_____ ХИМИЧЕСКАЯ КИНЕТИКА ____ И КАТАЛИЗ

УДК 66.071.6

КИНЕТИКА ОБРАЗОВАНИЯ ГАЗОВЫХ ГИДРАТОВ МЕТАНА И ДИОКСИДА УГЛЕРОДА В ПРИСУТСТВИИ ПРОМОТОРОВ – ТЕТРАГИДРОФУРАНА И ЛАУРИЛСУЛЬФАТА НАТРИЯ

© 2022 г. М. С. Сергеева^{*a*,*}, А. Н. Петухов^{*a*,*b*}, Д. Н. Шаблыкин^{*a*}, Е. А. Степанова^{*a*}, В. М. Воротынцев^{*a*}

^а Нижегородский государственный технический университет им. Р.Е. Алексеева, Нижний Новгород, Россия ^b Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия

> *e-mail: sergeeva.m.s@rambler.ru Поступила в редакцию 25.05.2021 г. После доработки 06.07.2021 г. Принята к публикации 09.07.2021 г.

Исследована кинетика образования газовых гидратов метана (CH₄) и диоксида углерода (CO₂) в присутствии промоторов гидратообразования — тетрагидрофурана (ТГФ) (3.80 мас. %) и лаурилсульфата натрия (Na-ЛС) (0.30 мас. %) при температуре процесса, равной 274.15 К и движущей силе, равной 1.00 МПа, прилагаемой в течение 4 ч после начала процесса гидратообразования. Установлено, что газогидратное извлечение CO₂ эффективнее по сравнению с CH₄; через 4 ч после начала процесса гидратообразования количество поглощенного CO₂ в газогидратной фазе в 2.61 раза больше по сравнению с CH₄ и составляет 0.26 моль. Выявлено изменение скорости гидратообразования в процессе роста газовых гидратов; максимальная скорость гидратообразования CH₄ и CO₂ наблюдается через 45 и 80 мин после начала процесса, а затем скорости гидратообразования уменьшаются. На основании экспериментальных результатов проведено математическое моделирование процесса роста газовых гидратов, учитывающее скорость поглощения, скорость массопередачи через насыщенный слой газового гидрата, эффективную массопередачу в газовом гидрате, общую линейную движущую силу. Показано, что скорость роста газовых гидратов лимитируется скоростью поглощения.

Ключевые слова: кинетика гидратообразования, метан, диоксид углерода, тетрагидрофуран, лаурилсульфат натрия

DOI: 10.31857/S0044453722010216

Природный газ после его дополнительной очистки используется в различных отраслях промышленности. В настоящее время основными технологиями разделения и очистки природного газа от кислых газов, в частности, от диоксида углерода (CO_2), являются абсорбция, адсорбция и мембранное газоразделение [1]. Однако они обладают определенными недостатками; при абсорбции – высокие затраты на регенерацию абсорбента, высокое парциальное давление СО₂, как следствие, высокая металлоемкость абсорберов; при адсорбции – малая емкость адсорбентов при высоких концентрациях СО₂ в потоке, периодичность процесса очистки, а также сложность регенерации адсорбентов; при мембранном газоразделении преимушествами служат возможность проведения процесса при низких давлениях, возможность полной автоматизации установок, а также безреагентность. Однако недостатки мембранного газоразделения – необходимость использования больших поверхностей мембраны, так как процессы молекулярного массопереноса весьма медленные. Кроме того, согласно диаграмме Робсона [2], для концентрирования извлекаемого газа при небольшой селективности мембраны требуется использование многоступенчатых установок. Это приводит к увеличению потерь продукта (уменьшению выхода извлекаемого газа) и увеличению энергозатрат.

В качестве перспективной технологии для разделения газовых смесей может быть использована технология с использованием поглощения газов газовыми гидратами (газогидратная кристаллизация) [3]. Данная технология была впервые предложена в ряде работ [4–6]. Газовые гидраты представляют собой твердые кристаллические соединения и характеризуются общей формулой $M \cdot nH_2O$ (M — молекула, образующая газовый гидрат). Основные структуры газовых гидратов кубическая структура-I (КС-I) (состоит из 46 молекул воды, двух малых и шести больших газогидратных полостей) и кубическая структура-II (КС-II) (состоит из 136 молекул воды, 16 малых и восьми больших газогидратных полостей) [7].

Технология газогидратной кристаллизации обладает следующими преимуществами: низкие затраты энергии (так как возможно проведение процесса при T > 273.15 K), простота аппаратурного оформления, легкая масштабируемость и возможность эффективного разделения трудноотделяемых компонентов природного газа вследствие различия давлений диссоциации газовых гидратов, которое определяется как минимальное значение давления гидратообразователя, при котором газовый гидрат сохраняет термодинамическую стабильность [7, 8].

С повышением давления диссоциации газовых гидратов конкуренция за заполнение газогидратных полостей увеличивается, что приводит к уменьшению коэффициента разделения СО₂ [9]. В связи с этим для уменьшения давления диссоциации газовых гидратов используются термодинамические промоторы гидратообразования, а для увеличения скорости гидратообразования кинетические промоторы гидратообразования [10]. В качестве термодинамического промотора гидратообразования был выбран тетрагидрофуран ($T\Gamma \Phi$), который способствует образованию газовых гидратов при относительно более высоких температурах и более низких давлениях, подходящих для хранения и транспортировки природного газа, газоразделения и улавливания СО₂ [11]. В работе [12] установлено, что при добавлении термодинамических промоторов гидратообразования выигрыш от снижения давления превышает кинетические потери. Затраты на сжатие, как правило, - одни из самых высоких для промышленного процесса, поэтому стратегия снижения давления способствует экономичности процесса [13]. В качестве кинетического промотора гидратообразования был выбран лаурилсульфат натрия (Na-ЛC), эффективный для повышения скоростей нуклеации и роста газовых гидратов, особенно когда газовая смесь обогащена СН₄ [14].

Обзор экспериментальных работ по исследованию процессов гидратообразования показывает, что представляет большой теоретический и практический интерес кинетика образования и диссоциации газовых гидратов. Гидратообразование включает в себя два связанных процесса: стохастический процесс нуклеации и дальнейший рост газовых гидратов [15]. Одна из проблем – корреляция кинетики гидратообразования с объемом используемого модуля. Большинство экспериментальных исследований проведено в модулях малых объемов (≈300 мл [15]). В нашей работе используется пилотный модуль газогидратной кристаллизации объемом 4170 мл.

Цель данной работы — экспериментальное исследование кинетики гидратообразования CH_4 и CO_2 в водном растворе промоторов $T\Gamma\Phi$ (3.80 мас. %) и Na-ЛС (0.30 мас. %) [16], при температуре процесса гидратообразования, равной 274.15 К, и движущей силе (разница между давлениями термодинамических равновесий жидкость—пар и жидкость—пар—гидрат), равной 1.00 МПа, прилагаемой в течение 4 ч после начала процесса гидратообразования. Полученные экспериментальные результаты будут использованы для расчета внутренних кинетических параметров газовых гидратов.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Термодинамическое моделирование

Для корректного определения движущей силы процесса гидратообразования необходимо определить давление диссоциации газовых гидратов. В случае трехфазного равновесия жидкость– пар–гидрат определение давления диссоциации газовых гидратов основано на равенстве химического потенциала воды в газогидратной фазе (μ_w^H) и воды в жидкой фазе (μ_w^L):

$$\boldsymbol{\mu}_{w}^{H} = \boldsymbol{\mu}_{w}^{L}. \tag{1}$$

Блок-схема, поясняющая теоретический расчет давления диссоциации газовых гидратов, представлена на рис. 1.

В соответствии с [15], химический потенциал воды в газогидратной фазе рассчитывается с использованием энергии Гиббса воды в стандартной пустой газогидратной решетке при данном объеме, температуре и давлении:

$$\frac{\mu_{w}^{H}}{RT} = \frac{g_{w_{a}}^{\beta}}{RT_{0}} - \int_{T_{0}}^{T} \frac{h_{w}^{\beta}}{RT^{2}} dT + \int_{P_{0}}^{P} \frac{v_{w}^{\beta}}{RT} dP + \sum_{i} v_{i} \ln\left(1 - \sum_{j} \theta_{ji}\right) + \ln \gamma_{w}^{H},$$
(2)

где индекс *а* относится к свойствам воды в идеальном газовом состоянии; индекс 0 относится к свойствам при стандартных условиях ($T_0 = 298.15$ K, $P_0 = 0.10$ МПа); R – универсальная газовая постоянная, Дж/(моль K); T – температура процесса, K; $g_{w_a}^{\beta}$ – энергия Гиббса воды в стандартной пустой газогидратной решетке, Дж/моль; h_w^{β} – молярная энтальпия воды в стандартной пустой газогидратной решетке, Дж/моль; P – давление диссоциации газовых гидратов, Па; v_w^{β} – молярный объем воды в стандартной пустой газогидратной решетке, см³/моль; v_i — количество газогидратных полостей *i*-го типа на одну молекулу воды в газовом гидрате; θ_{ji} — доля заполненных *j*-м газом полостей *i*-го типа; γ_w^H — коэффициент активности воды в газогидратной фазе.

Для расчета θ_{ji} использовалась изотерма Ленгмюра:

$$\theta_{ji} = \frac{C_{ji}f_j}{1 + \sum C_{ji}f_j},\tag{3}$$

где f_j — фугитивность *j*-го газа, Па; C_{ji} — константа Ленгмюра, 1/Па.

При расчете θ_{ji} фугитивность газовой фазы рассчитывалась по модифицированному методу Соаве–Редлиха–Квонга с использованием уравнения состояния Пенга–Робинсона с правилами смешивания второго порядка Гурона–Видаля (MHV2) [17], который дает корректное описание равновесия жидкость–пар. Для расчета констант Ленгмюра использовались параметры потенциала Кихара [18], представленные в литературе [13] CH₄: a = 0.383 Å, $\sigma = 3.144$ Å, $\epsilon/k = 155.593$ K; CO₂: a = 0.681 Å, $\sigma = 2.976$ Å, $\epsilon/k = 175.405$ K; TГФ: a == 0.901 Å, $\sigma = 3.556$ Å, $\epsilon/k = 288.763$ K.

Химический потенциал воды в жидкой фазе:

$$\frac{\mu_w^L}{RT} = \frac{g_{w_a}^L}{RT_0} - \int_{T_0}^T \frac{h_w^L}{RT^2} dT + \int_{P_0}^P \frac{v_w^L}{RT} dP + \ln(\gamma_w^L x_w^L), \quad (4)$$

где $g_{w_a}^L$ — энергия Гиббса воды в жидкой фазе, Дж/моль; h_w^L — молярная энтальпия воды в жидкой фазе, Дж/моль; v_w^L — молярный объем воды в жидкой фазе, см³/моль; γ_w^L — коэффициент активности воды в жидкой фазе; x_w^L — мольная доля воды в жидкой фазе с учетом растворимости газов.

Обработка экспериментальных данных

Количество газа, поглощенного в газогидратной фазе, с учетом изменения жидкого, газового и газогидратного объемов [19], моль:

$$\Delta n_{\rm rr} = \frac{\frac{P_0 V_0 Z_t R T_t}{Z_0 R T_0} - V_0 P_t}{Z_t R T_t + P_t n v_w^M - P_t n v_w^{MT}},$$
(5)

где P_0 и P_t – начальное и конечное давление системы, Па; V_0 – начальный объем, занимаемый газом, м³; Z_0 и Z_t – начальный и конечный коэффициент сжимаемости, рассчитанный согласно модифицированному методу Соаве–Редлиха– Квонга с использованием уравнения состояния Пенга–Робинсона с правилами смешивания MHV2; R – универсальная газовая постоянная,

Рис. 1. Блок-схема теоретического расчета давления диссоциации газовых гидратов.

Па м³/(моль K); T_0 и T_t – начальная и конечная температура системы, K; n – гидратное число; v_w^M – молярный объем раствора, м³/моль; v_w^{MT} – молярный объем пустой газогидратной решетки, м³/моль.

Гидратное число для газовой смеси:

$$n = \frac{m}{\sum_{i} N_i \theta_{ij}},\tag{6}$$

где *m* — количество молекул воды в газогидратной структуре; N_i — количество газогидратных полостей *i*-го типа.

Молярный объем раствора, м³/моль:

$$v_w^M = \frac{\sum_{j=1}^N x_j M_j}{\rho},\tag{7}$$

где x_j — массовая доля *j*-го компонента; M_j — молярная масса *j*-го компонента, кг/моль; ρ —

плотность водного раствора, кг/м³. Плотность водного раствора при различных значениях температуры и давления рассчитана в программном комплексе Aspen Properties.

При добавлении ТГФ газовые гидраты CH₄ и CO₂ образуют КС-II [15]. Молярный объем пустой газогидратной решетки КС-II [20], м³/кмоль:

$$V_{w}^{MT,II} = (17.13 + 2.25 \times 10^{-4}T + 2.01 \times 10^{-6}T^{2} + 1.01 \times 10^{-9}T^{3})^{3} \frac{10^{-30}N_{A}}{136.00} - 8.01 \times 10^{-9}P + (8) + 5.45 \times 10^{-12}P^{2},$$

где T – температура системы, К; N_A – постоянная Авогадро, 1/моль; P – давление системы, МПа.

Объем газа, содержащийся в единице объема газового гидрата [21], м³ газа/м³ газового гидрата:

$$V_{gh} = \frac{V_g \rho_h}{M_h},\tag{9}$$

где V_g — молярный объем газа, м³/моль; ρ_h — плотность газового гидрата, кг/м³; M_h — молярная масса газового гидрата, кг/моль.

Плотность газового гидрата [15], кг/м³:

$$\rho_{h} = \frac{mM_{w} + \sum_{j=1}^{c} \sum_{i=1}^{N} \theta_{ji} N_{i} M_{j}}{N_{A} V_{RY}},$$
 (10)

где M_w — молярная масса воды, кг/моль; V_{sy} — объем элементарной ячейки, м³; с — количество компонентов в газогидратной фазе.

Молярная масса газового гидрата, кг/моль:

$$M_h = M_i + M_w n. \tag{11}$$

Расширенная неопределенность измерений [22]:

$$U = ku_c, \tag{12}$$

где *k* — коэффициент охвата; *u_c* — суммарная стандартная неопределенность.

Кинетическое моделирование

Согласно кинетической модели, предложенной Хурана и др. [23], вначале образуется газовый гидрат ТГФ, затем происходит диффузия растворенного CH_4 и CO_2 через насыщенный слой газового гидрата ТГФ и поглощение газа в малых газогидратных полостях.

Допущения модели:

1) скорость образования газового гидрата $T\Gamma\Phi$ выше, чем скорость образования газового гидрата CH_4 и CO_2 ;

 пустые полости ТГФ служат сопротивлением для диффузии CH₄ и CO₂ в газогидратные полости, происходит "прыжковая" диффузия;

3) в системе предполагается радиальная однородность;

4) экспериментальная температура является функцией времени;

5) фугитивность CH_4 и CO_2 изменяется линейно в области смешанного газового гидрата CH_4 – TГФ и CO_2 –TГФ и в зоне реакции;

6) состав газогидратной фазы совпадает с равновесным составом и не изменяется при увеличении газогидратного извлечения CH₄ и CO₂;

7) скорость растворения CH_4 и CO_2 в растворе незначительна по сравнению со скоростью диффузии CH_4 и CO_2 через газовый гидрат ТГФ.

В работе [24] при рассмотрении систем CH_4 -ТГФ и CO_2 -ТГФ на основании рамановских спектров получено, что ТГФ занимает почти все большие газогидратные полости. Таким образом, в случае кинетического моделирования в нашей работе будет рассматриваться заполнение CH_4 и CO_2 малых газогидратных полостей.

Скорость образования газового гидрата, моль/с:

$$\frac{dN}{dt} = K_H A (f_t - f_{\text{равн}}), \qquad (13)$$

где K_H – константа скорости поглощения CH₄ и CO₂ в малых газогидратных полостях KC-II, моль/(м² с МПа); A – площадь реактора, м²; f_t – фугитивность газового гидрата в момент времени t, МПа; $f_{\text{равн}}$ – фугитивность квазиравновесия, МПа.

Диффузия через насыщенный слой CH_4 – $T\Gamma\Phi$ и CO_2 – $T\Gamma\Phi$, моль/с:

$$\frac{dN_{\rm ra3}}{dt} = K_{\rm ra3}A(f_{\rm ra3} - f_t), \qquad (14)$$

где $K_{\text{газ}}$ — константа скорости массопередачи СН₄ и СО₂ через насыщенный слой газового гидрата ТГФ, моль/(м² с МПа); $f_{\text{газ}}$ — фугитивность растворенного газа, МПа;

$$K_{\rm ras} = \frac{K_{\rm ras}}{x},\tag{15}$$

где $K'_{\rm ra3}$ — эффективный коэффициент массопередачи CH₄ и CO₂ в газовом гидрате ТГФ, моль/(м с МПа); *х* — высота слоя жидкости с незаполненными газом малыми газогидратными полостями, м.

$$x = L\left(1 - \frac{\theta_1}{\theta_{\text{равн}}}\right),\tag{16}$$

где L – высота слоя жидкости, м; θ_1 – поглощение CH₄ и CO₂ в момент времени *t* в малых газогидратных полостях; $\theta_{\text{равн}}$ – равновесное поглощение.

В квазиравновесных условиях скорость гидратообразования в реакционной зоне равна скорости переноса через газогидратную зону CH_4 - $T\Gamma\Phi$ и CO_2 - $T\Gamma\Phi$, моль/с:

$$\frac{dN_{\rm ras}}{dt} = \left(\frac{A}{\frac{1}{K_H} + \frac{x}{K_{\rm ras}'}}\right)(f_{\rm ras} - f_t),\tag{17}$$

$$\frac{dN_{\rm ras}}{dt} = K_{\rm spp} A (f_{\rm ras} - f_t), \qquad (18)$$

где $K_{\phi\phi\phi}$ — общая линейная движущая сила, моль/(м² с МПа).

Влияние Na-ЛC не учитывалось при математическом моделировании процесса гидратообразования, так как в работе [25] показано, что Na-ЛC не влияет на равновесие газового гидрата CH₄, а также в работе [26] установлено, что максимальная разность плотностей чистой воды и раствора $H_2O-Na-ЛC$ составляла не более 0.13%.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. Использовали деионизированную воду с сопротивлением 18.00 МОм см при 298.15 К (Milli-Q ("Merck KGaA", Германия)), ТГФ (чистота 99.90%, ООО "Компонент-Реактив", Россия), Na-ЛС (чистота 95.00%, "Taiwan NJC Corporation", Тайвань), индивидуальные чистые газы CH₄ и CO₂ (чистота 99.99%), приобретенные в ООО "НИИ КМ" (Россия). Все компоненты использовали без дополнительной очистки.

Оборудование. В случае промышленного внедрения технологии газогидратной кристаллизации, масштабирование — аспект, который необходимо учитывать при моделировании. Основным осложняющим фактором перехода к укрупненному масштабу кристаллизатора является понижение эффективности разделения в связи с неизбежным ухудшением кинетики массопереноса. Существуют и преимущества, среди них: снижение макроскопической стохастичности, присущей зародышеобразованию газовых гидратов, и сокращение времени зародышеобразования [23].

Объем пилотного газогидратного, выполненного из нержавеющей стали марки 12X18H10T с применением смотрового окна из кварцевого стекла, а также фитингов и клапанов, составлял 4170 мл. Рабочий диапазон температур и давлений газогидратного кристаллизатора составлял 253.15–315.15 К и 0.10–6.00 МПа соответственно. Охлаждение осуществлялось за счет змеевика, помещенного внутри кристаллизатора. Для охлаждения змеевика использовали холодильные машины производства "SMC Corporation" (Япония): HRZ004-L1 (циркулирующая жидкость – 60% водный раствор этиленгликоля, температура охлаждения 253.15–313.15 К с точностью ±0.10 К, мощность охлаждения 4.00 кВт) и HRS060-AF-20 (циркулирующая жидкость – дистиллированная вода, температура охлаждения 278.15–313.15 К с точностью ±0.10 К, мощность охлаждения 4.90 кВт).

Также конструкция газогидратного кристаллизатора включает в себя термопреобразователь сопротивления 5608 ("Fluke", США), диапазон измерений 73.15—773.15 К, дрейф ± 0.02 К, с общей расширенной неопределенностью, равной 0.03 К при коэффициенте охвата, равном 2 с доверительной вероятностью 95%. Используемый датчик давления P-PT5000 ("A-Flow", Франция), диапазон измерений 0.10—6.00 МПа с точностью $\pm 0.05\%$ от диапазона шкалы. Газогидратный кристаллизатор соединен с сообщающейся емкостью для подачи водного раствора, а смесь перемешивается магнитной мешалкой с диапазоном скоростей 0—400 об/мин с точностью ± 1 об/мин.

Газогидратный кристаллизатор откачивали мембранным насосом LVS 105 T-10 ef ("Ilmvac", Германия) с предельным вакуумом 2.00×10^{-4} МПа при 313.15 К.

Количество загруженного газа определяли объемно-манометрическим методом. Газовый поток контролировали массовым расходомером EL-FLOW Prestige FG-111B ("Bronkhorst High-Tech B.V.", Нидерланды) с максимально измеряемым потоком 500 мл/мин и максимальным рабочим давлением 10.00 МПа с точностью $\pm 0.50\%$ от показаний и $\pm 0.10\%$ от полной шкалы.

Для измерения количества деионизированной воды, ТГФ и Na-ЛС использовали электронные весы UW 2200H ("Shimadzu", Япония) с точностью 0.01 г.

Методика проведения эксперимента. Экспериментально исследовали режим направленной газогидратной кристаллизации [5], т.е. дополнительного ввода газа в кристаллизатор не производили, поэтому давление понижалось за счет образования газовых гидратов.

В начале эксперимента газогидратный кристаллизатор промывали деионизированной водой и сушили, далее продували азотом, после чего откачивали мембранным насосом. Затем 1700.00 \pm \pm 0.01 мл водного раствора добавляли в реактор: Na-ЛС (0.30 мас. %) растворяли в 100 мл деионизированной воды, после чего добавляли ТГФ (3.80 мас. %), при перемешивании общую массу раствора доводили до 1700 мл деионизированной

Рис. 2. Принципиальная схема экспериментальной установки газогидратной кристаллизации; *1* – газовая смесь, *2* – азот, *3* – магнитная мешалка, *4* – холодильная машина, *5* – вакуумный насос, *6* – рабочая линия, *7* – сервисная линия, *8* – передача данных, *9* – шаровой кран, *10* – вентиль тонкой регулировки, *11* – датчик температуры, *12* – датчик давления.

водой. Далее в объем газогидратного кристаллизатора контролируемо подавали CH₄ или CO₂.

Начальная температура эксперимента составляла 293.15 К. При данной температуре растворение начиналось при 400 об/мин, раствор выдерживали при перемешивании 3 ч для растворения газа. Перемешивание сохранялось на протяжении всего эксперимента. При достижении квазиравновесия (2 ч после растворения газа) температура уменьшалась до температуры эксперимента. Начальное давление выбрано на 1.00 МПа выше смоделированного давления диссоциации газового гидрата при температуре эксперимента.

Рис. 3. Кинетика поглощения CH₄ (*1*) и CO₂ (*2*) в газогидратной фазе в водном растворе $T\Gamma\Phi$ (3.80 мас. %) – Na-ЛС (0.30 мас. %) при *T* = 274.15 К и ΔP = 1.0 МПа, прилагаемой в течение 4 ч после начала процесса гидратообразования.

Каждый эксперимент проводили 3 раза и результаты усредняли. Использовали онлайн-запись температуры и давления экспериментов в программном пакете MasterSCADA (ООО "Ин-Сат", Россия) на персональном компьютере. Это позволило рассчитать кинетику гидратообразования. Принципиальная схема экспериментальной установки газогидратной кристаллизации представлена на рис. 2.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рассмотрим кинетику поглощения CH₄ и CO₂ в газогидратной фазе в водном растворе TГФ (3.80 мас. %) – Na-ЛС (0.30 мас. %) при T = 274.15 К и $\Delta P = 1.0$ МПа, прилагаемой в течение 4 ч после начала процесса гидратообразования (рис. 3).

Как показано на рис. 3, кинетика поглощения СН₄ и СО₂ в газогидратной фазе представлена полиномом четвертой степени, который наиболее точно соответствует искомой зависимости. Расширенная неопределенность поглощения СН₄ и СО₂ составляет 0.01 моль и рассчитана при коэффициенте охвата, равном 2 с доверительной вероятностью 95%. На рис. 3 нулевой момент соответствует точке зарождения газового гидрата. До 30 мин после начала процесса гидратообразования количество поглощенного CH₄ и CO₂ в газогидратной фазе имеет близкие значения (0.02 моль при t = 30 мин). Однако далее поглощение СО₂ в газогидратной фазе увеличивается значительнее по сравнению с поглощением СН₄, и через 4 ч после начала процесса поглощение СО2

не достигает квазиравновесия, в отличие от поглощения CH_4 , которое приближается к квазиравновесию. Через 4 ч после начала процесса гидратообразования количество поглощенного CO_2 в газогидратной фазе в 2.61 раза больше по сравнению с CH_4 и составляет 0.26 моль.

Емкость газовых гидратов CH₄ и CO₂ через 4 ч после начала процесса гидратообразования, рассчитанная согласно уравнению (9), составляет 12.68 и 27.16 м³ газа/м³ газового гидрата, соответственно. При полном заполнении малых газогидратных полостей CH₄, а больших газогидратных полостей ТГФ, 1 м³ газового гидрата CH₄-ТГФ может вмещать 114.9 м³ CH₄ [11]. Таким образом, через 4 ч после начала процесса гидратообразования газогидратные полости заполнены CH₄ на 9.06% от максимального заполнения.

На рис. 4 представлена зависимость скорости гидратообразования CH_4 и CO_2 в водном растворе ТГФ (3.80 мас. %) – Nа-ЛС (0.30 мас. %) при T = 274.15 К и $\Delta P = 1.0$ МПа, прилагаемой в течение 4 ч после начала процесса гидратообразования.

Как показано на рис. 4, скорость гидратообразования СН₄ и СО₂ представлена полиномом пятой степени, который наиболее точно соответствует искомой зависимости. Из рис. 4 видно, что скорость гидратообразования СН₄ и СО₂ в начале процесса гидратообразования резко увеличивается, после чего диффузия СН₄ и СО₂ в газогидратную фазу плавно уменьшается. Максимальная скорость поглощения CH₄ и CO₂ в газогидратной фазе наблюдается через 45 и 80 мин после начала процесса гидратообразования, соответственно. Аналогичные пики скорости гидратообразования были также получены в работах [19, 27]. Таким образом, скорость гидратообразования имеет две зоны, которые разделены пиком: I – кинетическую, связанную с быстрым ростом газовых гидратов; II – диффузионную, связанную с уменьшением диффузии газа в газогидратную фазу.

Полученные экспериментальные данные скорости гидратообразования CH_4 и CO_2 при добавлении ТГФ (3.80 мас. %) использованы для оценки внутренних кинетических параметров гидратообразования при T = 274.15 К и $\Delta P = 1.0$ МПа (табл. 1).

Из табл. 1 можно сделать вывод, что рассчитанные внутренние кинетические параметры га-

Рис. 4. Скорость гидратообразования CH₄ (1) и CO₂ (2) в водном растворе ТГФ (3.80 мас. %) – Nа-ЛС (0.30 мас. %) при T = 274.15 К и $\Delta P = 1.0$ МПа, прилагаемой в течение 4 ч после начала процесса гидратообразования.

зовых гидратов CO_2 -ТГФ в среднем в 2.3 раза больше по сравнению с параметрами газовых гидратов CH_4 -ТГФ.

Для процесса гидратообразования важно установить процессы, ограничивающие его скорость. При протекании гетерогенного процесса в несколько стадий общая скорость определяется скоростью самой медленной стадии [28], в нашем случае $K_{ra3} > K_H$. Таким образом, необходимо интенсифицировать скорость поглощения газа в малых газогидратных полостях, что может быть достигнуто повышением движущей силы процесса. Скорость массопередачи через насыщенный слой газового гидрата возможно интенсифицировать с использованием перемешивающего устройства.

Согласно табл. 1, эффективный коэффициент массопередачи CH_4 и CO_2 в газовом гидрате $T\Gamma\Phi$ составляет 8.30 × 10⁻⁴ и 1.48 × 10⁻³ моль/(м с МПа) соответственно. Диффузия — основной процесс массопередачи. Механизм "прыжковой" диффузии в газогидратных полостях подобен поверхностной диффузии при адсорбции [23]. Однако адсорбент и центры адсорбции более устойчивы по своей природе по сравнению с газогидратными полостями, которые сжимаются и изменяются в присутствии газа.

Таблица 1. Внутренние кинетические параметры CH_4 и CO_2 в газовом гидрате $T\Gamma\Phi$ при T = 274.15 К и $\Delta P = 1.0$ МПа через 4 ч после начала процесса гидратообразования

Газовый гидрат	<i>K_H</i> , моль/(м ² с МПа)	<i>К</i> _{газ} , моль/(м ² с МПа)	<i>К</i> ' _{газ} , моль/(м с МПа)	$K_{ m э \phi \phi}$, моль/(м ² с МПа)
$CH_4-ТГФ$	2.33×10^{-3}	8.28×10^{-3}	8.30×10^{-4}	1.82×10^{-3}
$CO_2 - T\Gamma \Phi$	7.86×10^{-3}	1.21×10^{-2}	1.48×10^{-3}	4.77×10^{-3}

ЗАКЛЮЧЕНИЕ

При экспериментальном исследовании гидратообразования CH₄ и CO₂ в водном растворе TГФ (3.80 мас. %) – Nа-ЛС (0.30 мас. %) при T = 274.15 К и $\Delta P = 1.0$ МПа через 4 ч после начала процесса гидратообразования установлено, что концентрация CO₂ в газогидратной фазе в 2.61 раза выше по сравнению с CH₄. Максимальная скорость гидратообразования CH₄ и CO₂ наблюдается через 45 и 80 мин после начала процесса гидратообразования, соответственно, а затем скорости гидратообразования CH₄ и CO₂ уменьшаются.

На основании полученных экспериментальных значений скорости гидратообразования рассчитаны внутренние кинетические параметры CH₄ и CO₂ в газовом гидрате TГФ (скорость поглощения, скорость массопередачи через насыщенный слой газового гидрата, эффективная массопередача в газовом гидрате, общая линейная движущая сила). Получено, что скорость роста газовых гидратов лимитируется скоростью поглощения газа в малых газогидратных полостях. Эффективный коэффициент массопередачи CH₄ и CO₂ в газовом гидрате ТГФ при T == 274.15 К через 4 ч после начала процесса гидратообразования составляет 8.30 × 10⁻⁴ и 1.48 × × 10⁻³ моль/(м с МПа), соответственно.

Таким образом, проведенное моделирование кинетики гидратообразования в дальнейшем позволит оценить эффективность технологии газогидратной кристаллизации для очистки природного газа от кислых газов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-38-90080.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Афанасьев А.И. и др.* Технология переработки природного газа и конденсата. М.: Недра, 2002. 517 с.
- Robeson L.M. // J. Membr. Sci. 1991. V. 62. № 2. P. 165.
- 3. Hassanpouryouzband A., Joonaki E., Vasheghani Farahani M. et al. // Chem. Soc. Rev. 2020. V. 49. P. 5225.
- 4. Vorotyntsev V.M., Malyshev V.M. // Russ. Chem. Rev. 1998. V. 67. № 1. P. 81.
- 5. Воротынцев В.М., Малышев В.М., Мочалов Г.М. и др. // Теор. осн. хим. технол. 2001. Т. 35. № 2. С. 128.

Vorotyntsev V.M., Malyshev V.M., Mochalov G.M. et al. // Theor. Found. Chem. Eng. 2001. V. 35. № 2. P. 119.

- Vorotyntsev V.M., Malyshev V.M. // Proceedings of the 2nd International Conference on Natural Gas Hydrates. Toulouse, 1996. P. 507.
- 7. Бык С.Ш., Макогон Ю.Ф., Фомина В.И. Газовые гидраты. М.: Химия, 1980. 296 с.
- Сергеева М.С., Петухов А.Н., Шаблыкин Д.Н. и др. // Журн. физ. химии. 2019. Т. 93. № 11. С. 1737.
- 9. *Fan S., Li S., Wang J. et al.* // Energy Fuels. 2009. V. 23. № 8. P. 4202.
- Dashti H., Yew L.Z., Lou X. // J. Nat. Gas Sci. Eng. 2015. V. 23. P. 195.
- Mech D., Gupta P., Sangwai J.S. // J. Nat. Gas Sci. Eng. 2016. V. 35. P. 1519.
- Kumar R., Linga P., Ripmeester J.A. et al. // J. Environ. Eng. 2009. V. 135. № 6. P. 411.
- 13. *Strobel T.A., Koh C.A., Sloan E.D.* // Fluid Phase Equilib. 2009. V. 280. № 1–2. P. 61.
- Broseta D., Dicharry C., Torré J.-P. // Gas Hydrates 2: Geoscience Issues and Potential Industrial Applications. 2018. P. 285.
- 15. *Sloan E.D., Koh C.A.* Clathrate Hydrates of Natural Gases. Boca Raton: CRC Press, 2008. 721 p.
- 16. *Ricaurte M., Dicharry C., Broseta D. et al.* // Ind. Eng. Chem. Res. 2013. V. 52. № 2. P. 899.
- 17. Aspen Physical Property System. V. 8.4. Burlington, 2013. 248 p.
- Kihara T. // Advances in Chemical Physics. 1963. V. 5. P. 147.
- Mohammadi A., Manteghian M., Haghtalab A. et al. // Chem. Eng. J. 2014. V. 237. P. 387.
- Klauda J.B., Sandler S.I. // Ind. Eng. Chem. Res. 2000.
 V. 39. P. 3377.
- Макогон Ю.Ф. Гидраты природных газов. М.: Недра, 1974. 208 с.
- 22. Походун А.И. Экспериментальные методы исследований. Погрешности и неопределенности измерений. СПб: СПбГУ ИТМО, 2006. 112 с.
- 23. *Khurana M., Veluswamy H.P., Daraboina N. et al. //* Chem. Eng. J. 2019. V. 370. P. 760.
- Sowjanya Y., Prasad P.S.R. // J. Nat. Gas Sci. Eng. 2014. V. 18. P. 58.
- 25. Gayet P, Dicharry C., Marion G. et al. // Chem. Eng. Sci. 2005. V. 60. № 21. P. 5751.
- 26. *Ricaurte M., Torre J.-P., Asbai A. et al.* // Ind. Eng. Chem. Res. 2012. V. 51. № 7. P. 3157.
- 27. Xia Z., Li X.-S., Chen Z.-Y. et al. // Appl. Energy. 2017. V. 207. P. 584.
- 28. Мелвин-Хьюз Э.А. Физическая химия. М.: Изд-во иностр. лит., 1962. 1147 с.