_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 541.49

ТЕРМОДИНАМИКА РЕАКЦИЙ КОМПЛЕКСООБРАЗОВАНИЯ ИОНОВ Се³⁺ С ПИРИДОКСИНОМ В ВОДНОМ РАСТВОРЕ

© 2022 г. А. И. Лыткин^{*a*}, О. Н. Крутова^{*a*,*}, В. В. Черников^{*a*}, С. А. Бычкова^{*a*}, П. Д. Крутов^{*a*}, Ю. В. Мохова^{*a*}

^а Ивановский государственный химико-технологический университет, 153000, Иваново, Россия

*e-mail: kdvkonkpd@yandex.ru Поступила в редакцию 03.03.2022 г. После доработки 19.04.2022 г. Принята к публикации 20.04.2022 г.

Потенциометрическим и калориметрическим методами изучена система Ce³⁺ – пиридоксин в водном растворе при T = 298.15 К (KNO₃). Калориметрическим методом определены энтальпии комплексообразования пиридоксина с ионами церия(III) при температуре 298.15 К и значении ионной силы 0.2 (фоновый электролит KNO₃). Рассчитаны термодинамические характеристики ($\Delta_r H$, $\Delta_r G$, $\Delta_r S$) реакций образования комплексов пиридоксина с ионами Ce³⁺ состава CeL²⁺, CeOHL⁺, CeHL³⁺ и Ce(OH)₂L при различных мольных соотношениях [металл] : [лиганд].

Ключевые слова: калориметрия, потенциометрия, энтальпии комплексообразования, растворы, лантаноиды

DOI: 10.31857/S0044453722110176

Название "витамин В₆" – общий термин для группы из шести натуральных водорастворимых витамеров [1]. Основные формы витамина В₆ в плазме крови – пиридоксаль-5'-фосфат, пиридоксаль и 4-пиридоксиловая кислота [2, 3]. Пиридоксин способен катализировать разнообразные ферментативные реакции посредством образования интермедиата – основания Шиффа на основе пиридоксаль-5'-фосфата и субстрата [4, 5]. Физико-химическое изучение процессов комплексообразования биологически активных лигандов, с ионами редкоземельных металлов представляет несомненный интерес, прежде всего для понимания и разработки новых комплексов на основе этих ионов. Соединения лантаноидов используются в качестве катализаторов, ВТСП-керамики, проводящих материалов [6], добавок к различным сплавам для улучшения механической прочности, коррозионной стойкости и жаропрочности, для получения специальных сортов стекла, в атомной технике, для изготовления светящихся составов и люминесцентных материалов, в радио- и оптоэлектронике, а также в качестве спектральных зондов для изучения структуры растворов [7].

В качестве объекта исследования нами выбран пиридоксин, так как наша работа – продолжение исследования процессов комплексообразования различных биолигандов с лантаноидами [8, 9]. Цель настоящей работы — прямое калориметрическое определение энтальпий процессов комплексообразования Ce³⁺ с пиридоксином при температуре 298.15 К и значениях ионной силы раствора 0.2 (на фоне нитрата калия) при различных мольных соотношениях [металл] : [лиганд], расчет термодинамических характеристик изучаемых процессов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали метод потенциометрического титрования. Препарат пиридоксин фирмы "Sigma" чистотой 99.9% дополнительной очистке не подвергали. Растворы готовили по точной навеске. Для приготовления растворов Ce(NO₃)₃ использовали препараты марки "х.ч.", концентрации устанавливали комплексонометрически. Заданное значение ионной силы (I = 0.2) поддерживали с помощью нитрата калия марки "х.ч.". Титрантом служил 0.1 М бескарбонатный раствор КОН, который готовили по методике [10]. Концентрация лиганда изменялась от 6×10^{-3} до 5×10^{-3} моль/л. Исследования проводили при соотношениях M : L = 1 : 1 и 1 : 2.

Потенциометрическое титрование проходило по стандартной методике. Измерения ЭДС цепи

проводили с помощью прибора "Мультитест" ИПЛ-311. Абсолютная погрешность измерения потенциала составляла не более 0.5 мВ. Равновесие считали установившимся, если измеряемое значение ЭДС не изменялось в пределах 0.1 мВ в течение 5 мин. Температуру 298.15 К потенциометрической ячейки, титранта и электрода поддерживали с точностью ±0.10 К с помощью термостата LOIP и воздушного.

Градуировку стеклянного электрода проводили по следующей методике. Для определения нернстовского коэффициента η проводили измерения ЭДС в буферных растворах с pH 1.68, 4.01, 6.86 и 9.18. При расчете по методу наименьших квадратов эта величина составила $\eta =$ = 0.05890 В/ед. pH. Значение $E_{\text{каж}}^{\circ}$ определяли по стандартному раствору соляной кислоты с концентрацией 0.01 моль/л при заданном значении ионной силы до и после каждого опыта. Если значения ЭДС различались между собой более, чем на 0.001 В, то опыт отбрасывали.

Полученные при обработке значения $E_{\text{каж}}^{\circ}$ и η использовали для расчета р H_{c} растворов по уравнению:

$$pH_{c} = \frac{E_{\kappa a \kappa}^{\circ} - E}{\eta}, \qquad (1)$$

где $E_{\text{каж}}^{\circ}$ и E – кажущийся стандартный потенциал стеклянного электрода при I = const и экспериментальное значение ЭДС, соответственно.

Экспериментальные данные обрабатывали по универсальной программе "PHMETR", предназначенной для расчета констант равновесия с произвольным числом реакций по измеренной равновесной концентрации одной из частиц [11].

Измерения проводили в калориметре с изотермической оболочкой, оснашенной реакционным сосудом 60 см³, и электрической калибровкой при T = (293.15-308.15) ± 0.01 К и P = $= 100.5 \pm 0.7$ кПа и автоматической записью кривой температура-время [12]. Работу установки проверяли по интегральным энтальпиям растворения в воде кристаллического хлорида калия и считали пригодной для измерения, если определенная в ней величина $\Delta_{sol}H_{298,15}$ (KCl ∞ H₂O) отличалась от стандартной не более, чем на 0.3%. В качестве стандартной использовали наиболее надежную в настоящее время величину $\Delta_{sol}H_{298.15}$ (KCl ∞ H₂O) = = 17.234 ± 0.018 кДж/моль, соответствующую стандарту SRM 1655NBS [13]. Тепловое значение калориметра для воды составляло 87 ± 12Дж/К [14]. Навески взвешивали на весах ВЛР-200 с точностью 2 × 10⁻⁴ г. Величины рН контролировали с помощью прибора "Мультитест" ИПЛ-311. Совпадение расчетных и экспериментальных значений рН свидетельствовало о правильности выбора концентрационных условий проведения калориметрического эксперимента. Доверительный интервал среднего значения $\Delta_{sol}H$ вычисляли с вероятностью 0.95. Наиболее вероятное значение находили как среднее арифметическое из двух калибровок. Расчет энтальпий образования комплексов Ce³⁺ с пиридоксином выполняли по программе "HEAT", алгоритм которой описан в работе [11].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Расчет констант устойчивости в исследуемой системе проводили с учетом протекания следующих процессов:

$$L^{-} + H^{+} \leftrightarrow HL^{\pm}, \qquad (2)$$

$$L^{-} + 2H^{+} \leftrightarrow H_{2}L^{+}, \qquad (3)$$

$$\operatorname{Ce}^{3+} + \operatorname{L}^{-} \leftrightarrow \operatorname{Ce}\operatorname{L}^{2+},$$
 (4)

$$\operatorname{Ce}^{3+} + \operatorname{HL}^{\pm} \leftrightarrow \operatorname{CeL}^{3+},$$
 (5)

$$\operatorname{Ce}^{3+} + \operatorname{L}^{-} + \operatorname{OH}^{-} \leftrightarrow \operatorname{CeOHL}^{+},$$
 (6)

$$\operatorname{Ce}^{3^{+}} + \operatorname{L}^{-} + 2\operatorname{OH}^{-} \leftrightarrow \operatorname{Ce}(\operatorname{OH})_{2}\operatorname{L}, \tag{7}$$

$$\mathrm{H}^{+} + \mathrm{OH}^{-} \leftrightarrow \mathrm{H}_{2}\mathrm{O}, \tag{8}$$

$$Ce^{3+} + HOH \leftrightarrow CeOH^{2+} + H^+.$$
 (9)

В расчетах использовали константы ступенчатой диссоциации пиридоксина, полученные в работе [15]: $pK_1 = 5.08$, $pK_2 = 8.97$ при I = 0.2; они были пересчитаны нами на данные концентрационные условия по уравнению Девис. Учитывали также возможность гидролиза ионов исследуемых металлов [16]. Константа ионизации воды на "фоне" KNO₃ была взята из [17].

Критерием адекватности выбранной модели служили различия между рассчитанными и экспериментальными величинами pH. Они были знакопеременными и не превышали погрешности эксперимента. Расчеты показали, что в системе Ce(III) – пиридоксин образуются комплексы состава CeL²⁺, CeOHL⁺, CeHL³⁺ и Ce(OH)₂L. Экспериментальные данные приведены в табл. 1.

В калориметрический стакан помещали раствор нитрата Ce(III) (с концентрацией 0.004 моль/л раствора) объемом 42.63 мл с заданным значением ионной силы. В ампуле находился раствор KL (исходной концентрации 0.4225 моль/кг раствора). Измеряли также теплоты разведения KL в растворах фонового электролита. Программа "HEAT" [11] предназначена для обработки дан-

Таблица 1. Экспериментальные данные потенциометрического титрования системы Ce^{3+} – пиридоксин (соотношение M : L = 1 : 2)

pН	<i>С</i> _L -, моль/л	<i>C</i> _{Ce³⁺} , моль/л	<i>С</i> _{Н⁺} , моль/л
2.648	0.004661	0.002283	0.01120
2.725	0.004679	0.002292	0.01091
2.812	0.004698	0.002301	0.01063
2.917	0.004716	0.002310	0.01034
3.067	0.004734	0.002319	0.01005
3.214	0.004753	0.002328	0.009752
3.476	0.004772	0.002337	0.009456
3.776	0.004791	0.002346	0.009157
4.043	0.004810	0.002356	0.008856
4.253	0.004829	0.002365	0.008553
4.417	0.004848	0.002375	0.008248
4.567	0.004868	0.002384	0.007940
4.700	0.004888	0.002394	0.007629
4.840	0.004907	0.002404	0.007316
4.971	0.004927	0.002413	0.007000
5.121	0.004948	0.002423	0.006682
5.250	0.004968	0.002433	0.006361
5.420	0.004988	0.002443	0.006038
5.629	0.005009	0.002453	0.005712
5.939	0.005030	0.002464	0.005383
6.705	0.006257	0.002565	0.005829
7.137	0.006231	0.002555	0.005379
7.462	0.006205	0.002544	0.004933
7.673	0.006180	0.002534	0.004491
7.823	0.006154	0.002523	0.004052
7.940	0.006129	0.002513	0.003616
8.059	0.006104	0.002503	0.003184
8.148	0.006080	0.002493	0.002756
8.223	0.006055	0.002483	0.002331
8.286	0.006031	0.002473	0.001910
8.323	0.006007	0.002463	0.001492
8.337	0.005983	0.002453	0.001077
8.375	0.005959	0.002443	0.0006653
8.421	0.005936	0.002434	0.0002571
8.483	0.005912	0.002424	-0.0001479

ных калориметрических измерений с целью расчета констант равновесия и тепловых эффектов реакций в растворах. Особенность калориметрического метода состоит в том, что измеряемое свойство — тепловой эффект взаимодействия двух систем — зависит от начального (до взаимодействия) и конечного (после взаимодействия) равновесного состава растворов. На основании полученного массива данных рассчитывали теплоты реакций комплексообразования, удовлетворяющие минимуму функции:

$$F = \sum_{i=1}^{n} (\Delta_{\rm r} H_i^{\rm {\scriptscriptstyle 3KC\Pi}} - \Delta_{\rm r} H_i^{\rm {\scriptscriptstyle pacq}}) \omega_i^2 \to \min. \qquad (10)$$

Здесь $\Delta_r H_i^{\text{эксп}}$ – экспериментально измеренные энтальпии; $\Delta_r H_i^{\text{расч}}$ – рассчитанные энтальпии, *n* – число опытов; ω_i – весовой множитель, определяемый по соотношению:

$$\omega_i = A/\sigma_i^2, \tag{11}$$

где A – произвольное число, позволяющее выбрать удобное для расчета значение ω_i ; σ_i^2 – дисперсия.

Выражение для экспериментального теплового эффекта имеет вид:

$$\Delta_{\rm mix} H - \Delta_{\rm dil} H = \alpha_1 \Delta H (\rm CeL^{2+}) + + \alpha_2 \Delta H (\rm CeOH^+) + \alpha_3 \Delta H (\rm CeHL^{\pm}) + + \alpha_4 \Delta H (\rm Ce(OH)_2 L) + \alpha_i \Delta_r H_i,$$
(12)

где $\Delta_{\min} H^{\circ}$ – тепловые эффекты взаимодействия растворов Ce(NO₃)₃ с растворами пиридоксина, имеющими заданное значение pH; $\Delta_{dil}H^{\circ}$ - теплота разведения раствора KL в растворах фонового электролита; α_1 , α_2 , α_3 , α_4 – полнота протекания процессов (4), (5), (6) и (7) соответственно; $\sum lpha_i \Delta_{
m r} H_i$ – вклад одновременно протекающих побочных процессов (2), (3), (8), (9) в измеряемый тепловой эффект. Значения тепловых эффектов ступенчатой диссоциации пиридоксина было определено в нашей лаборатории ранее: $\Delta_r H(HL^{\pm}) = -26.17 \pm 0.30$ кДж/моль и $\Delta_r H(H_2L^{\pm}) =$ $= -17.25 \pm 0.30$ кДж/моль [18]. Известно, что пиридоксин существуют в разных формах в водной среде, в зависимости от рН раствора. На рис. 1 представлена диаграмма долевого распределения в водном растворе пиридоксина, рассчитанная по программе KEV [19]. Условия проведения калориметрических опытов выбирали таким образом, чтобы вклад побочных процессов был минимальным.

Термодинамические характеристики процессов комплексообразования Ce³⁺ с пиридоксином в водном растворе определяли при совместном использовании результатов термохимических измерений и данных по константам комплексообразования (табл. 2).

Хорошо известно, что пиридоксол, пиридоксаль и пиридоксамин существуют в различных формах в водной среде [20]. Авторы отмечают, что довольно сложно определить, какой из различных видов лиганда участвует в комплексообразовании. В литературе имеются работы, посвя-

Процесс	$\lg \beta$	$-\Delta_{\rm r}G$, кДж/моль	$-\Delta_{\rm r} H$, кДж/моль	$\Delta_r S$, Дж/(моль К)
$Ce^{3+} + L^{-} = CeL^{2+}$	3.77 ± 0.05	21.52 ± 0.56	6.32 ± 0.33	50.9 ± 2.3
$Ce^{3+} + HL^{\pm} \leftrightarrow CeHL^{3+}$	11.93 ± 0.04	69.09 ± 0.51	36.15 ± 0.39	110.5 ± 2.3
$Ce^{3+} + L^- + OH^- \leftrightarrow CeOHL^+$	-4.19 ± 0.05	-23.92 ± 0.56	-12.14 ± 0.38	-39.5 ± 2.3
$Ce^{3+} + L^- + 2OH^- \leftrightarrow Ce(OH)_2L$	-12.73 ± 0.06	-72.66 ± 0.56	-41.63 ± 0.37	-104.1 ± 2.3

Таблица 2. Термодинамические характеристики образования комплексов Ce^{3+} с пиридоксином при I = 0.2 (нитрат калия) и T = 298.15 Л

щенные комплексообразованию в растворах пиридоксина, в частности, авторы [21] отмечали, что соединения витамина В₆ могут действовать либо как однокомпонентный лиганд и связывать ион металла через гетероциклический азот, либо как бидентатный лиганд и хелатировать ион металла фенольным кислородом и азотом или кислородом в одной из соседних групп в положении 4. Авторы [22] предлагают следующий набор комплексных форм для ряда выбранных ими P39: LnHL³⁺, LnL²⁺, LnL⁺, LnOHL⁺, Ln(OH)₂L. Выводы о наличии данных частиц в растворах исследуемых систем делались на основании описания набора кривых рН-метрического титрования растворов для различных РЗЭ. Авторы [22] предлагают модель, полученную по программе AUTOEQUIL автоматизированного поиска наиболее значимых молекулярных форм, включение которых в модель адекватно описало рН исследуемых растворов [23, 24]. Мы использовали программу "НЕАТ" [11], вводя в неё те же базисные частицы для обсчета полученных нами данных, результаты представлены в табл. 2. Кривые титрования могут адекватно описываться различными моделями. Можно сделать вывод, что комплексообразование Ce³⁺ с пиридоксином происходит на фоне гидролиза как исходных ионов Се³⁺, так

Рис. 1. Диаграмма равновесий в водном растворе пиридоксина при T = 298.15 Л и I = 0.0.

и образующихся пиридоксинатов. Невысокая устойчивость комплексов CeL^{2+} позволяет предположить, что ион Ce^{3+} , вероятно, как принято для 3*d*-элементов, координирует атом кислорода диссоциированной фенольной группы и атом кислорода недиссоциированной группы CH_2OH молекулы HL [22].

Работа выполнена в НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках государственного задания (базовая часть) проект № FZZW-2020-0009. Исследование проводилось с использованием ресурсов Центра совместного использования научного оборудования ISUCT (при поддержке Министерства науки и высшего образования России, грант № 075-15-2021-671).

СПИСОК ЛИТЕРАТУРЫ

- Robert B.R., Janos Z., John W.S., Stover P.J. // Handbook of Vitamins CRC Press Reference. 2007. P. 1–608.
- 2. Daisuke K., Teruki Y., Atsushi J. et al. // Nutria Ion Research. 2015. P. 637.
- Hou C.T., Wu Y.H., Cheng C.H. et al. // Nutr. Clin. Pract. 2012. V. 27. P. 695.
- Michael D.T. // Biochim. Biophys. Acta. 2011. V. 1814. P. 1407.
- Major D.T., Gao J. // J. Am. Chem. Soc. 2006. V. 128. P. 16345.
- Cao T, Yang T., Gao Y. et al. // Inorg. Chem. Comm. 2010. V. 13. P. 392.
- Ni J., Zhang L.-Y., Chen Z.-N., Ni J. // J. Organomet. Chem. 2009. V. 694. P. 339–345.
- Лыткин А.И., Черников В.В., Крутова О.Н., Смирнова Д.К. // Журн. общ. химии. 2018. Т. 88. Вып. 5. С. 811.
- 9. Лыткин А.И., Черников В.В., Крутова О.Н., Скворцов И.А. // Журн. физ. химии. 2017.Т. 91. № 6. С. 986.
- Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Изд-во АН СССР, 1962. С. 398.
- Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. С. 81.

- Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. // J. Thermal Analysis and Calorimetry. 2017. V. 130 (1), P. 457.
- 13. *Kilday M.V.* // J. Reseach N.B.S. 1980. V. 85. № 6. P. 467.
- 14. *Скуратов С.М., Колесов В.П., Воробьев А.Ф.* Термохимия Ч. 1. М.: Изд-во МГУ, 1964. 300 с.
- El-Ezaby M., El-Eziri F. // J. Inorg. Nucl. Chem. 1976.
 V. 38. P. 1901.
- Назаренко В.А., Антонович В.П., Невская Е.М. Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1978.
- 17. *Васильев В.П., Шеханова Л.Д.* // Журн. неорган. химии. 1974. Т. 19. № 11. С. 2969.
- 18. Lytkin A.I., Krutova O.N., Tyunina E.Yu. et al. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020.

V. 63. № 6. P. 25.

https://doi.org/10.6060/ivkkt.20206306.6183

19. *Meshkov A.N., Gamov G.A.* // Talanta. 2019. V. 198. P. 200.

https://doi.org/10.1016/j.talanta.2019.01.107

- Metzler D.E., Snell E.E. // J. Am. Chem. Soc. 1955. V. 77. P. 2431.
- Osman M., Salem T., El-Ezaby M. // J. Chem. Soc. A. 1971. P. 1401. https://doi.org/10.1039/j19710001401
- 22. Добрынина Н.А., Николаева Л.С., Петросян А.Г. // Журн. неорган. химии. 1999. Т. 44. № 7. С. 1160.
- 23. *Евсеев А.М., Николаева Л.С.* // Математическое моделирование химических равновесий. М.: Изд-во МГУ, 1988. С. 146.
- 24. *Кирьянов Ю.А., Николаева Л.С., Евсеев А.М. //* Журн. неорган. химии. 1989. Т. 34. № 7. С. 1635.