ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 539.23

ИССЛЕДОВАНИЕ ПРОЦЕССА АТОМНО-СЛОЕВОГО ОСАЖДЕНИЯ ОКСИДА МОЛИБДЕНА И ТИТАН-МОЛИБДЕНОВЫХ ОКСИДНЫХ ПЛЕНОК МЕТОДОМ КВАРЦЕВОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО МИКРОВЗВЕШИВАНИЯ

© 2022 г. А. М. Максумова^{*a*}, И. М. Абдулагатов^{*a*,*}, Д. К. Палчаев^{*a*}, М. Х. Рабаданов^{*a*}, А. И. Абдулагатов^{*a*}

^а Дагестанский государственный университет, 367000, Махачкала, Россия *e-mail: ilmutdina@gmail.com Поступила в редакцию 19.01.2022 г. После доработки 19.04.2022 г. Принята к публикации 20.04.2022 г.

Проведено исследование процесса термического атомно-слоевого осаждения (ACO) пленок оксида молибдена (MoO_x) с использованием MoOCl₄ и H₂O, а также титан-молибденовых оксидных (Ti_xMo_yO_z) тонких пленок с использованием TiCl₄, MoOCl₄ и H₂O. Процесс роста пленки исследовали *in situ* методом кварцевого пьезоэлектрического микровзвешивания (КПМ) в диапазоне температур от 115 до 180°C. Рассмотрены процессы ACO пленок Ti_xMo_yO_z с различным соотношением субциклов TiCl₄–H₂O и MoOCl₄–H₂O в суперцикле. Во всех случаях установлен линейный рост пленки с количеством ACO циклов. Показано, что поверхностные реакции галогенидов и H₂O носили самоограничивающийся характер. Согласно данным КПМ, сделан вывод о возможности использования рассмотренной химии поверхности для осаждения тонких пленок MoO_x и Ti_xMo_yO_z. Установлены потенциальные области применения данных тонких пленок: катализ, электрохромные устройства, литий-ионные аккумуляторы, антибактериальные покрытия и т.д.

Ключевые слова: атомно-слоевое осаждение, MoO_3 , $MoOCl_4$, легирование TiO_2 , $Ti_xMo_yO_z$ **DOI:** 10.31857/S0044453722100181

Известно, что диоксид титана (TiO₂) широко распространен в природе, не токсичен и обладает фотокаталитическими свойствами. Значение ширины запрещенной зоны TiO₂ в зависимости от кристаллической структуры находится в пределах от 3.0 до 3.4 эВ. Это ограничивает его область активации ультрафиолетовой областью, которая составляет лишь ≈3% солнечного спектра [1]. Поэтому разработка активного в видимой области света диоксида титана – одна из ключевых задач в области фотокатализа полупроводников [2]. Одним из подходов к модификации оптических свойств TiO₂ служит легирование ионами переходных металлов [3]. Легированные покрытия можно получить различными газофазными метолами, такими как химическое осажление из газовой фазы (ХОГФ) [4], магнетронное распыление [5], испарение лазерным лучом [6] и т.д. Метод атомно-слоевого осаждения (АСО) под названием "молекулярное наслаивание" был впервые разработан в 60-е годы прошлого столетия советскими учеными В.Б. Алесковским и С.И. Кольцовым [7]. Данная технология позволяет на ато-

марном уровне контролировать толщину и состав получаемых пленок [8, 9]. Поэтому АСО нашло широкое применение для получения и в том числе легированных тонких пленок. В прошлом для легирования ACO TiO₂ были успешно использованы ванадий [10], углерод [11], азот [12-14], ниобий [15], сера [16], цинк [17], фтор [18], тантал [19] и т.д. В данной работе впервые исследовали процесс термического АСО оксида титана, легированного молибденом, с использованием тетрахлорида титана, окситетрахлорида молибдена и воды. Возможность использования оксидных сплавов титана и молибдена в фотокатализе ранее была продемонстрирована в работах [20, 21]. Кроме этого, пленки Ti_rMo_vO_z могут найти применение в литий-ионных аккумуляторах [22], газовых сенсорах [23] и т.д.

Процесс ACO $Ti_x Mo_y O_z$, рассмотренный в данной работе, является комбинацией двух процессов: ACO TiO_2 и MOO_3 . В настоящее время ACO TiO_2 продемонстрировано с использованием множества различных типов прекурсоров.

Рис. 1. Схема установки для АСО тонких пленок.

Ниже приведены только некоторые из них: тетрахлорид титана (TiCl₄) [24]; изопропоксид титана ($Ti(OiPr)_{4}$) [25]; тетракисдиметиламинотитан (Ti(NMe₂)₄) [26]; бис-(изопропоксид)-бис-(2,2,6,6-тетраметилгептан-3,5-дионат) титана (Ti(OiPr)₂(thd)₂) [27] и др. в комбинации с такими окислителями как H₂O, O₃, H₂O₂ и т.д. [28]. В качестве прекурсоров для получения пленок МоО, ранее были использованы гексакарбонил молибдена $(Mo(CO)_6)$ [29]; бис-этилбензол молибдена (MoC₁₆H₂₀) [30]; диоксо-бис-(N,N'-диизопропилацетоамидинат) молибдена (VI) $(MoO_2(iPr_2amd)_2)$ [31]; бис-(трет-бутилимидо)-бис-(диметиламино)молибден (VI) (Mo(NtBu)₂(NMe₂)₂) [32]; окситетрахлорид молибдена (VI) (MoOCl₄) [33]; диоксо-бис-(2,2,6,6-тетраметилгептан-3,5-дионато)молибден (VI) (MoO₂(thd)₂) [34]; диоксо-бис-(N,N'трет-бутилацетоамидинато)молибден (VI)MoO₂(tBuamd)₂ [35]; Mo(CpSiMe₃)(CO)₂(2-метилаллил) [36], в комбинации с H₂O, O₃ и H₂O + O₃. Тонкие пленки МоО_х находят применение в катализе [37, 38], электрохромных устройствах [39], литий-ионных батареях [40], газовых сенсорах [41], в качестве антибактериальных покрытий [42].

В сравнении с часто используемыми в ACO TiO_2 и MoO_x органометаллическими прекурсорами, их галогениды обладают достаточным давлением паров при комнатной температуре или могут быть относительно легко переведены в газовую фазу нагревом. В связи с этим в данной работе ACO $Ti_xMo_yO_z$ проводили с использованием $TiCl_4$, $MoOCl_4$ и H_2O . В качестве альтернативного прекурсора молибдена (VI) может быть использован более термически стабильный диоксидихлорид молибдена MoO_2Cl_2 [43, 44], однако он обладает более высокой температурой плавления (175°C) [45]. Цель данной работы — исследование поверхностных процессов, происходящих при ACO оксида молибдена и титан-молибденовых оксидных тонких пленок при помощи КПМ в диапазоне температур 115—180°С.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

АСО оксида молибдена и титан-молибденовых оксидных пленок проводили на оборудовании компании ООО "АСО НаноТех". Упрощенная схема экспериментальной установки приведена на рис. 1.

Для ACO использовали вакуумную камеру с горячими стенками. выполненную из стали марки AISI 304L, которую продували потоком газаносителя. В качестве газа-носителя использовали азот особой степени чистоты от ООО "Гермесгаз" (N₂, 99.999%). Напуск паров прекурсоров осуществляли посредством открытия пневматических дозирующих клапанов, которые установлены между контейнером с прекурсором и реактором. Последовательность и продолжительность напуска прекурсоров задавали программой. Парциальные давления прекурсоров регистрировали встроенным на выходе из реактора датчиком давления как показано на схеме. С помощью регулятора расхода газа (РРГ) давление в реакторе поддерживали азотом на уровне ~1.0 Торр. При этом РРГ устанавливали на расход в 100 см³/мин. TiCl₄ и MoOCl₄ перед экспериментом загружали в контейнеры для дозирования в атмосфере аргона. Чистота TiCl₄ (Sigma-Aldrich, кат. номер 7550450) и MoOCl₄ (Sigma-Aldrich, кат. номер 13814750) составляла ≥99.0 и 97.0%, соответственно. Воду использовали хроматографического класса чистоты (Fisher Chemical, кат. номер W5-1). ACO проводили при температурах 115, 150 и 180°С. Во время ACO MoOCl₄ грели до 60°С для сублимации и достижения достаточного давления паров. Температура плавления MoOCl₄ составляет 105°C [45]. Известно, что MoOCl₄ термически нестабилен и очень медленно [43] подвергается разложению при 25°С. Визуально изменение цвета прекурсора после нагревания в контейнере до 60°С не наблюлалось.

Изучение и оптимизацию процесса роста пленок проводили в ACO-установке, снабженной кварцевыми микровесами, позволяющими проводить исследование роста пленки в режиме реального времени (*in situ*). КПМ-оборудование, использованное в данной работе, схоже с описанным в работе [46]. КПМ-измерения выполняли с использованием электронного модуля STM-2 (Inficon). Корпус КПМ выполнен компанией Inficon. Разрешение кварцевых микровесов по массе составляет ~0.3 нг/см². До начала осаждения пленок MoO_x или Ti_xMo_yO_z кристалл КПМ покрывали пленкой ACO Al₂O₃, для этого использовали триметилалюминий (TMA, Al(CH₃)₃) и воду. ТМА с чистотой 97% (Sigma-Aldrich, кат. номер 257222) использовали при комнатной температуре без нагрева. В процессе роста Al₂O₃ наблюдали линейный прирост массы с количеством циклов со средним приростом массы за цикл ~33.0 нг/см², что хорошо согласуется с ранее опубликованными данными [47]. Значения погрешностей, полученные для каждой точки на кривых насыщения, представляют разброс данных по 10 точкам для разных экспериментов. Относительная погрешность для данных измерений составляет 1.07%. Активная площадь кварцевого кристалла, на которой происходило осаждение, составляла 0.65 см² и по прилагаемой программе пересчитывалась на площадь 1 см².

Время напуска и продувки прекурсоров во время одного АСО цикла МоО_х обозначали как $t_1/t_2/t_3/t_4$, где t_1 – время напуска паров MoOCl₄; t_2 и t₄ – время продувки; t₃ – время напуска паров H₂O. Один ACO суперцикл осаждения Ti_xMo_vO_z обозначали как $t_1/t_2/t_3/t_4/t_5/t_6/t_7/t_8$, где t_1 – время напуска паров TiCl₄; t_2 , t_4 , t_6 , t_8 – время продувки; t_3, t_7 — время напуска паров H₂O; t_5 — время напуска паров MoOCl₄. Соотношение субциклов TiCl₄- H_2O и MoOCl₄-H₂O в процессе ACO Ti_xMo_yO_z варьировали, меняя количество $t_5/t_6/t_7/t_8$ субциклов в суперцикле. Парциальные давления MoOCl₄, $TiCl_4$ и H₂O при времени напуска в течение 1 с составляли ~5, ~15 и ~50 мТорр, соответственно. Термохимические расчеты проводили с использованием программы HSC Chemistry.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Атомно-слоевое осаждение MoO_x

Рост пленки MoO_x осуществлялся за счет поверхностных реакций паров $MoOCl_4$ и H_2O . Термохимические расчеты для газофазной реакции $MoOCl_4(\Gamma) + 2H_2O(\Gamma) \rightarrow MoO_3 + 4HCl(\Gamma)$ при $150^{\circ}C$ ($\Delta G = -17.23$ ккал/моль) показывают, что данная реакция может протекать самопроизвольно. Процесс ACO MoO_x схематично можно представить в виде циклически повторяющихся поверхностных полуреакций:

$$](-OH)_{x}^{*} + MoOCl_{4}(\Gamma) \rightarrow$$

$$\rightarrow](-O)_{x} - MoO(Cl)_{4-x}^{*} + xHCl(\Gamma),$$
(A)

$$(5)_{x} - MoO(CI)_{4-x} + (4-x)H_{2}O(I) \rightarrow$$

$$(5)_{x} - MoO(OH)_{4-x}^{*} + (4-x)HCl(\Gamma),$$

где * — поверхностные реакционные группы,] — поверхность, x — количество прореагировавших гидроксильных групп (–OH), HCl — газообраз-

Рис. 2. Прирост массы (*Δm*), наблюдаемый в процессе ACO MoO₂ при 115 (*1*), 150 (*2*) и 180°С (*3*).

ный продукт поверхностных реакций. По представленной выше схеме после напуска $MoOCl_4$ на поверхности образуется монослой молибденоксохлоридных групп, а напуск паров H_2O приводит к замещению хлор-ионов на гидроксильные группы, что приводит к регенерации поверхностных функциональных групп, благодаря которым, происходит дальнейший рост пленки.

На рис. 2 представлены КПМ-данные о зависимости прироста массы от времени осаждения в процессе АСО MoO_x при 115, 150 и 180°С.

Процесс проводили с временными параметрами напуска и продувки 1/30/1/30. При температуре ACO 115°C прирост массы был наименьшим, максимальный прирост массы наблюдался при 180°C. Скорость прироста массы при 150 и 115°C была примерно одинаковой. При 150 и 180°C наблюдали линейный рост пленки с количеством ACO-циклов и высокую повторяемость поверхностных процессов от цикла к циклу. Повторяемость процесса и линейность роста пленки была хуже при 115°C.

Зависимость прироста массы, приходящегося на один цикл ACO MoO_x, от продолжительности напуска MoOCl₄ и H₂O при температуре ACO 150°C приведена на рис. 3. Данные эксперименты были проведены для определения самонасыщаемости поверхностных полуреакций (А) и (Б). Результаты для MoOCl₄ были получены с использованием временных параметров одного цикла $\alpha/30/1/30$, где α – варьируемое время напуска паров MoOCl₄, 1 с – фиксированное время напуска паров H₂O и 30 с – время продувки прекурсоров. Результаты для H₂O были получены с использованием временных параметров одного цикла $1/30/\alpha/30$, где α – варьируемое время напуска па-

60

Рис. 3. Зависимости прироста массы от длительности напуска паров $MoOCl_4$ и H_2O в процессе ACO MoO_x при 150°С.

ров H_2O , 1 с – фиксированное время напуска паров $MoOCl_4$.

Из рис. З следует, что прирост массы за цикл достигает насыщения уже при времени напуска паров $MoOCl_4 \sim 1.0$ с. Кривая насыщения для H_2O имеет более плавный характер, возможно, связанный с задержкой воды в реакторе и необходимостью более длительной продувки после напуска воды.

На рис. 4 представлен наблюдаемый при 150°С приближенный вид сигнала КПМ в ходе АСО МоО_х с параметрами цикла 1/30/1/30. При напуске MoOCl₄ результирующий прирост массы после напуска MoOCl₄ и шага продувки составил ~10 нг/см². На стадии продувки происходит некоторое снижение массы, что свидетельствует о нестабильности поверхностных комплексов и/или о медленной десорбции продуктов реакции. Напуск Н₂О приводит к резкому снижению массы на 3.0 нг/см², при этом результирующий прирост массы составляет 7.0 нг/см² за цикл. Постоянную роста (δ , Å/цикл) можно получить из уравнения $\delta = \Delta m_{\rm A} \rho^{-1}$, где $\Delta m_{\rm A}$ — прирост массы за один цикл (7.0 нг/см²), р – плотность кристаллического MoO_3 (4.69 г/см³); постоянная роста $\delta \sim 0.15$ Å/цикл, что близко к значению 0.1 Å/цикл, полученному ранее для ACO MoO, при 300°C с использованием тех же прекурсоров [33]. Толщину одного монослоя MoO_3 можно рассчитать из уравнения h = $= (M/(N_{\rm A}\rho))^{1/3}$, где M – молярная масса MoO₃, *N*_A – число Авагадро, и ρ – плотность кристаллического МоО₃. Из приведенного уравнения толщина монослоя кристаллического МоО3 состав-

Рис. 4. Изменение прироста массы (Δm) в процессе попеременного напуска паров MoOCl₄ и H₂O при 150°C для ACO MoO_x.

ляет 3.7 Å. Расчетным путем также определили ожидаемый прирост массы на КПМ для одного монослоя MoO₃ (~174 нг/см²). Из этого следует, что осаждение пленки оксида молибдена в данном случае происходит в субмонослойном режиме. Прирост массы при напуске MoOCl₄ и ее снижение при дозировании Н₂О соответствуют предложенной химии осаждения. Отношение общего прироста массы за один АСО цикл MoOCl₄/H₂O $(\Delta m_{\rm A})$ к приросту массы после напуска MoOCl₄ $(\Delta m_{\rm B})$ составляет $R_{\rm MoO_3} = 7.0/10.0 = 0.7$. Из уравнения: $R_{MoO_3} = M(MoO_3)/[M(MoOCl_4) - xM(HCl)],$ где *М* – молярная масса, можно рассчитать долю прореагировавших –ОН-групп (х). Полученное значение x = 1.3 соответствует случаю, когда взаимодействие MoOCl₄ происходит в основном с одной гидроксильной группой.

В табл. 1 рассмотрены три случая, когда рост МоО_х осуществляется с участием одной, двух или трех поверхностных гидроксильных групп. При этом идеальным является случай, где x = 2, при котором количество регенерированных гидроксильных групп после напуска H₂O (реакция (Б)) равно количеству прореагировавших (реакция (А)). Однако экспериментально полученное значение x = 1.3, что указывает на высокую вероятность монодентатного присоединения MoOCl₄ (x = 1), в этом случае количество прореагировавших в реакции (А) гидроксильных групп становится меньше полученных в результате реакции (Б). Как было показано ранее, поверхностные реакции VOCl₃ [48] или ТМА [49] с H₂O могут быть поликонденсацией (дегидратацией) соседних металгидроксильных групп с возникновением мо-

x	Реакции	R
1	$]-OH^* + MoOCl_4(r) \rightarrow]-O-MoOCl_3^* + HCl(r)$ $]-O-MoOCl_3^* + 3H_2O(r) \rightarrow](-O)-MoO-(OH)_3^* + 3HCl(r)$	0.71
2	$\begin{aligned} &]-(OH)_{2}^{*} + MoOCl_{4}(r) \rightarrow](-O)_{2} - MoOCl_{2}^{*} + 2HCl(r) \\ &](-O)_{2} - MoOCl_{2}^{*} + 2H_{2}O(r) \rightarrow](-O)_{2} - MoO-(OH)_{2}^{*} + 2HCl(r) \end{aligned}$	0.80
3	$\begin{aligned} &]-(OH)_3^* + MoOCl_4(r) \rightarrow](-O)_3 - MoOCl^* + 3HCl(r) \\ &](-O)_3 - MoOCl^* + H_2O(r) \rightarrow](-O)_3 - MoO - OH^* + HCl(r) \end{aligned}$	0.87

Таблица 1. Возможные механизмы роста MoO_x с расчетными значениями $R = \Delta m_A / \Delta m_B$

стиковых связей. Такой вариант для системы MoOCl₄/H₂O представлен на рис. 5.

Для этого случая расчетное значение R = 0.7 и совпадает с экспериментальным. Все представленные расчеты предполагают рост MoO_x без примесей хлора.

Вследствие обратимости поверхностных химических реакций осаждаемые оксиды могут быть переведены в газовую фазу в результате хемосорбции продукта реакции – HCl [50, 51]. Согласно термохимическим расчетам, процессы травления оксида молибдена в процессе реадсобции продукта реакции (HCl) или продукта разложения прекурсора MoOCl₄ в контейнере (Cl₂) маловероятны, так как энергии Гиббса для реакций $MoO_3 + 4HCl(r) \rightarrow MoOCl_4(r) + 2H_2O(r)$ $(\Delta G(150^{\circ}\text{C}) = 18.0 \text{ ккал})$ и MoO₃ + 2Cl₂(г) \rightarrow MoO- $Cl_4(\Gamma) + O_2(\Gamma) (\Delta G (150^{\circ}C) = 32.25 \text{ ккал})$ положительны. Это свидетельствует о том, что поверхностные реакции не обратимы, поэтому продукты реакции на стенках реактора не должны влиять на процессы, происходящие на КПМ. Также энергии Гиббса имели положительные значения и для случаев, когда возможным продуктом реакции был MoO₂Cl₂.

Приведенные выше экспериментальные данные указывают на то, что химия поверхности MoOCl₄ и H₂O может быть использована для осаждения сплава Ti_xMo_vO_z.

Атомно-слоевое осаждение $Ti_x Mo_y O_z$

АСО $Ti_x Mo_y O_z$ осуществляли за счет поверхностных реакций паров TiCl₄, MoOCl₄ и H₂O в заданной последовательности. Полученные пленки обозначили как 1Ti1MoO, 1Ti7MoO и 2Ti7MoO, где коэффициенты соответствуют количеству субциклов TiCl₄/H₂O и MoOCl₄/H₂O в суперцикле. Для осаждения 1Ti1MoO использовали восьмиступенчатый ACO суперцикл, состоящий из последовательного напуска паров TiCl₄, H₂O, MoOCl₄, H₂O и продувок между ними (рис. 6).

Зависимость прироста массы, приходящегося на один суперцикл ACO $\text{Ti}_x \text{Mo}_y \text{O}_z$ (1Ti1MoO), от продолжительности напуска паров TiCl₄, MoOCl₄, H₂O при температуре ACO 150°C приведена на рис. 7.

Для определения самонасыщаемости реакции TiCl₄ использовали временные параметры одного суперцикла α/30/2/30/1.5/30/2/30, где α – варьируемое время напуска паров $TiCl_4$, 1.5 с – фиксированное время напуска паров $MoOCl_4$, 2 с – время напуска паров H₂O, 30 с – время продувки прекурсоров, а для самонасыщаемости реакции MoOCl₄ – 1.5/30/2/30/α/30/2/30, где 1.5 с – время напуска паров TiCl₄, α – варьируемое время напуска паров $MoOCl_4$, 2 с – время напуска паров H₂O, 30 с – время продувки прекурсоров. Из рис. 6 видно, что насыщение достигалось при времени напуска паров галогенидов ~1.0 с. На рис. 7 также представлены результаты по самонасышаемости реакции H₂O, полученные для времени напуска и продувки в суперцикле 1.5/30/α/30/1.5/30/α/30,

2022

№ 10

Рис. 5. Схема возможных поверхностных процессов взаимодействия паров $MoOCl_4$ и H_2O в процессе ACO MoO_x при 150°С.

Повтор *N* раз

Рис. 6. Последовательность подачи реагентов в суперцикле процесса ACO $Ti_x Mo_y O_z$ (1Ti1MoO).

где пары TiCl₄ и MoOCl₄ напускали в течение 1.5 с, α — варьируемое время напуска паров H₂O, 30 с — время продувки прекурсоров. Из изложенного выше следует, что поверхностные реакции галогенидов имеют самоограничивающийся характер, а кривая насыщения для H₂O имеет более плавный характер.

На рис. 8 приведены КПМ-данные по изменению массы при напуске и продувке паров реагентов в процессе роста пленки 1Ti1MoO при

Рис. 7. Зависимость прироста массы (Δm) от длительности напуска паров TiCl₄, MoOCl₄ и H₂O в процессе осаждения ACO Ti_xMo_vO₇ (1Ti1MoO) при 150°C.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 10 2022

150°С. Рост пленки осуществлялся с использованием временных параметров одного суперцикла 1/30/1/30/1/30. Прирост массы после TiCl₄/H₂O субцикла составил 17.0 нг/см², что ниже значения прироста массы в процессе ACO TiO₂ (20.2 нг/см²), полученного при схожих условиях роста. Прирост массы после MoOCl₄/H₂O-субцикла составил 20.0 нг/см², что значительно выше полученного в процессе ACO MoO_x (~7.0 нг/см², рис. 3). Увеличение прироста массы за субцикл МоOCl₄/H₂O свидетельствует о повышении концентрации реакционноспособных поверхностных групп после TiCl₄/H₂O-субцикла.

Из отношения общего прироста массы за субцикл (20.0 нг/см²) к приросту массы при напуске MoOCl₄ (24.0 нг/см²) рассчитали количество гидроксильных групп (*x*), принявших участие в реакции поверхностного гидролиза (2.2), что указывет на бидентатное присоединение MoOCl₄ к поверхностным функциональным группам в процессе роста 1Ti1MoO. Изменение механизма поверхностных реакций также может быть связано с формированием поверхностных донорно-акцепторных комплексов (-O)_xTi \leftarrow :O = MoCl₄, вследствие образования координационной связи между неподеленной электронной парой атома кислорода в молекуле MoOCl₄ с вакантными *d*орбиталями атомов титана [52].

Для увеличения относительного содержания молибдена в титан-молибденовой оксидной пленке ACO проводили с использованием одного субцикла $TiCl_4/H_2O$ и семи субциклов $MoOCl_4/H_2O$ в суперцикле (пленки 1Ti7MoO). На рис. 9 приве-

Рис. 8. Прирост массы (Δm) в процессе АСО титанмолибденовой оксидной пленки (1Ti1MoO) в зависимости от роста.

дены данные КПМ, наблюдаемые в процессе ACO, проводимого с временными параметрами суперцикла 1/30/1/30/((1/30/1/30) × 7) при 150°С.

После субцикла TiCl₄/H₂O наблюдается общая потеря массы (~3.0 нг/см²). Примечательно, что потеря массы наблюдается как после напуска H₂O, так и после TiCl₄, что свидетельствует о процессах травления пленки. Прирост массы после семи субциклов MoOCl₄/H₂O составил 82.0 нг/см². Общий прирост массы за один суперцикл составил ~79.0 нг/см². С каждым последующим MoO-Cl₄/H₂O субциклом прирост массы постепенно снижается.

Потерю массы, наблюдаемую после напуска TiCl₄, можно объяснить его взаимодействием с поверхностным оксидом молибдена и удалением Мо в виде оксихлоридов по схеме: МоО₃ + $+ \operatorname{TiCl}_{4}(\Gamma) \rightarrow \operatorname{TiO}_{2} + \operatorname{MoOCl}_{4}(\Gamma), \ \Delta G(150^{\circ}\mathrm{C}) =$ = -5.5 ккал/моль и/или 2MoO₃ + TiCl₄(г) \rightarrow TiO₂ + $+ 2MoO_2Cl_2(\Gamma), \Delta G(150^{\circ}C) = -6.4$ ккал/моль (в перерасчете на один атом молибдена $\Delta G(150^{\circ}\text{C}) =$ = -3.2 ккал/моль). Обе реакции термодинамически разрешимы при 150°С. Согласно справочным данным, температура сублимации MoO₂Cl₂ составляет 157°С [53], что близко к температуре осаждения. Сопутствующие реакции травления могут способствовать снижению содержания молибдена в осаждаемой пленке (отклонение от правила смесей), что наблюдалось ранее при осаждении других многокомпонентных АСО-пленок [10, 54]. Процессы "конвертирования" оксидов молибдена и титана могут быть схожи с процессами изоморфного замещения. Данные процессы можно объяснить [55] более низким

Рис. 9. Изменение массы (Δm) для одного суперцикла в процессе ACO титан-молибденовой оксидной пленки (1Ті7МоО) с семью субциклами MoOCl₄/H₂O.

значением стандартной энтальпии образования TiO₂ (анатаз, -938.7 кДж моль⁻¹) в сравнении с MoO₃ (-744.6 кДж моль⁻¹). Потеря массы после напуска H₂O в субцикле TiO₂ объясняется реакциями замещения Cl-лигандов поверхностных оксититанхлоридных и/или оксимолибденхлоридных групп. Формирование связей Мо–Cl происходит вследствие перехода части Cl-лигандов TiCl₄ на неполностью удаленные с поверхности атомы молибдена. Возможно, что схожие процессы протекают также и при осаждении пленок 1TilMoO, где процесс "конвертирования" после напуска TiCl₄ проявляется в меньшей степени.

На рис. 10 показан общий вид наблюдаемого при 150° С сигнала КПМ в процессе АСО $Ti_x Mo_y O_z$ с разными соотношениями субциклов. При осаждении пленок пары прекурсоров металлов и воды напускались в течение 1 с и продувались в течение 30 с.

На рис. 10 видна линейность роста пленок с количеством ACO-циклов, а также повторяемость процесса от цикла к циклу. Угол наклона линии прироста массы для 1Ti1MoO процесса выше, и, соответственно, скорость роста пленки в данном случае выше, чем для 1Ti7MoO и 2Ti7MoO. Скорость роста пленки увеличивается при увеличении количества TiCl₄/H₂O-субциклов (2Ti7MoO) и убывает с увеличением количества MoOCl₄/H₂O-субциклов (1Ti7MoO).

ЗАКЛЮЧЕНИЕ

In situ мониторинг процесса осаждения в диапазоне температур 115–180°С позволил устано-

Рис. 10. Прирост массы (Δm) в процессе АСО титанмолибденовых оксидных пленок с разным соотношением субциклов при 150°С.

вить линейность роста пленок MoO₂ и Ti₂Mo₂O₂ с количеством циклов. Для обоих типов пленок поверхностные реакции галогенидов и H₂O имели самоограничивающийся характер. Расчеты показали, что рост пленки МоО, происходит в субмонослойном режиме. В процессе реакции MoOCl₄ с гидроксилированной поверхностью в основном наблюдается монодентатное присоединение, тогда как в сплаве в процессе ACO Ti_rMo_vO_z (1Ті7МоО) эта реакция соответствовала бидентатному присоединению. В процессе роста пленок ACO Ti_xMo_vO_z (1Ti7MoO) после субцикла TiCl₄/H₂O вместо ожидаемого прироста массы наблюдали ее снижение, которое объясняли "конвертированием" MoO_x и TiO₂ путем перехода хлор-лигандов TiCl₄ на поверхностные оксимолибденовые группы и удалением Мо в газовую фазу в виде оксихлоридов. Для более детального изучения поверхностных процессов роста АСО МоО_г и Ті_гМо_vO₇ запланировано проведение исследований полученных пленок с использованием инфракрасной и рентгеновской фотоэлектронной спектроскопии.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Государственное задание FZNZ-2020-0002).

СПИСОК ЛИТЕРАТУРЫ

 Ren W., Ai Zh., Jia F. et al. // Appl.Catal. 2007. V. 69. № 3–4. P. 138. https://doi.org/10.1016/j.apcatb.2006.06.015

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 10 2022

- Fujishima A., Zhang X.T. // C. R. Chimie. 2006. V. 9. № 5–6. P. 750. https://doi.org/10.1016/j.crci.2005.02.055
- 3. *Daghrir R., Drogui P., Robert D.* // Ind. Eng. Chem. Res. 2013. V. 52. № 10. P. 3581. https://doi.org/10.1021/ie303468t
- 4. *Dunnill C.W., Kafizas A., Parkin I.P.* // Chem. Vap. Dep. 2012. V. 18. № 4–6. P. 89. https://doi.org/10.1002/cvde.201200048
- Vahl A., Veziroglu S., Henkel B. et al. // Materials. 2019.
 V. 12. № 17. P. 2840. https://doi.org/10.3390/ma12172840
- Al Mashary F.S., Felix J.F., Ferreira S.O. et al. // MSEB. 2020. V. 259. P. 114578. https://doi.org/10.1016/j.mseb.2020.114578
- Малыгин А.А. // Сборник тезисов докладов III Международного семинара "Атомно-слоевое осаждение: Россия, 2021", 2021. С. 13.
- 8. *George S.M.* // Chem. Rev. 2010. V. 110. № 1. P. 111. https://doi.org/10.1021/cr900056b
- 9. *Puurunen R.L.* // J. Appl. Phys. 2005. V. 97. № 12. P. 121301. https://doi.org/10.1063/1.1940727
- 10. Абдулагатов А.И., Максумова А.М., Палчаев Д.К. и др. // Журн. прикл. химии. 2021. Т. 94. № 7. С. 835. https://doi.org/10.1134/S1070427221070053
- 11. Xie Y, Zhao X., Chen Y. et al. // J. Solid State Chem. 2007. V. 180. № 12. P. 3576. https://doi.org/10.1016/j.jssc.2007.10.023
- 12. *Tian L., Soum-Glaude A., Volpi F. et al.* // J. Vac. Sci. Technol. A. 2015. V. 33. № 1. P. 01A141–1. https://doi.org/10.1116/1.4904025
- 13. Lee A., Libera J.A., Waldman R.Z. et al. // Adv. Sustainable Syst. 2017. V. 1. № 1–2. P. 1600041. https://doi.org/10.1002/adsu.201600041
- 14. *Pore V., Heikkilä M., Ritala M. et al.* // J. Photochem. Photobiol. 2006. V. 177. № 1. P. 68. https://doi.org/10.1016/j.jphotochem.2005.05.013
- Niemela J.P., Yamauchi H., Karppinen M. // Thin Solid Films. 2014. V. 551. P. 19. https://doi.org/10.1016/j.tsf.2013.11.043
- Pore V., Ritala M., Leskelä M. et al. // J. Mater. Chem. 2007. V. 17. № 14. P. 1361. https://doi.org/10.1039/B617307A
- 17. Su C.Y., Wang L.Ch., Liu W.S. et al. // Acs Appl. Mater. Interfaces. 2018. V. 10. № 39. P. 33287. https://doi.org/10.1021/acsami.8b12299
- Pore V., Kivelä T., Ritala M. et al. // Dalton Trans. 2008.
 V. 45. P. 6467. https://doi.org/10.1039/B809953G
- Choi J.H., Kwon S.H., Jeong Y.K. et al. // J. Electrochem. Soc. 2011. V. 158. № 6. P. B749. https://doi.org/10.1149/1.3582765
- 20. Huang J.-g., Guo X-t., Wang B. et al. // J. Spectros. 2015. V. 2015. P. 681850. https://doi.org/10.1155/2015/681850
- Liu H., Lv T., Zhu Ch., Zhu Zh. // Sol. Energy Mater. Sol. Cells. 2016. V. 153. P. 1. https://doi.org/10.1016/j.solmat.2016.04.013

- Zhang J., Huang T., Zhang L., Yu A. // J. Phys. Chem. C. 2014. V. 118. № 44. P. 25300. https://doi.org/10.1021/jp506401q
- 23. *Galatsis K., Li Y.X., Wlodarski W. et al.* // Sens. Actuators B Chem. 2002. V. 3. № 1–3. P. 276.
- 24. *Кольцов С.И.* // Журн. прикл. химии. 1969. Т. 42. № 5. С. 1023.
- Dill P., Pachel F., Militzer C. et al. // J. Vac. Sci. Technol. A. 2021. V. 39. № 5. P. 052406. https://doi.org/10.1116/6.0001193
- 26. Kavan L., Tétreault N., Moehl Th., Graetzel M. // J. Phys. Chem. C. 2014. V. 118. № 30. P. 16408. https://doi.org/10.1021/jp030790+
- Qi X., Jiang Yu., Detavernier C. et al. // J. Appl. Phys. 2007. V. 102. P. 083521. https://doi.org/10.1063/1.2798384
- Niemela J.P., Marin G., Karppinen M. // Semicond. Sci. Technol. 2017. V. 32. № 9. P. 093005. https://doi.org/10.1088/1361-6641/aa78ce
- Diskus M., Nilsen O., Fjellvå H. // J. Mater. Chem. 2011. V. 21. P. 705. https://doi.org/10.1039/C0JM01099E
- Drake T.L., Stair P.C. // J. Vac. Sci. Technol. A. 2016. V. 34. https://doi.org/10.1116/1.4959532
- 31. Jurca T., Peters A.W., Mouat A.R. et al. // Dalton Trans.
- 2017. V. 46. P. 1172. https://doi.org/10.1039/C6DT03952A
- Vos M.F.J., Bacco M., Thissen N.F.W. et al. // J. Vac. Sci. Technol. A. 2016. V. 34. P. 01A103. https://doi.org/10.1116/1.4930161
- Kvalvik J.N., Jon B., Hansen P-A., Nilsen O. // J. Vac. Sci. Technol. A. 2020. V. 38. № 4. P. 042406. https://doi.org/10.1116/6.0000219
- Mattinen M., King P.J., Khriachtchev L. et al. // Mater. Today Chem. 2018. V. 9. P. 17. https://doi.org/10.1016/j.mtchem.2018.04.005
- 35. Aidan R., Mouat A.R., Mane A.U. et al. // Chem. Mater. 2016. V. 28. № 6. P. 1907. https://doi.org/10.1021/acs.chemmater.6b00248
- Nanayakkara C.E., Vega A., Liu G. et al. // Chem. Mater. 2016. V. 28. № 23. P. 8591. https://doi.org/10.1021/acsami.1c06204
- 37. *Fransen T., Meer O., Mars P. et al.* // J. Phys. Chem. 1976. V. 80. № 19. P. 2103. https://doi.org/10.1021/j100560a010

- Lietti L., Nova I., Ramis G. et al. // J. Catal. 1999.
 V. 187. № 2. P. 419. https://doi.org/10.1006/jcat.1999.2603
- 39. Marciel A., Graça M., Bastos A. et al. // Mater. 2021. V. 14. № 4. P. 821. https://doi.org/10.3390/ma14040821
- 40. Sen U.K., Mitra S. // RSC Adv. 2012. V. 2. P. 11123. https://doi.org/10.1039/C2RA21373G
- Guidi V., Cardinali G., Dori L. et al. // Sens. Actuators B Chem. 1998. V. 49. P. 88. https://doi.org/10.1016/S0925-4005(98)00039-2
- 42. *Shahram Sh., Daniel V.O., Fey T. et al.* // Mater. Sci. Eng. C. 2016. V. 58. P. 1064. https://doi.org/10.1016/j.msec.2015.09.069
- 43. Pershina V., Fricke B. // Russ. J. Phys. Chem. 1995. V. 99. № 1. P. 144.
- 44. Pershina V., Fricke B. // Ibid. 1996. V. 100. № 21. P. 8748.
- 45. CRC Handbook of Chemistry and Physics. 102 ed. 2021-2022: CRC Press, Taylor & Francis Group.
- 46. *Elam J.W., Groner M.D., George S.M.* // Rev. Sci. Instrum. 2002. V. 73. № 8. P. 2981–2987. https://doi.org/10.1063/1.1490410
- 47. Кутчиев А.И. Синтез и квантово-химическое исследование ванадийоксидных структур на поверхности кремнезема и их взаимодействия с парами VOCl₃ и H₂O: Дис. ... канд. хим. наук. Санкт-Петербург, 2006. 171 с.
- 48. Wind R.A., George S.M. // J. Phys. Chem. A. 2010. V. 114. № 3. P. 1281. https://doi.org/10.1021/jp9049268
- 49. Wind R.W., Fabreguette F.H., Sechrist Z.A. et al. // J. Appl. Phys. 2009. V. 105. № 7. P. 074309. https://doi.org/10.1063/1.3103254
- 50. *Malygin A.A., Volkova A.N., Kol'tsov S.I., Alekskovskii V.B.* // Russ. J. Gen. Chem. 1972. V. 42. № 11. P. 2373.
- 51. *Malygin A.A., Volkova A.N., Kol'tsov S.I., Alekskovskii V.B.* // Ibid. 1973. V. 43. № 7. P. 1436.
- 52. Malygin A.A. // Ibid. 2002. V. 72. № 4. P. 575.
- 53. Ефимов А.И., Белокурова Л.П., Василькова И.В., Чечев В.П. Свойства неорганических соединений. Справочник. Л.: Химия, 1983. С. 392.
- 54. Mackus A.J.M., Schneider J.R., MacIsaac C. et al. // Chem. Mater. 2019. V. 31. № 4. P. 1142. https://doi.org/10.1021/acs.chemmater.8b02878
- 55. *George S.M.* // Acc. Chem. Res. 2020. V. 53. № 6. P. 1151. https://doi.org/10.1021/cr900056b