCl₂ + Tsc про-

Рис. 3. Зависимости *A* от λ_{nm} при образовании тиосемикарбазидных комплексов меди(II) в среде 1.0 моль/л HCl, $C_{CuCl_2} = 1 \times 10^{-3}$ моль/л = const, *I* – 1×10^{-3} моль/л Cu²⁺, *2*–*14* – соотношение C_{Tsc}/C_{Cu}^{2+} от 0.19 до 10. *l* = 0.1 см.

водили в диапазоне λ 450–200 ($v = (22.2-50.0) \times$ $\times 10^3$ см⁻¹) нм. Комплексы CuTsc²⁺ и CuTsc²⁺ в среде хлорной кислоты поглощают свет максимально при λ 321.0 и 356.0 нм, соответственно. В системе $CuCl_2$ + Tsc появляется два пика при λ 328.5 и 356.0 нм, которые соответствуют соотношению $C_{\text{Tsc}}/C_{\text{Cu}^{2+}}$ 1:1 и 1:2. Таким образом, экспериментальные данные указывают на то, что в начале происходит ступенчатое вытеснение хлорид иона из внутренних координационных сфер с комплексного образованием иона состава $CuTsc_2^{2+}$, а затем на образование со временем комплекса [CuTsc₂Cl₂]. Сдвиг длины волны с 321.0 и 675.0 до 328.5 и 705.0 свидетельствует о существовании комплексного иона состава $[CuTscCl_i]^{+2-i}$.

Обработка данных проведена по методу соответственных растворов. На рис. 4 приведены зависимости функций образования от lg[Tsc] для хлорозамещенного комплексообразования.

Величины $\overline{n}_{\text{расч}}$ – были рассчитаны с помощью уравнения $\overline{n}_{\text{расч}} = (\beta_1[\text{Tsc}] + 2\beta_2[\text{Tsc}]^2)/(1 + \beta_1[\text{Tsc}] + \beta_2[\text{Tsc}]^2)$. Рассчитанные константы равновесия хлорозамещенных комплексов равны: $\lg \beta_1 = 4.19 \pm$

Рис. 4. Зависимость функции образования (\overline{n}) от lg[Tsc]. Точки — экспериментальные данные, линии — расчет.

 \pm 0.06, 1g β_2 = 7.87 \pm 0.08. Коэффициент экстинкции комплексов ϵ_1 = 5150 и ϵ_2 = 5540 моль/(л см).

На рис. 5 представлены спектры форм существующих частиц в системе с хлороводородной кислотой, которые можно наблюдать в области $v = (22.2-50.0) \times 10^3$ см⁻¹ ($\lambda = 450-200$ нм). Они были получены на основе их оптической плотности A_i и концентрации C_x ($\varepsilon = A_i/C_x I$). Спектры форм тиосемикарбазида (Tsc) наблюдаются при

Рис. 5. Спектры форм: $1 - Cu^{2+}$; $2 - [CuCl_i]^{+2-i}$; 3 - Tsc; $4 - [CuTscCl_i]^{+2-i}$; $5 - CuTsc_2^{2+}$ в среде 1.0 М HCl, l = 0.1 см.

длине волны 241.0 нм с коэффициентом экстинкции $\varepsilon = 12.16 \times 10^3$.

Таким образом, рассчитанные приведенными обоими методами константы устойчивости комплексов в перхлоратной системе обнаруживают удовлетворительную сходимость результатов, за исключением некоторых системных ошибок.

Таким образом, исследование процесса комплексообразования ионов меди(II) с тиосемикарбазидом (Tsc) в кислой водной среде (0.1 M HClO₄ и 1.0 M HCl) изучено потенциометрическим и спектрофотометрическим методами. По данным спектрофотометрических исследований определено, что в среде 1.0 M HCl молекулы тиосемикарбазида ступенчато вытесняют хлорид ионы из внутренних координационных сфер ионов меди(II). Результаты исследования показали, что использование медного электрода в данной системе удовлетворительно в отличие от системы Cu^{2+} с тиомочевиной (Tu).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Metwally M.A., Khalifa M.E., Koketsu M. //* American J. of Chemistry. 2012. V. 2. P. 38. https://doi.org/10.5923/j.chemistry.20120202.09
- Lobana T.S., Sharma R., Bawa G., Khanna S. // Coord. Chem. Rev. 2009. V. 253. P. 977. https://doi.org/10.1016/j.ccr.2008.07.004
- Kasuga N.C., Sekino K., Ishikawa M. et al. // J. Inorg. Biochem. 2003. V. 96. P. 298. https://doi.org/10.1016/S0162-0134(03)00156-9
- 4. Rodriguez-Arguelles M.C., Touron-Touceda P., Cao R. et al. // J. Inorg. Biochem., 2009. V. 103. P. 35.
- Chandra S., Gupta L.K. // Spectrochim. Acta. Part A. 2005. V. 62. P. 1089. https://doi.org/10.1016/j.saa.2005.04.005
- 6. *Bhasin H., Bhatt V. //* J. of Chemistry and Chemical Sciences. 2018. V. 8. P. 595.
- 7. *Ewelina N., Marta S., Magdalena M. et al.* // Current Medicinal Chemistry. 2019. V. 26. № 4. P. 664. https://doi.org/10.2174/0929867325666180228164656

- Gholivand M.B., Niroomandi P., Yari A. et al. // Anal. Chim. Acta. 2005. V. 538. P. 225. https://doi.org/10.1016/j.aca.2005.01.059
- Echegoyen Y., Suelves I., Lazaro M.J. et al. // Appl. Cat. A. 2007. V. 333. P. 229. https://doi.org/10.1016/j.apcata.2007.09.012
- 10. *Brindha G., Vijayanthimala R.* // J. Chem. Pharm. Res. 2015. V. 7. P. 225.
- 11. Chandra S., Raizada S., Verma R. // J. chem. and pharm. res. 2012. V. 4. P. 1612.
- 12. *Shikha Parmar S., Kumar Y. //* Chem. Pharm. Bull. 2009. V. 57. № 6. P. 603.
- 13. Сергиенко В.С., Кокшарова Т.В., Суражская М.Д. и др. // Журн. неорган. химии. 2018. Т. 63. № 1. С. 26. https://doi.org/10.7868/S0044457X18010038
- 14. *Садиков Г.Г., Анцышкина А.С., Кокшарова Т.В. и др. //* Кристаллография. 2012. Т. 57. № 4. С. 597.
- 15. *Анцышкина А.С., Садиков Г.Г., Кокшарова Т.В. и др. //* Журн. неорган. химии. 2012. Т. 57. № 4. С. 570.
- 16. Анцышкина А.С., Садиков Г.Г., Кокшарова Т.В. и др. // Там же. 2012. Т. 57. № 2. С. 210.
- Chattopadhyay S.K., Seth S., Thomas C. W. Mak. // J. of Coordination Chemistry. 2002. V. 55. P. 259. https://doi.org/10.1080/00958970211894
- Нуралиева Г.А., Пиримова М.А. // Universum: Химия и биология : электрон. научн. журн. 2020. № 2(68). URL: http://7universum.com/ru/nature/archive/item/8758.
- Самадов А.С., Миронов И.В., Горичев И.Г., Степнова А.Ф. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 995. https://doi.org/10.31857/S0044457X2007017X
- 20. *Хартли Ф., Бергес К., Олкок Р.* Равновесия в растворах / М.: Мир, 1983. 365 с.
- Mironov I.V., Kal'nyi D.B., Kokovkin V.V. // J. Solution Chem. 2017. V. 46. P. 989. https://doi.org/10.1007/s10953-017-0616-9
- Mironov I.V., Tsvelodub L.D. // Journal of Solution Chemistry. 1996. V. 25. P. 315. https://doi.org/10.1007/BF00972529