_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УЛК 541.8.539.199

ВИСКОЗИМЕТРИЧЕСКИЕ И ДЕНСИТОМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ СИСТЕМ ВОЛА—ПОЛИЭТИЛЕНГЛИКОЛЬ — KCl, KBr, KI

© 2022 г. Б. Г. Пашаев^{а,*}, М. Р. Раджабов^а

^аБакинский государственный университет, Баку, Азербайджан
*e-mail: p.g.bakhtiyar@gmail.com
Поступила в редакцию 27.11.2021 г.
После доработки 15.02.2022 г.
Принята к публикации 21.03.2022 г.

Измерены динамическая вязкость и плотность систем вода—полиэтиленгликоль (ПЭГ), вода—ПЭ—КСІ, вода—ПЭГ—КВг и вода—ПЭГ—КІ в интервале температур 293.15—323.15 К и 0-0.001 мольных долей ПЭГ. Рассмотрены фракции ПЭГ со средней молекулярной массой МПЭГ = 3000 и 6000 г/моль. Концентрация солей (КСІ, КВг, КІ) в системах вода—ПЭГ—КСІ, вода—ПЭГ—КВг, вода—ПЭГ—КІ составляла 0.01 мол. доли. С использованием экспериментальных данных в указанном интервале температур и концентраций исследуемой системы рассчитаны активационные параметры вязкого течения (энергия Гиббса, энтальпия и энтропия), а также парциальный молярный объем ПЭГ в растворе. Выявлено, что с ростом концентрации активационные параметры вязкого течения увеличиваются, а парциальный молярный объем ПЭГ в растворе уменьшается. Описан простой способ определения числа гидратации макромолекулы полимера, и на основе этого способа рассчитано число гидратации макромолекулы ПЭГ в растворе. Обнаружено, что число гидратации макромолекулы ПЭГ уменьшается с ростом температуры и увеличивается с увеличением молекулярной массы.

Ключевые слова: полиэтиленгликоль ($\Pi \Im \Gamma$), KCl, KBr, KI, активационные параметры, парциальный молярный объем, число гидратации

DOI: 10.31857/S0044453722090254

Полиэтиленгликоль (ПЭГ) представляет собой синтетический неионизирующий линейный полимер с различными фракциями молекулярной массы [1]. При комнатной температуре ПЭГ со средней молекулярной массой менее 600 представляют собой бесцветную вязкую жидкость, а ПЭГ со средней молекулярной массой более 800 белый воск. Все фракции ПЭГ с различной молекулярной массой хорошо растворимы в воде. Жидкий ПЭГ не является летучим, и сам ПЭГ и его водные растворы могут использоваться в качестве хороших растворителей [2]. Поскольку ПЭГ обладает рядом важных свойств (нетоксичен, не оказывает негативного влияния на иммунную систему и т.д.), он широко используется в пищевой промышленности, биотехнологии, косметологии, медицине и т.д. [2-5]. Важные особенности и функциональная активность ПЭГ проявляются в основном в водной среде [6-9]. Поскольку водные растворы ПЭГ биокомпонентны, они используются для регенерации тканей и защиты органов [2]. Следовательно, существует большой интерес к изучению водных растворов ПЭГ, и такие работы занимают существенное место в научной литературе [2–22]. Когда ПЭГ растворяется в воде, структура воды и конформация макромолекулы ПЭГ изменяются [10, 11]. Очевидно, что это изменение связано с взаимодействиями молекул воды, макромолекул ПЭГ и молекул системы вода—ПЭГ. При добавлении соли в систему вода—ПЭГ ион металла, образующийся в результате диссоциации вещества, взаимодействует с молекулой ПЭГ [8, 9]. Знание физических и физико-химических свойств систем вода—ПЭГ—соль необходимо при исследовании таких взаимодействий.

В работе исследованы структурные особенности систем вода— $\Pi \ni \Gamma$, вода— $\Pi \ni \Gamma$ —KCl, вода— $\Pi \ni \Gamma$ —KBr и вода— $\Pi \ni \Gamma$ —KI методами вискозиметрии и денситометрии в интервале температур 293.15—32315 К и концентраций 0—0.001 мол. доли $\Pi \ni \Gamma$. Рассмотрены фракции $\Pi \ni \Gamma$ с молярной массой $M_{\Pi \ni \Gamma} = 3000$ и 6000 г/моль. Концентрация солей (KCl, KBr, KI) в исследуемых системах составляла 0.01 мол. доли. Динамическая вязкость и плотность исследуемых растворов измерены в указанных интервалах температур и концентра-

ций; на основе экспериментальных оценок вычислены энергия активации Гиббса вязкого течения (ΔG_{η}^{\neq}), энтальпия активации вязкого течения (ΔH_{η}^{\neq}), энтропия активации вязкого течния (ΔS_{η}^{\neq}), парциальный молярный объем ПЭГ в растворе (\tilde{V}) и проанализированы их зависимости от концентрации ПЭГ.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

По теории Френкеля и Эйринга [1, 23, 24], энергия активации Гиббса (ΔG_{η}^{\neq}) вязкого течения определяется выражением:

$$\Delta G_{\eta}^{\neq} = RT \ln \frac{\eta}{\eta_0}. \tag{1}$$

Согласно теории Эйринга [22], $\eta_0 = N_{\rm A}h\rho/M$. Здесь, $N_{\rm A}$ — число Авогадро, R — универсальная газовая постоянная, h — постоянная Планка, M — молярная масса раствора, которая определяется выражением $M = \sum_{i=1}^N x_i M_i$, где x_i и M_i — мольная доля и молярная масса i-го компонента соответственно [1]. При абсолютной температуре T динамическая вязкость (η) и плотность (ρ) жидкости определялись экспериментально.

Энтальпия активации вязкого течения (ΔH_{η}^{\neq}) определяется выражением [1, 15]:

$$\Delta H_{\eta}^{\neq} = R \frac{\partial \ln (\eta/\eta_0)}{\partial (1/T)}.$$
 (2)

Определяя ΔG_{η}^{\neq} из выражения (1) и ΔH_{η}^{\neq} из выражения (2), с помощью формулы

$$\Delta G_{\eta}^{\neq} = \Delta H_{\eta}^{\neq} - T \Delta S_{\eta}^{\neq} \tag{3}$$

(известной в термодинамике) [1, 25], мы можем определить энтропию активации вязкого течения (ΔS_{η}^{\neq}) . Парциальный молярный объем (\tilde{V}) в растворе ПЭГ определяется по формуле [1, 20]:

$$\tilde{V} = V_{\rm M} + (1 - x) \left(\frac{\partial V_{\rm M}}{\partial x} \right)_{p,T},$$
 (4)

где $V_{\rm M}$ — молярный объем раствора, равный:

$$V_{\rm M} = \frac{M}{\rho} = \frac{\sum x_i M_i}{\rho}.$$
 (5)

Структурные характеристики растворов полимеров в основном определяются конформацией, размером, гидратацией и т.д. макромолекулы полимера [10–12]. Поскольку все биологические процессы происходят в воде, изучение гидратации макромолекул биологически важных полимеров является актуальной проблемой. Согласно

современным представлениям, в разбавленных полимерных растворах линейные гибкие макромолекулы преобразуются в форму клубка [26, 27]. Предположим, что объем раствора, полученного при растворении полимера массой m_2 в воде объемом $V_{\rm B}$, составил $V_{\rm p}$. Обозначим объем каждого клубка в воде $V_{\rm k}$, а объем оставшейся внутри нее воды (гидратированной воды) — $V_{\rm r}$. Обозначая число клубков в воде N, мы можем написать:

$$V_{\rm p} - V_{\rm B} = N \left(V_{\rm K} - V_{\rm F} \right), \tag{6}$$

где

$$V_{\rm B} = \frac{m_{\rm l}}{\rho_{\rm l}} = \frac{v_{\rm l} M_{\rm l}}{\rho_{\rm l}}, \quad V_{\rm p} = \frac{m}{\rho} = \frac{v M}{\rho},$$

$$N = \frac{m_{\rm 2}}{M_{\rm 2}} N_{\rm A} = v_{\rm 2} N_{\rm A}, \quad V_{\rm K} = \frac{m_{\rm k}}{\rho_{\rm l}} = \frac{M_{\rm 2}}{N_{\rm A} \rho_{\rm l}}, \qquad (7)$$

$$V_{\rm r} = \frac{m_{\rm r}}{\rho_{\rm l}} = \frac{N_{\rm r} m_{\rm 0}}{\rho_{\rm l}} = \frac{N_{\rm r} M_{\rm l}}{N_{\rm A} \rho_{\rm l}}.$$

Здесь m_1 — масса воды, m_2 — масса полимера, m — масса раствора, M_1 — молекулярная масса воды, M_2 — молекулярная масса полимера, M — молекулярная масса раствора; v_1 — количество вещества воды, v_2 — количество вещества полимера, v — количество вещества раствора; ρ_1 — плотность воды, ρ — плотность раствора; m_Γ — масса гидратированной воды, m_0 — масса молекулы воды, N_Γ — количество молекул воды внутри клубка (число гидратации); N_A — число Авагадро. Поскольку клубки плавают в растворителе, мы можем принять их среднюю плотность равной плотности растворителя. Теперь определим выражение для оценки количества гидратации. Учитывая выражение (7) в (6), упрощая полученное уравнение и вводя новые обозначения $x_1 = v_1/v$, $x_2 = v_2/v$, $M = x_1M_1 + x_2M_2$, получим

$$N_{\Gamma} = \left(\frac{x_1}{x_2} + \frac{M_2}{M_1}\right) \left(1 - \frac{\rho_1}{\rho}\right),\tag{8}$$

где x_1 — мольная доля воды, x_2 — мольная доля полимера. Учитывая $x_1 = 1 - x$, $x_2 = x$ в выражении (8), получим

$$N_{\rm r} = \left(\frac{1-x}{x} + \frac{M_2}{M_1}\right) \left(1 - \frac{\rho_1}{\rho}\right). \tag{9}$$

В трехкомпонентных системах, т.е. в системе вода—полимер—соль, будет x — мольная доля полимера, M_1 — молярная масса растворителя (вода—соль), M_2 — молярная масса полимера, ρ_1 — плотность растворителя (вода — соль), ρ — плотность раствора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования взяты системы вода-ПЭГ, вода-ПЭГ-КСІ, вода-ПЭГ-

Таблица 1. Концентрационная зависимость энергии активации Гиббса вязкого течения исследуемых систем при $T = 293.15 \; \mathrm{K}, x_{\mathrm{KCl}} = x_{\mathrm{KBr}} = x_{\mathrm{KI}} = 0.01, \, \mathrm{Дж/моль}$

x	Вода-ПЭГ	Вода-ПЭГ-КС1	Вода-ПЭГ-КВг	Вода—ПЭГ–КІ			
$M_{\Pi \Im \Gamma} = 3000 \ \Gamma / ext{моль}$							
0	9292	9274	9222	9180			
0.0001	9561	9543	9495	9455			
0.0002	9862	9847	9804	9768			
0.0004	10435	10580	10389	10563			
0.0006	10937	10999	10818	10946			
0.0008	11 552	11 409	11 522	11 291			
0.001	12062	12061	11876	12015			
$M_{\Pi ightarrow \Gamma} = 6000 \ ext{г/моль}$							
0.0001	10525	10504	10485	10459			
0.0002	11656	11 346	11 326	11618			
0.0004	13417	13427	13 411	12994			
0.0006	14938	15248	14635	14527			
0.0008	16154	16164	15949	16 150			
0.001	17261	17 572	17 256	16899			

КВг и вода-ПЭГ-КІ. Были рассмотрены фракции ПЭГ со средней молекулярной массой 3000 и 6000 г/моль. Во всех случаях концентрация КСІ, КВг и КІ составляла 0.01 мол. доли. Использованы ПЭГ и KCl, KBr, KI марки "х.ч.". Растворы в бидистиллированной воде готовили гравиметрическим методом. Для приготовления образцов использовали аналитические весы KERN 770, измерения проводили с точностью до 0.0001 г. Вязкость измеряли капиллярным вискозиметром ВПЖ-2 диаметром 0.56 мм, а плотность — тонким стеклянным пикнометром объемом 15 см³. Эксперимент проводили при нормальном атмосферном давлении. Время протекания жидкости в вискозиметре определяли с точностью ± 0.01 с. Все измерения выполняли 3 раза, использовали их средние значения. Плотность жидкости определяли по изменению объема с помощью калиброванного пикнометра. Значения вязкости и плотности определяли относительно эталонной жидкости. В качестве эталонной жидкости использовали бидистиллированную воду, значения вязкости и плотности воды брали из [1]. Для определения вязкости и плотности растворов при различных температурах (293.15, 298.15, 303.15, 308.15, 313.15, 318.15 и 323.15 К), вискозиметр и пикнометр помещали в термостат. Температуру измеряли с точностью ± 0.05 К. Максимальная относительная погрешность эксперимента составляла при определении плотности 0.3%, а при определении вязкости 1.0%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 и 2 представлены зависимости энергии активации Гиббса и энтальпии вязкого течения (ΔG_{η}^{\neq} , ΔH_{η}^{\neq}) систем вода $-\Pi \Im \Gamma$, вода $-\Pi \Im \Gamma$ - KCl, вода $-\Pi \Im \Gamma$ - KBr и вода $-\Pi \Im \Gamma$ - KI при температуре 293.15 K от концентрации $\Pi \Im \Gamma$ (x), а на рис. 1 представлена зависимость энтропии активации вязкого течения (ΔS_{η}^{\neq}) исследуемых систем при температуре 293.15 К от концентрации ПЭГ (x). Как видно из табл. 1, 2 и рис. 1, для исследуемых систем активационные параметры вязкого течения $(\Delta G_{\eta}^{\neq}, \Delta H_{\eta}^{\neq}, \Delta S_{\eta}^{\neq})$ увеличиваются с ростом концентрации при данной температуре. Когда жидкость находится в покое, вероятность перемещения частиц жидкости по всем направлениям одинакова. Однако в процессе течения переход частиц из одного места в другое в направлении течения больше, чем в других направлениях, а параметры ΔG_η^{\neq} , ΔH_η^{\neq} и ΔS_η^{\neq} равны разности значений соответствующих параметров при переходе 1 моля частиц из связанного состояния (G_c , H_c , S_c) в активное (G_a, H_a, S_a) : $\Delta G_{\eta}^{\neq} = G_a - G_c, \Delta H_{\eta}^{\neq} = H_a - H_c,$ $\Delta S_{\rm n}^{\neq} = S_a - S_c [1].$

По зависимости активационных параметров вязкого течения (ΔG_{η}^{\neq} , ΔH_{η}^{\neq} , ΔS_{η}^{\neq}) от концентрации видно, что исследуемые системы при заданной температуре становятся более структурированными при увеличении концентрации ПЭГ. Как видно из рис. 1, при добавлении одинаковой концентрации ($x_{\text{KCl}} = x_{\text{KBr}} = x_{\text{KI}} = 0.01$) KCl, KBr и

=>0110 12,WKCl WKBr	KI orot, Any moris			
X	Вода-ПЭГ	Вода-ПЭГ-КС1	Вода—ПЭГ–КВг	Вода-ПЭГ-КІ
		$M_{\Pi \Im \Gamma} = 3000 \ \Gamma / { m моль}$		
0	17 397	16665	16489	16400
0.0001	17 747	17230	17033	16849
0.0002	18 158	17660	17516	17 314
0.0004	18858	18568	18284	18 286
0.0006	19654	19 113	18867	18974
0.0008	20271	19767	19803	19414
0.001	21006	20657	20406	20272
	1	$M_{\Pi \ni \Gamma} = 6000 \ \Gamma$ /моль	l.	l.
0.0001	18818	18214	18068	18050
0.0002	20093	19266	19 165	19326
0.0004	22091	21784	21 584	21089
0.0006	23880	23736	23 180	22926
0.0008	25262	24981	24688	24896

26712

Таблица 2. Концентрационная зависимость энтальпии активации вязкого течения исследуемых систем при T = 293.15 K, $x_{\text{KCl}} = x_{\text{KBr}} = x_{\text{KI}} = 0.01$, Дж/моль

KI в систему вода $-\Pi \Im \Gamma$, значение параметра ΔS_n^{\neq} при данных температуре и концентрации уменьшается в соответствующей последовательности. Это указывает на то, что при добавлении KCl, KBr и KI в систему вода-ПЭГ структурирование раствора за счет ПЭГ ослабляется в соответствующей последовательности. Следовательно, KCl. KBr и KI оказывают более разрушительное действие в соответствующей последовательности на систему вода-ПЭГ. Чтобы объяснить это, рассмотрим процесс гидратации, который формируется электростатическим взаимодействием между ионами и молекулами воды. Отметим, что по сравнению с ионом Cl-ион Br- (по сравнению с ионом Br-ион I⁻) имеет относительно более отринательную гилратацию [28]. Очевидно, что КВг по сравнению с КСІ (КІ по сравнению с КВг) при данных температурах и концентрациях оказывают более разрушительное действие на систему вода-ПЭГ.

26685

0.001

На рис. 2 представлены зависимости парциального молярного объема $\Pi \ni \Gamma$ (\tilde{V}) в исследуемых системах при 293.15 К от концентрации $\Pi \ni \Gamma$ (x). Как видно из рис. 2, парциальный молярный объем $\Pi \ni \Gamma$ (\tilde{V}) уменьшается с увеличением концентрации $\Pi \ni \Gamma$. Известно, что парциальный молярный объем i-го компонента равен изменению объема при добавлении 1 моля данного компонента к данной системе [1, 29, 30]. Кроме того, объемная доля ассоциатов больших размеров в пространстве меньше, чем сумма объемных долей разделенных на отдельные части ассоциатов в пространстве. Согласно модели двухструктурированной воды [1, 31], вода состоит из кластеров

разного размера, связанных водородной связью и из свободных молекул воды между кластерами. По зависимости парциального молярного объема от концентрации можно предположить, что молекулы ПЭГ прежде всего с помощью водородной связи соединяются со свободными молекулами воды. Это приводит к уменьшению парциального молярного объема ПЭГ за счет увеличения концентрации, т.е. за счет увеличения концентрации ПЭГ получается более структурированный раствор.

25721

26328

Понятие гидратации используется для описания взаимодействия между растворителем и растворителем. По мнению ряда авторов [1, 28], процесс гидратации позволяет уточнить общую физическую картину влияния различных веществ на структуру воды. Число гидратации ПЭГ при заданной молекулярной массе в данном интервале температур и концентраций определяется из выражения (9). Расчеты показывают, что оно почти не зависит от концентрации ПЭГ. Мы предполагаем, что этот результат приемлем для разбавленных растворов. В работе были взяты средние значения числа гидратации для разных концентраций при данных температурах. Средние значения $N_{\rm F}$ для исследуемых систем вода $-\Pi \Im \Gamma - {\rm KBr}$ и приведены в табл. 3. Видно, что значение числа гидратации увеличивается с ростом молекулярной массы ПЭГ и уменьшается с увеличением температуры.

Таким образом, по зависимостям энтропии активации вязкого течения и парциального молярного объема $\Pi \Im \Gamma$ в растворе от концентрации можно предположить, что при данной температу-

Рис. 1. Зависимости энтропии активации вязкого течения от концентрации ПЭГ в системах вода—ПЭГ (1), вода—ПЭГ—КСІ (2), вода—ПЭГ—КВг (3) и вода—ПЭГ—КІ (4). $M_{\Pi Э \Gamma} = 3000$ (а) и 6000 г/моль (б); $T = 293.15 \; \mathrm{K}, x_{\mathrm{KCI}} = x_{\mathrm{KB}\mathrm{r}} = x_{\mathrm{KI}} = 0.01$.

ре и для данной фракции ПЭГ с ростом концентрации, и при данной концентрации, но разных фракций ПЭГ, с увеличением молекулярной массы раствор становится более структурированным. По-видимому, в исследуемой системе за счет водородной связи вокруг молекул ПЭГ образуются определенные агрегаты в результате скопления молекул воды (прежде всего, свободных молекул воды). Это видно из табл. 3. С ростом концентрации ПЭГ количество таких агрегатов увеличивает-

Рис. 2. Зависимости парциального молярного объема ПЭГ от концентрации ПЭГ в системах вода—ПЭГ (*I*), вода—ПЭГ—КСІ (*2*), вода—ПЭГ—КВг (*3*) и вода—ПЭГ—КІ (*4*). $M_{\Pi \ni \Gamma} = 3000$ (а) и 6000 г/моль (б); T=293.15 K, $x_{\text{KCI}} = x_{\text{KBr}} = x_{\text{KI}} = 0.01$.

ся, а с ростом молекулярной массы увеличиваются и их размеры, в результате чего раствор становится более структурированным. С увеличением концентрации и средней молекулярной массы ПЭГ число и размеры таких агрегатов в растворе увеличиваются, что приводит к более структурированному раствору.

Несомненно, структура систем вода—KCl, вода—KBr и вода—KI будет отличаться от структуры системы вода— $\Pi \ni \Gamma$, так как ионы K^+ , Cl^- , Br^- и I^-

	_						
<i>T</i> , K	Вода-ПЭГ	Вода-ПЭГ-КС1	Вода-ПЭГ-КВr	Вода—ПЭГ–КІ			
$M_{\Pi \exists \Gamma} = 3000 \ \Gamma / ext{моль}$							
293.15	19.9	18.8	18.5	18.3			
298.15	19.3	18.2	18.1	17.8			
303.15	18.9	17.9	17.8	17.5			
308.15	18.4	17.4	17.3	17.0			
313.15	17.9	17.2	16.9	16.6			
318.15	17.5	16.6	16.3	16.1			
323.15	17.1	16.3	16.0	15.9			
$M_{\Pi \Im \Gamma} = 6000$ г/моль							
293.15	56.7	51.5	50.9	50.3			
298.15	56.3	51.3	50.6	49.8			
303.15	56.0	51.0	50.3	49.5			
308.15	55.8	50.8	50.1	49.4			
313.15	55.4	50.4	49.7	48.7			
318.15	54.9	49.9	49.3	48.0			
		I					

49.9

Таблица 3. Зависимость числа гидратации ПЭГ систем вода-ПЭГ, вода-ПЭГ-KCl, вода-ПЭГ-KBr и вода-ПЭГ-KI от температуры

подвергаются гидратации. Таким образом, по зависимости ΔG_{η}^{\neq} , ΔH_{η}^{\neq} , ΔS_{η}^{\neq} , \tilde{V} в растворе от концентрации и значению N_{Γ} можно считать, что ПЭГ оказывает структурное влияние и на воду, и на системы вода—КСІ, вода—КВг и вода—КІ. Но присутствие КСІ, КВг, КІ последовательно ослабляет структурное влияние ПЭГ. Это связано с разрушительным воздействием КСІ, КВг, КІ в соответствующей последовательности на структуру воды. Следует отметить, что согласно многим исследованиям [32—34], ионы влияют на структуру воды в последовательности, соответствующей лиотропному ряду Гофмейстера. Как видно, полученные нами результаты также соответствуют лиотропному ряду Гофмейстера.

54.8

323.15

СПИСОК ЛИТЕРАТУРЫ

- 1. Masimov E.A., Hasanov H.Sh., Pashayev B.G. // Liquid Viscosity. Baku: Publishing House Laman, 2016. 285 p.
- 2. Ji Chen, Spear Scott K., Jonathan G. et al. // J. Green Chem. 2005. № 7. P. 64.
- Ozdemir C., Guner A. // J. Appl. Polymer Sci. 2006.
 V. 101. P. 203.
- Sung J.H., Lee D.C., Park H.J. // Polymer. 2007. V. 48. P. 4205.
- 5. *Сибилева М.А., Тарасова Э.В.* // Журн. физ. химии. 2004.Т. 78. № 7. С. 1240.
- 6. Kashmola T.O., Estabraq S.K. // Iraqi Journal of Chemical and Petroleum Engineering, 2014. V. 15. № 1. P. 23.
- Totten G.E., Clinton N.A., Matlock P.L. // J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1998. V. C38. P. 77.

8. *Tjerneld F., Johansson H.O.* // Int. Rev. Cytol. 2000. V. 192. P. 137.

48.1

49.2

- 9. Hatti-Kaul R. // Mol. Biotechnol. 2001. V. 19. P. 269.
- 10. *Масимов Э.А., Пашаев Б.Г., Гасанов Г.Ш., Гаджиева Ш.Н.* // Журн. физ. химии. 2019. Т. 93. № 6. С. 845.
- 11. *Pashayev B.G.* // Journal of Low Dimensional Systems. 2019. V. 3 (2). P. 29.
- 12. *Masimov E.A.*, *Pashayev B.G.*, *Rajabov M.R.* // J. Struct. Chem. 2020. V. 61. № 6. P. 932.
- 13. *Joshi R., Kandpal N.D.* // Der Pharmacia Letter. 2015. V. 7. № 10. P. 126.
- 14. Parmoona G., Mohammadi Nafchib A., Pirdashtic M. // Phys. Chem. Res. 2019. Vol. 7. № 4. P. 859.
- Масимов Э.А., Пашаев Б.Г., Гасанов Г.Ш. // Журн. физ. химии. 2019. Т. 93. № 5. С. 779.
- 16. *Масимов Э.А., Пашаев Б.Г., Раджабов М.Р.* // Там же. 2019. Т. 93. № 12. С. 1913.
- 17. *Шуляк И.В., Грушова Е.И.* // Там же. 2013. Т. 87. № 12. С. 2079.
- Tang Z., Fang K., Song Y., Sun F. // J. Polymers. 2019.
 V. 11. P. 739.
- Bhanot C., Trivedi S., Gupta A., Pandey S. // J. Chem. Thermodyn. 2012. V. 45. P. 137.
- 20. *Pashayev B.G.* // Conference Proceedings, Modern Trends In Physics. Baku, 01–03 May, 2019. P. 170.
- 21. *Шуляк И.В., Грушова Е.И.* // Журн. физ. химии. 2013. Т. 87. № 3. С. 453.
- 22. Шуляк И.В., Грушова Е.И., Семенченко А.М. // Там же. 2011. Т. 85. № 3. С. 485.
- 23. *Френкель Я.И.* // Кинетическая теория жидкостей. Л.: Наука, 1975. 592 с.

- Глесстон С., Лейдлер К., Эйринг Г. // Теория абсолютных скоростей. М.: Изд-во иностр. лит., 1948. 600 с.
- 25. *Тагер А.А.* // Физикохимия полимеров. М.: Изд-во " Научный мир", 2007. 573 с.
- 26. *Масимов Э.А.*, *Пашаев Б.Г.*, *Раджабов М.Р.* // Жур-н. физ. химии, 2020, 94. № 12. С. 1909.
- 27. *Масимов Э.А., Пашаев Б.Г., Раджабов М.Р.* // Там же. 2021. Т. 95. № 1. С. 57.
- 28. *Самойлов О.Я.* // Структура водных растворов электролитов и гидратация ионов. М.: Изд-во АН СССР, 1957. 250 с.

- 29. *Atkins P., De Paula J.* // Physical Chemistry. L.: Oxford University Press, 2006. 1067 p.
- 30. *Медведев Н.Н.*, *Волошин В.П.*, *Ким А.В. и др. //* Журн. структурн. химии. 2013. Т. 54. 2. Р. 276.
- 31. *Калоус В., Павличек З. //* Биофизическая химия. М.: Мир, 1985. С. 267—273.
- 32. Duignan T.T., Parsons D.F., Ninham B.W. // J. Chem. Phys. Lett. 2014. V. 608. P. 55.
- 33. *Jakubowska A., Kozik T.* // J. Chemometrics. 2019. V. 33. P. 18.
- 34. Cacace M.G., Landau E.M., Ramsden J.J. // Quarterly Reviews of Biophysics, 1997. V. 30. № 3. P. 241.