## \_\_ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 544.4:544.421.032.4:544.421.032.76:547-311

# ЭНТАЛЬПИЙНО-ЭНТРОПИЙНАЯ КОМПЕНСАЦИЯ В РЕАКЦИЯХ РАСКРЫТИЯ ОКСИРАНОВОГО ЦИКЛА

© 2022 г. И. В. Шпанько<sup>а,\*</sup>, И. В. Садовая<sup>6</sup>

<sup>а</sup> Донецкий национальный университет имени В. Стуса, Винница, Украина <sup>б</sup> Донецкий национальный университет, Донецк, Украина \*e-mail: shpanko16@ukr.net

> Поступила в редакцию 18.11.2021 г. После доработки 26.01.2022 г. Принята к публикации 28.01.2022 г.

Обобщены результаты систематического исследования энтальпийно-энтропийного компенсационного эффекта в некаталитических и катализируемых пиридинами реакциях арилоксиранов с органическими кислотами разных классов. Этот эффект проявляется в изопараметрических (изокинетических, изоэнергетических) реакционных сериях вследствие взаимодействия (неаддитивности) совместных эффектов температуры и структуры. Приведены экспериментальные доказательства его физической реальности в ряде перекрестных реакционных серий. В рамках компенсационного эффекта осуществлены переходы от одного состояния реакционных систем, при котором энтальпийный терм свободной энергии активации приобретает нулевое значение ( $\Delta H^{\neq} = 0$ ,  $\Delta G^{\neq} = -T\Delta S^{\neq}$ ), к другому состоянию, при котором исчезает вклад в свободную энергию активации энтропийного терма ( $\Delta S^{\neq} = 0$ ,  $\Delta G^{\neq} = \Delta H^{\neq}$ ). Обсужден характер активационных процессов в отсутствие энтальпийно-энтропийной компенсации.

*Ключевые слова:* арилоксираны, органические кислоты, кинетика, катализ, активационные параметры, феномен изопараметричности, компенсационный эффект

DOI: 10.31857/S0044453722110309

## введение

Для эффективного управления химическими процессами необходимо знать количественные закономерности совместного влияния внешних и внутренних факторов (структура, катализатор, растворитель, давление, рН среды и т.д.) на их кинетические, активационные, термодинамические и другие характеристики. Для решения этой фундаментальной проблемы химии широко привлекаются методы корреляционного анализа. Известны десятки эмпирических корреляционных соотношений [1-8], успешно используемых для количественной оценки влияния различных факторов на химические процессы. Они демонстрируют поразительную универсальность принципа линейности в изменении свободных энергий, который, как показал Пальм, является частным случаем более общей закономерности – принципа полилинейности [4, 9]. Примером простейших соотношений полилинейности являются двухпараметровые уравнения типа

$$F_{ij} = F_{00} + q_i^0 x_i + q_j^0 x_j + q_{ij} x_i x_j.$$
(1)

Здесь  $F_{00}$  – величина  $F_{ij}$  в произвольно выбранных стандартных условиях, например,  $x_i = x_j = 0$ ;  $q_i^0$  и  $q_j^0$  – коэффициенты чувствительности к  $x_i$  и  $x_j$  соответственно при  $x_j = 0$  и  $x_i = 0$ ;  $q_{ij}$  – коэффициент при перекрестном члене, отражающий изменение интенсивности действия одного фактора i (j) под влиянием другого фактора j (i) (в этом и последующих уравнениях подстрочные и надстрочные индексы относятся к переменным и фиксированным факторам).

Уравнение (1) обладает таким замечательным свойством, как изопараметричность [4, 9]. Она выражается в том, что при критических значениях параметра фактора *i*  $x_i^{\Pi \Pi} = -q_j^0/q_{ij}$  или фактора *j*  $x_j^{\Pi \Pi} = -q_i^0/q_{ij}$ , названных изопараметрическими точками (ИПТ) [4], коррелируемая величина  $F_{ij}$  имеет одно и то же значение  $F_{ij}^{\Pi \Pi} = F_{00} - -q_i^0 q_j^0/q_{ij}$ , которое не изменяется при варьировании соответственно  $x_i (q_i^i = 0)$  или  $x_i (q_i^j = 0)$ .

Первоначально понятие изопараметричности возникло в рамках формальной теории взаимо-

действия [4]. Впоследствии выяснилось, что свойство изопараметричности присуще реальным реакционным сериям (РС). На практике изопараметричность проявляется в равенстве нулю угловых коэффициентов чувствительности к эффектам одного из факторов в эмпирических однопараметровых корреляциях, например,  $\alpha$  ( $\beta$ ) в уравнении Бренстеда,  $\rho$  в уравнении Гаммета, пропорциональный энергии активации коэффициент в уравнении Аррениуса и т.д., в ИПТ по параметру другого фактора. После перехода через ИПТ происходит инверсия знаков соответствующих коэффициентов чувствительности (парадокс изопараметричности).

Соотношения полилинейности показали свою эффективность при изучении в многофакторных условиях процессов нуклеофильного замещения у бензоильных, бензильных и бензгидрильных электрофильных центров, а также при интерпретации их механизмов [10–12]. Благодаря интенсивному взаимодействию эффектов структуры в этих процессах были получены первые в истории химии экспериментальные доказательства феномена изопараметричности.

Прогресс в изучении изопараметричности связан с поиском таких РС, в которых в перекрестные взаимодействия были бы вовлечены, помимо структурных, и другие факторы. Из всего многообразия факторов, оказывающих влияние на химические, физические, биологические и другие процессы, следует выделить такой универсальный фактор, как температура. Изучению эффектов температуры в химических процессах посвящено огромное количество публикаций со времен Аррениуса. Интерес к исследованию температурных зависимостей значительно возрос после того, как была обоснована концепция изокинетических (изоравновесных) соотношений, базирующихся на энтальпийно-энтропийном компенсационном эффекте (КЭ) [13]. Важнейшей количественной характеристикой химических процессов, описываемых этими соотношениями, является изокинетическая (изоравновесная) температура  $T_{\mu_{30}}$ , при которой имеет место полная компенсация в изменении энтальпийной и энтропийной составляющих свободной энергии активации (реакции) при варьировании параметра какого-либо отличного от температуры фактора *j*, поэтому при  $T_{\mu_{30}} \Delta G_{iT}^{\neq} (\Delta G_{iT}) = \text{const},$ вследствие чего наблюдается изокинетический (изоравновесный) феномен:  $\lg k_{iT} = \text{const} (\lg K_{iT} =$ = const). Если в уравнении (1) один из переменных факторов, например, і является температурой ( $x_i = T$ ), то тогда ИПТ по температуре  $T^{И\Pi}$ равна Тизо в изопараметрических (в частном случае в изокинетических) РС с энтальпийно-энтропийной компенсацией.

Несмотря на широкий фронт исследования энтальпийно-энтропийного КЭ в различных областях естественных наук случаи экспериментального наблюдения  $T^{и\Pi}$  встречаются крайне редко. Как правило значения  $T^{и\Pi}$  попадают в область далекой экстраполяции, т.е.  $T^{и\Pi}$  имеет скорее виртуальный, чем экспериментальный характер. В связи с экспериментальной недоступностью  $T^{и\Pi}$ , статистически ненадежными расчетами компенсационных корреляций, отсутствием приемлемых теоретических обоснований КЭ, концепция энтропийно-энтальпийной компенсации является предметом перманентных дебатов в течение многих десятилетий (см., например, [14–21]).

Целью настоящей статьи является обобщение результатов проведенного нами систематического исследования энтальпийно-энтропийного КЭ в реакциях арилаксиранов с органическими кислотами разной природы в некаталитических и каталитических условиях.

#### Энтальпийно-энтропийный КЭ как аспект изопараметричности (формальный анализ)

Неаддитивное влияние температуры *T* и какого-либо фактора *j* на свободную энергию активации описывается полилинейным соотношением

$$\Delta G_{jT}^{\neq} = \Delta G_{00}^{\neq} + a_j^0 x_j + a_T^0 T + a_{jT} x_j T.$$
 (2)

Здесь  $\Delta G_{jT}^{\neq}$  при  $x_j = 0$  и T = 0 К,  $a_j^0$  и  $a_T^0$  – коэффициенты чувствительности к  $x_j$  и T в стандартных условиях (соответственно T = 0 К и  $x_j = 0$ ),  $a_{jT}$  – коэффициент перекрестного взаимодействия. Количественными характеристиками соотношения (2) являются ИПТ  $T^{\text{ИП}(G)} = -a_j^0/a_{jT}$  и  $x_j^{\text{ИП}(G)} = -a_T^0/a_{jT}$ , а также изопараметрическое значение  $\Delta G_{iT}^{\neq \text{ИП}} = \Delta G_{00}^{\neq} - a_j^0 a_j^0/a_{iT}$ .

Иное интригующее свойство соотношения (2) проявляется, если представить его в форме уравнения

$$\Delta G_{jT}^{\neq} = \Delta G_{00}^{\neq} + a_T^0 T + (a_j^0 + a_{jT} T) x_j.$$
(3)

При фиксированной температуре (*T*<sup>const</sup>) уравнение (3) превращается в однофакторную корреляцию

$$\Delta G_{jT}^{\neq} = \Delta G_{0T}^{\neq} + a_j^T x_j, \qquad (4)$$

в которой  $\Delta G_{0T}^{\neq} = \Delta G_{00}^{\neq} + a_T^0 T^{\text{const}}$  и  $a_j^T = a_j^0 + a_{jT} T^{\text{const}}$ . Из последнего выражения следует, что величина и знак коэффициента чувствительности  $a_j^T$  к эффектам фактора *j* определяется фиксированным значением температуры  $T^{\text{const}}$ . Так как  $a_j^T = 0$  в ИПТ  $T^{\text{ИП(G)}} = -a_j^0/a_{jT}$ , то знак  $a_j^T$  обращается при переходе через эту точку, когда, с одной стороны,  $T^{\text{const}} > -a_j^0/a_{jT}$ , а с другой стороны,  $T^{\text{const}} < -a_j^0/a_{jT}$ . Аналогичным способом предсказывается инверсия знака коэффициента чувствительности  $a_T^j$  при переходе через ИПТ  $x_j^{\text{ИП(G)}} =$  $= -a_T^0/a_{jT}$ . Инверсия знаков коэффициентов чувствительности типа  $a_j^T$ ,  $a_T^j$  при переходе через соответствующие ИПТ была названа, как уже отмечалось выше, парадоксом изопараметричности.

Итак, в ИПТ по температуре  $T^{\text{И}\Pi(G)}$  величина  $\Delta G_{jT}^{\neq\text{И}\Pi}$  сохраняет постоянство при варьировании параметра  $x_j$  фактора j. Это происходит вследствие энтальпийно-энтропийного КЭ, а именно, из-за компенсации в изменении энтальпийной и энтропийной части свободной энергии активации  $\delta_j \Delta H^{\neq} = T^{\text{И}\Pi(G)} \delta_j \Delta S^{\neq}$ , в результате чего  $\delta_j \Delta G_{jT}^{\neq\text{И}\Pi} = \delta_j \Delta H^{\neq} - T^{\text{И}\Pi(G)} \delta_j \Delta S^{\neq} = 0$ ,  $\Delta G_{jT}^{\neq\text{И}\Pi} = \text{const u}$ , следовательно,  $a_j^T = 0$  в уравнении (4) при  $T^{\text{const}} = T^{\text{И}\Pi(G)}$ . Поскольку при  $T^{\text{И}\Pi(G)} \delta_j \Delta H^{\neq} - T^{\text{И}\Pi(G)} \delta_j \Delta S^{\neq} = 0$ , то при переходе через  $T^{\text{И}\Pi(G)}$  будет изменяться соотношение вкладов  $\delta_j \Delta H^{\neq}$  и  $T\delta_j \Delta S^{\neq}$  в изменение  $\delta_j \Delta G_{jT}^{\neq}$  ( $\delta_j \Delta H^{\neq} - T\delta_j \Delta S^{\neq} > 0$ ,  $\delta_j \Delta H^{\neq} - T\delta_j \Delta S^{\neq} < 0$ ), вследствие чего произойдет обращение порядка влияния фактора j на  $\Delta G_{jT}^{\neq}$ . Это выразится в инверсии знака коэффициента чувствительности  $a_j^T$ .

С другой стороны, в ИПТ  $x_j^{И\Pi(G)}$  свободная энергия активации  $\Delta G_{jT}^{\neq U\Pi}$  не зависит от температуры  $T: \Delta G_{jT}^{\neq U\Pi} = \Delta G_{00}^{\neq} - a_j^0 a_0^n / a_{jT}$ . Это возможно, если в выражении  $\Delta G_{jT}^{\neq U\Pi} = \Delta H_j^{\neq} - T\Delta S_j^{\neq}$  энтропия активации равна нулю ( $\Delta S_j^{\neq} = 0$ ) и величина  $\Delta G_{jT}^{\neq U\Pi}$  определяется энтальпийным термом ( $\Delta G_{jT}^{\neq U\Pi} = \Delta H_j^{\neq}$ ). Переход через  $x_j^{U\Pi(G)}$ , где  $\Delta S_j^{\neq} = 0$ , будет вызывать изменение знака  $\Delta S_j^{\neq} (\Delta S_j^{\neq} > 0,$  $\Delta S_j^{\neq} < 0$ ) и, следовательно, обращение порядка влияния T на  $\Delta G_{jT}^{\neq}$ , что отразится в инверсии знака коэффициента чувствительности  $a_j^T$ .

После деления на T левой и правой части уравнения (2), получим изопараметрическое соотношение

$$\Delta G_{jT}^{\neq}/T = \Delta G_{00}^{\neq}/T + a_j^0 x_j/T + a_T^0 + a_{jT} x_j.$$
 (5)

Соотношение (5) характеризуется двумя ИПТ – по обратному значению температуры  $1/T^{\text{ИП}(G/T)} =$ 

 $= -a_{jT}/a_{j}^{0}$  и по параметру фактора *j*  $x_{j}^{\text{И}\Pi(G/T)} =$ =  $-\Delta G_{00}^{\neq}/a_{j}^{0}$ . Первой ИПТ соответствует величина  $T^{\text{И}\Pi(G/T)} = -a_{j}^{0}/a_{jT}$ , совпадающая с  $T^{\text{И}\Pi(G)} = -a_{j}^{0}/a_{jT}$ в уравнении (2). Вторая ИПТ  $x_{j}^{\text{И}\Pi(G/T)}$  принципиально отличается от рассчитанной выше  $x_{j}^{\text{И}\Pi(G)} =$ =  $-a_{T}^{0}/a_{jT}$  из соотношения (2). В этой точке изопараметрическое значение ( $\Delta G_{jT}^{\neq}/T$ )<sup>ИП</sup> =  $a_{T}^{0}$  –  $-\Delta G_{00}^{\neq}a_{jT}/a_{j}^{0}$  не зависит от температуры, что возможно при равенстве нулю энтальпии активации ( $\Delta H_{j}^{\neq} = 0$ ) в выражении ( $\Delta G_{jT}^{\neq}/T$ )<sup>ИП</sup> =  $\Delta H_{j}^{\neq}/T -\Delta S_{j}^{\neq}$ . Переход через  $x_{j}^{\text{И}\Pi(G/T)}$  должен сопровождаться обращением знака энтальпии активации ( $\Delta H_{j}^{\neq} > 0, \Delta H_{j}^{\neq} < 0$ ).

В связи с вышеприведенными интригующими предсказаниями состояния активационного процесса в ИПТ  $T^{И\Pi(G)}$  ( $T^{И\Pi(G/T)}$ ),  $x_j^{И\Pi(G)}$ ,  $x_j^{И\Pi(G/T)}$  и после перехода через эти точки, основанными на анализе абстрактных полилинейных соотношений (2) и (5), возникает вопрос о том, являются ли они лишь следствием формальных математических свойств этих соотношений, или же они предстают перед нами как физическая реальность в химических процессах. Ответ на этот вопрос мы получили при систематическом исследовании совместных эффектов структуры и температуры в реакциях раскрытия оксиранового цикла, отчет о котором представлен в настоящей статье.

Следует отметить, что в случае аддитивного характера совместных эффектов температуры и фактора *j* в соотношениях типа (2) исчезает перекрестный член ( $a_{jT} = 0$ ) и поэтому проявление изопараметричности, а, следовательно, и энтальпийно-энтропийного КЭ становится в принципе невозможным. В рамках принципа линейности в изменении свободных энергий в этом случае PC могут быть либо изоэнтальпийными ( $\Delta H_j^{\neq} = \text{const}, \delta_j \Delta H^{\neq} = 0, \delta_j \Delta G^{\neq} = -T \delta_j \Delta S^{\neq}$ ), либо изоэнтропийными ( $\Delta S_j^{\neq} = \text{const}, \delta_j \Delta S^{\neq} = 0, \delta_j \Delta G^{\neq} = \delta_j \Delta H^{\neq}$ ). Примеры таких PC приведены в этой статье и в обзоре [22].

## Перекрестные эффекты структуры и температуры. Физическая реальность энтальпийно-энтропийного КЭ

Количественные аспекты перекрестных эффектов структуры и температуры изучены в представленных схемами 1, 2 реакциях X-замещенных 2-арилоксиранов 1a-e [X = H (1a), 3-Br (16), 4-Br (1в), 4-Cl (1г), 3-NO<sub>2</sub> (1д), 4-NO<sub>2</sub> (1е), 4-Br-3-NO<sub>2</sub> (1ж), 3,5-(NO<sub>2</sub>)<sub>2</sub> (1з)] и симметрично X-замещенных *транс*-2,3-диарилоксиранов **4а**–г [X = H (**4a**), 3-Br (**46**), 4-NO<sub>2</sub> (**4**в), 3-Br-5-NO<sub>2</sub> (**4**г)] с Y-замещенными аренсульфоновыми кислотами **2а–е** [Y = 4-OCH<sub>3</sub> (**2a**), 4-CH<sub>3</sub> (**26**), H (**2**в), 4-Cl (**2**г), 4-Br (**2**д), 3-NO<sub>2</sub> (**2**е)] [23–27] и аренкарбоновыми (бензойными) кислотами **3а–д** [Y = 4-OCH<sub>3</sub> (**3a**), H (**36**), 3-Br (**3**в), 3-NO<sub>2</sub> (**3**г), 3,5-(NO<sub>2</sub>)<sub>2</sub> (**3**д)] [28, 29], а также в реакциях оксирана **1а**, с такими представителями NH-кислот, как аренсульфонимиды **5а–в** [Y = 4-OCH<sub>3</sub> (**5a**), 4-CH<sub>3</sub> (**56**), H (**5**в)] (схема 3) [30] и N-ароилбензолсульфонамиды **6а**–д [Y = 4-CH<sub>3</sub> (**6a**), H (**66**), 4-Cl (**6в**), 3-F (**6**г), 4-NO<sub>2</sub> (**6**д)] (схема 4) [31]. Кроме того, в реакциях оксирана **1а** с кислотами **36-г** и **6а**, **6**, д, катализируемых Z-замещенными пиридинами Z-Py **7а**–д [Z = 4-OMe (**7а**), 4-Et (**7б**), H (**7в**), 3-COOEt (**7г**), 3-CN (**7д**), рассмотрены совместные эффекты температуры и структуры катализатора (схема 5), а также температуры и структуры кислотного реагента (схема 6) [32–34].



В реакциях с участием оксиранов **1а–е** происходит α-раскрытие цикла с образованием первичных спиртов (схема 1), а в реакциях оксиранов **1ж**, **3** образуются вторичные спирты, продукты βраскрытия цикла [24, 35].

Влияние температуры на скорость реакций оценивалось с помощью уравнения Эйринга:

$$\lg(k_{iT}/T) = A_{T=\infty}^{j} + B_{T}^{j} 10^{3}/T.$$
 (6)

Здесь  $A_{T=\infty}^{j} = \lg(k_{\rm B}/h) + \Delta S_{j}^{\neq}/(2.3R), B_{T}^{j} = -\Delta H_{j}^{\neq}/2.3R$ ( $k_{\rm B}$  — постоянная Больцмана, h — постоянная Планка, *R* – газовая константа); индекс *j* характеризует структурный фактор (заместители X, Y, Z). В уравнении (6) отсутствует трансмиссионный коэффициент, обычно принимаемый равным 1 для гетеролитических реакций. Коэффициенты

 $A_{T=\infty}^{j}$  и  $B_{T}^{j}$ , погрешность в определении которых в большинстве случаев не превышала 5–10%, использовались для расчета энтропии активации

 $\Delta S_{j}^{\neq}$  и энтальпии активации  $\Delta H_{j}^{\neq}$  рассматриваемых реакций. Точность корреляционных параметров оценивали среднеквадратичным отклоне-

**Таблица 1.** Коэффициенты уравнений (9)<sup>а</sup>, (10)<sup>а</sup> и значения ИПТ по параметрам варьируемых факторов для реакций оксиранов **1**, **4** с кислотами **2**, **3**, **5**, **6** (ДО – диоксан, ДГ – диглим, АН – ацетонитрил, 1,2-ДХЭ – 1,2-дихлорэтан)

| PC               | Оксиран | Кислота    | Среда               | $\lg k_{\mathrm{H}T=\infty}$ | $\rho_{\rm Y}^{{\cal T}=\infty}$ | $q_T^{ m Y=H}$       | $q_{\mathrm{Y}T}$ | $\sigma_Y^{\Pi\Pi}$ | <i>Т</i> <sup>ИП</sup> , К | Ссылки |
|------------------|---------|------------|---------------------|------------------------------|----------------------------------|----------------------|-------------------|---------------------|----------------------------|--------|
| 1                | 13      | 2а-г, е    | ДО:ДГ,1:1           | $8.4\pm0.2$                  | $9.5\pm0.6$                      | $-3.21\pm0.07$       | $-2.5\pm0.2$      | -1.28               | 263 <sup>6</sup>           | [24]   |
| 2                | 1e      | 2а-в, д, е | до                  | $10.4\pm0.3$                 | $21 \pm 1$                       | $-3.4\pm0.1$         | $-5.8\pm0.4$      | -0.59               | 276                        | [23]   |
| 3                | 4г      | 2а—г       | ДО: 1,2-ДХЭ,<br>7:3 | $11.7\pm0.1$                 | $8.4\pm0.7$                      | $-4.61 \pm 0.04$     | $-2.2 \pm 0.2$    | -2.09               | 262 <sup>6</sup>           | [27]   |
| 4 <sup>в</sup>   | 1a      | За—д       | AH                  | $-4.87\pm0.03$               | $1.79\pm0.04$                    | $-4.3\pm0.3$         | _                 | —                   | _                          | [28]   |
| 5                | 1a      | 5а—в       | до                  | $6.1 \pm 0.2$                | $1.69\pm0.03$                    | $-2.91\pm0.07$       | _                 | —                   | _                          | [30]   |
| 6                | 1a      | 6а—д       | AH                  | $8.4\pm0.5$                  | $1.45\pm0.04$                    | $-4.6\pm0.2$         | _                 | —                   | _                          | [31]   |
|                  |         |            |                     | $\lg k_{\mathrm{H}T=\infty}$ | $\rho_X^{T=\infty}$              | $q_T^{X=\mathrm{H}}$ | $q_{\mathrm{X}T}$ |                     |                            |        |
| 7 <sup>в,г</sup> | 1a—e    | 3д         | AH                  | $-2.42\pm0.04$               | $-2.99\pm0.08$                   | $-4.3\pm0.3$         | _                 |                     | _                          | [29]   |

<sup>а</sup> Коэффициенты перекрестной корреляции  $R \ge 0.995$ . <sup>б</sup> Экспериментально наблюдаемая ИПТ. <sup>в</sup> В уравнениях (9), (10) использована внутренняя шкала температуры  $\tau_T = (1/T - 1/333) \times 10^3$ . <sup>г</sup> В уравнении (10) использованы константы  $\sigma_X^+$  заместителей Х.

нием S, которое определяли статистическим методом по числу n экспериментальных точек, r – коэффициент корреляции Пирсона. Статистическая обработка экспериментальных данных выполнена при доверительной вероятности 0.95.

Для учета электронных эффектов заместителей X и Y при фиксированных температурах *T* использовалось уравнение Гаммета в виде соотношений

$$\lg k_{\mathrm{X}T} = \lg k_{\mathrm{H}T} + \rho_{\mathrm{X}}^{T} \sigma_{\mathrm{X}}, \qquad (7)$$

$$\lg k_{\rm YT} = \lg k_{\rm HT} + \rho_{\rm Y}^T \sigma_{\rm Y}.$$
 (8)

Оценка совместного влияния структуры и температуры *T* на скорость реакций (схемы 1–4) осуществлялась с использованием полилинейных уравнений

$$lg k_{YT} = lg k_{HT=\infty} + \rho_Y^{T=\infty} \sigma_Y + q_T^{Y=H} \times 10^3 / T + q_{YT} \sigma_Y \times 10^3 / T,$$
(9)

$$lg k_{XT} = lg k_{HT=\infty} + \rho_X^{T=\infty} \sigma_X + q_X^{X=H} \times 10^3 / T + q_{XT} \sigma_X \times 10^3 / T.$$
(10)

Уравнение (9) описывает эффекты температуры и заместителей Y в кислотном реагенте при фиксированных заместителях X в оксиране, а уравнение (10) — эффекты температуры и заместителей X при фиксированных заместителях Y.

Коэффициенты уравнения (9) и рассчитанные на их основе значения ИПТ по параметрам варьируемых факторов  $\sigma_Y^{\Pi\Pi} = -q_T^{Y=H}/q_{YT}$  и  $T^{\Pi\Pi} =$  $= -q_{YT} \times 10^3/\rho_Y^{T=\infty}$  приведены в табл. 1 для PC 1–3. В этой таблице также представлены коэффициенты уравнений (9) и (10), в которых отсутствуют перекрестные члены ( $q_{YT} = 0, q_{XT} = 0$ ), для PC 4–7.

Значения  $T^{\rm И\Pi}$  в PC 1-3 соответствуют наклонам компенсационных зависимостей (11)–(13) в изменении энтальпии  $\Delta H_{\rm Y}^{\neq}$  и энтропии  $\Delta S_{\rm Y}^{\neq}$  активации под влиянием заместителей Y в кислоте **2**.

$$\Delta H_{\rm Y}^{\neq} = (83.3 \pm 0.3) \times 10^3 + (268 \pm 3) \Delta S_{\rm Y}^{\neq},$$
  

$$S = 382, \quad r = 0.999, \quad n = 5,$$
(11)

$$\Delta H_{\rm Y}^{\neq} = (75 \pm 2) \times 10^3 + (260 \pm 14) \Delta S_{\rm Y}^{\neq},$$
  

$$S = 1092, \quad r = 0.998, \quad n = 3,$$
(12)

$$\Delta H_{\rm Y}^{\neq} = (93.2 \pm 0.3) \times 10^3 + (266 \pm 6) \Delta S_{\rm Y}^{\neq},$$
  

$$S = 290, \quad r = 0.999, \quad n = 4.$$
(13)

Можно использовать и другие альтернативные методы расчета  $T^{\text{ИП}}$ , основанные на принципе полилинейности. Так, например, линейная зависимость коэффициента чувствительности  $\rho_{\text{Y}}^{T}$  в уравнении (8) от обратной температуры для PC 3 имеет следующий вид [27]:  $\rho_{\text{Y}}^{T} = (8.4 \pm 0.7) + (-2.2 \pm 0.2) \times 10^{3}/T$  (r = 996). Ее угловой наклон совпадает со значением коэффициента перекрестной корреляции  $q_{\text{YT}}$  этой серии в табл. 1. Из данной зависимости можно определить значение изокинетической температуры  $T^{\text{ИП}} = 262$  K, при которой исчезает чувствительность к эффектам заместителей Y ( $\rho_{\text{Y}}^{T} = 0$ ). Эта температура согласуется со значениями  $T^{\text{ИП}}$  в табл. 1 и в уравнении (13).

В РС 1, 3 осуществлена экспериментальная реализация  $T^{\text{ип}}$ . Их значения близки к температуре 265 К в эксперименте. При этой температуре в со-



Рис. 1. Пересечение прямых в координатах уравнения Аррениуса при  $10^3/T = 3.77 \text{ K}^{-1}$  (T = 265 K) вблизи ИПТ  $T^{U\Pi} = 263 \text{ K} (10^3/T^{U\Pi} = 3.80 \text{ K}^{-1})$  в РС 1 (табл. 1), включающей реакции оксирана 1з с аренсульфоновыми кислотами 2a (1), 2б (2), 2в (3), 2г (4), 2e (5).

ответствии с закономерностями изопараметрических зависимостей должно наблюдаться отсутствие чувствительности процесса к эффектам заместителей Ү. Действительно, в этих РС значения

 $\rho_{\rm Y}^{T}$  стремятся к нулю с уменьшением температуры до 265 К [24, 26]: 1.18 ± 0.05 (303 К), 0.81 ± 0.01  $(287 \text{ K}), 0 (265 \text{ K}); 1.01 \pm 0.09 (298 \text{ K}), 0.50 \pm 0.04$ (281 K), 0.10 ± 0.05 (265 K). Рисунок 1 иллюстрирует реализацию  $T^{\text{ИП}} = 263 \text{ K в PC } 1.$ 

В РС 2 реализация формально доступной  $T^{\Pi\Pi} =$ = 276 К оказалась невозможной вследствие твердого состояния используемого растворителя (диоксан,  $T_{\pi\pi} = 284.7$  K).

В ИПТ  $\sigma_{Y}^{ИП}$  скорость процесса не должна зависеть от температуры. Однако эти точки не были реализованы в РС 1-3 вследствие дефицита электронодонорных заместителей У неаминного характера с константой  $\sigma_{\rm Y}$ , равной или меньшей – 0.59.

В РС 4-7 (табл. 1) отсутствует взаимодействие эффектов температуры и структуры ( $q_{YT} = 0$ ,  $q_{XT} = 0$ ), вследствие чего в них не проявляется энтальпийно-энтропийный КЭ. Они являются изоэнтальпийными относительно вариации структуры оксиранового субстрата (заместители Х) и кислотного реагента (заместители Ү). Так, например, в PC 4 энтальпия активации незначительно изменяется при переходе от одного заместителя У к другому в ряду кислот **36**–д [28]:  $\Delta H_{\rm Y}^{\neq}$ , кДж/моль (Y): 75.5 (H), 77.5 (3-Br), 76.5 (3-NO<sub>2</sub>), 84.0  $(3,5-(NO_2)_2)$ . Вместе с тем в этом же ряду кислот

происходит значительное изменение энтропии активации  $\Delta S_{\rm Y}^{\neq}$ , Дж/(моль K): -114, -92.6, -84.7, -39.6. В РС 7 наблюдается аналогичное поведение активационных параметров: в ряду оксиранов **1а**, **г**, **е**  $\Delta H_X^{\neq}$ , кДж/моль (X) = 84 (H), 71 (4-Cl), 68 (4-NO<sub>2</sub>);  $\Delta S_{X}^{\neq}$ , Дж/(моль K) = -39, -87, -134 [29]. Таким образом, влияние структурных факторов на свободную энергию активации, а, следовательно, и на скорость процесса, осуществляется путем изменения в основном энтропии активании. В соответствии с принципом полилинейности в РС 4-7 выполняются линейные зависимости  $\Delta S_{Y}^{\neq}$  ( $\Delta S_{X}^{\neq}$ ) от  $\sigma_{Y}$  ( $\sigma_{X}$ ) и  $\Delta G_{YT}^{\neq}$  $(\Delta G_{XT}^{\neq})$  от  $\Delta S_{Y}^{\neq}$   $(\Delta S_{X}^{\neq})$ . Так, в РС 4 эти зависимости имеют следующий вид [28]:  $\Delta S_{\rm Y}^{\neq} = (-115 \pm 4) + (52)$  $\pm 2)\sigma_{\rm Y}$  (r = 0.991),  $\Delta G^{\neq}_{\rm YT=333} = (88 \pm 2) \times 10^3 + (210 \pm 2)$ 20) $\Delta S_{\rm v}^{\neq}$  (*r* = 0.993).

В терминах активационных параметров взаимодействие эффектов структуры и температуры в реакциях оксирановых субстратов с кислотными реагентами (схемы 1-4) описывается полилинейными уравнениями

$$\Delta G_{YT}^{\neq} = \Delta G_{HT=0}^{\neq} + Q_Y^{T=0} \sigma_Y + Q_T^{Y=H} T + Q_{YT} \sigma_Y T,$$
(14)  
$$\Delta G_{XT}^{\neq} = \Delta G_{HT=0}^{\neq} + Q_X^{T=0} \sigma_X + Q_T^{X=H} T + Q_{XT} \sigma_X T.$$
(15)

В табл. 2 приведены коэффициенты уравнения (14) для РС 1-3 с экспериментально реализованными ИПТ по температуре  $T^{\text{ИП}(G)} = -Q_{Y}^{T=0}/Q_{YT}$  и по константе заместителя Y  $\sigma_{Y}^{V\Pi(G)} = -Q_{T}^{Y=H}/Q_{YT}$ . Здесь также представлены уравнения (14), (15) без перекрестных членов ( $Q_{YT} = 0, Q_{XT} = 0$ ) для PC 4-7. Значения *Т*<sup>ИП(G)</sup> в РС 1, 3 совпадают с приведенными для этих серий в табл. 1. При *Т*<sup>ИП(G)</sup> исчезает влияние заместителей У на свободную энергию активации  $\Delta G_{YT}^{\neq}$ , а, следовательно, и на скорость процесса вследствие ранее обсужденного энтальпийно-энтропийного КЭ. Так, в РС 3 величина  $\Delta G_{YT}^{\neq}$  становится практически неизменной при варьировании заместителя У в кислотах 2а-г за счет полной компенсации в изменении энтальпийного и энтропийного терма при температуре 265 К, близкой к Т<sup>ИП(G)</sup> 261 К [27]:  $\Delta G_{YT=265}^{\neq}(Y) = 93.3 (4 \text{-OCH}_3), 92.9 (4 \text{-CH}_3), 93.0 (H),$ 93.1 (4-Cl) кДж/моль. Графическая иллюстрация реализации  $T^{\text{ИП}(G)} = 263 \text{ K в PC } 1$  представлена на рис. 2, где прямая 3 с нулевым наклоном показывает отсутствие влияния заместителей У на сво-

бодную энергию активации  $\Delta G_{YT}^{\neq}$  при температуре 265 К в эксперименте ( $\rho_{Y} = 0$ ).

**Таблица 2.** Коэффициенты уравнений (14)<sup>a</sup>, (15)<sup>a</sup> и значения ИПТ по параметрам варьируемых факторов для реакций оксиранов **1**, **4** с кислотами **2**, **3**, **5**, **6** (ДО – диоксан, ДГ – диглим, АН – ацетонитрил, 1,2-ДХЭ – 1,2-дихлорэтан)

| PC             | Оксиран    | Кислота | Среда                     | $\Delta G^{\neq}_{\mathrm{H}T=0}$ | $Q_{\mathrm{Y}}^{T=0}$ | $Q_T^{ m Y=H}$  | $Q_{\mathrm{Y}T}$  | $\sigma_{Y}^{H\Pi(G)}$ | <i>Т</i> <sup>ИП(<i>G</i>)</sup> ,<br>К | Ссылки            |
|----------------|------------|---------|---------------------------|-----------------------------------|------------------------|-----------------|--------------------|------------------------|-----------------------------------------|-------------------|
| 1              | 13         | 2а-г, е | ДО:ДГ,1:1                 | $60.7\pm1$                        | $41 \pm 2$             | $0.084\pm0.003$ | $-0.156 \pm 0.008$ | 0.54 <sup>6</sup>      | 263 <sup>6</sup>                        | [24]              |
| 2              | 4в         | 2а-г, е | ДО: 1,2-ДХЭ,              | $67 \pm 1$                        | $39\pm3$               | $0.083\pm0.004$ | $-0.16\pm0.01$     | 0.52 <sup>6</sup>      | 244                                     | [25]              |
| 3              | <b>4</b> r | 2а—г    | 7:3<br>ДО:1,2-ДХЭ,<br>7:3 | 83 ± 1                            | 47 ± 5                 | $0.036\pm0.003$ | $-0.18 \pm 0.02$   | 0.20 <sup>6</sup>      | 261 <sup>6</sup>                        | [27]              |
| 4              | 1a         | За—д    | AH                        | $86\pm5$                          | $-11.4\pm0.2$          | $0.08\pm0.01$   | —                  | _                      | —                                       | [28] <sup>в</sup> |
| 5              | 1a         | 5а-в    | до                        | $52\pm0.3$                        | $12.1\pm0.5$           | $0.16\pm0.01$   | —                  | _                      | —                                       | [30] <sup>в</sup> |
| 6              | 1a         | 6а—д    | AH                        | 89 + 5                            | -7.8 + 0.3             | 0.08 + 0.01     | —                  | _                      | _                                       | [31] <sup>в</sup> |
|                |            |         |                           | $\Delta G_{\mathrm{H}T=0}^{\neq}$ | $Q_{\rm X}^{T=0}$      | $Q_T^{Y=H}$     | $Q_{\mathrm{X}T}$  |                        |                                         |                   |
| 7 <sup>г</sup> | 1а, г, е   | 3д      | AH                        | $69\pm8$                          | $19.4\pm0.5$           | $0.09\pm0.02$   | _                  | -                      | -                                       | [29] <sup>в</sup> |

<sup>а</sup> Коэффициенты перекрестной корреляции *R*≥0.983. <sup>б</sup> Экспериментально наблюдаемая ИПТ. <sup>в</sup> Рассчет коэффициентов выполнен с использованием данных указанных работ. <sup>г</sup> В уравнении (15) использованы константы σ<sup>+</sup><sub>X</sub> заместителей X.

ИПТ  $\sigma_{Y}^{\text{ИП}(G)}$  в PC 1–3 попадают в экспериментальный интервал варьирования  $\sigma_{Y}$ -констант заместителей Y в кислотах **2а**–г, е ( $\sigma_{Y} = -0.27-0.71$ ). В этих точках  $\Delta G_{YT}^{\neq \text{ИП}}$  не зависит от температуры. Рисунок 2 демонстрирует реализацию в PC 1  $\sigma_{Y}^{\text{ИП}(G)} = 0.54$ , в которой исчезает влияние *T* на величину  $\Delta G_{YT}^{\neq \text{ИП}}$ . Это возможно, если в выражении  $\Delta G_{YT}^{\neq \text{ИП}} = \Delta H_{Y}^{\neq} - T\Delta S_{Y}^{\neq}$  энтропия активации  $\Delta S_{Y}^{\neq} =$ = 0 и свободная энергия активации равна энтальпии активации ( $\Delta G_{YT}^{\neq \text{ИП}} = \Delta H_{Y}^{\neq}$ ). Такую уникальную ситуацию подтверждает, например, уравнение  $\Delta S_{Y}^{\neq} = (-87 \pm 1) + (187 \pm 3)\sigma_{Y} (r = 0.999)$  [25] для PC 2, из которого следует, что  $\Delta S_{Y}^{\neq} = 0$  при значении  $\sigma_{Y} = 0.46$ , которое соответствует величине  $\sigma_{Y}^{\text{ИП}(G)} = 0.52$ .

В РС 1–3 не только продемонстрирован редкий в химических процессах случай реализации ИПТ по структурному параметру  $\sigma_Y^{\text{ИП}(G)}$ , но и осуществлены переходы через эти точки при варьировании заместителей Y в кислоте **2**. Пример перехода через  $\sigma_Y^{\text{ИП}(G)} = 0.54$  в РС 1 показан на рис. 2. В соответствии с закономерностями изопараметрических зависимостей при таких переходах происходит инверсия знака энтропии активации  $\Delta S_Y^{\neq}$ . В РС 2 этот феномен наблюдается при переходе через  $\sigma_Y^{\text{ИП}(G)} = 0.52$  в ряду кислот **2a**–**r**, **e**:  $\Delta S_Y^{\neq}$ , Дж/(моль K) (Y,  $\sigma_Y$ ) = –140 (4-OMe, –0.27), –119 (4-Me, –0.17), –85 (H, 0), –42 (4-Cl, 0.23),

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 11 2022

44 (3-NO<sub>2</sub>, 0.71). Инверсия знака энтропии активации вызывает обращение влияния температуры на величину  $\Delta G_{YT}^{\neq}$ . Это явление демонстрирует рис. 3, где показано обращение наклонов температурных зависимостей свободной энергии активации после перехода через  $\sigma_Y^{\text{ИП}(G)} = 0.54$  в PC 1. Точка пересечения корреляционных прямых на этом рисунке, где отсутствует влияние заместителей Y на величину  $\Delta G_{YT}^{\neq}$ , соответствует ранее упо-

лей Y на величину  $\Delta G_{YT}^{\neq}$ , соответствует ранее упомянутой ИПТ по температуре  $T^{\Pi\Pi(G)} = 263$  K.

В РС 4–7 отсутствует взаимодействие эффектов структуры и температуры ( $Q_{YT} = 0, Q_{XT} = 0$ ).



**Рис. 2.** Влияние температуры 303 К (*1*), 287 К (*2*), 265 К (*3*) на чувствительность свободной энергии активации  $\Delta G_{YT}^{\neq}$  к эффектам заместителей Y в реакциях оксирана **13** с кислотами **2а–г. е** (PC 1, табл. 2).



Рис. 3. Обращение влияния температуры на свободную энергию активации  $\Delta G_{YT}^{\neq}$  после перехода через ИПТ  $\sigma_{Y}^{\text{И}\Pi(G)} = 0.54$  в РС 1 (табл. 2), включающей реакции оксирана 13 с кислотами 2а, Y = 4-OCH<sub>3</sub>,  $\sigma_{Y} = -0.27$  (*I*), 2в, Y = H,  $\sigma_{Y} = 0$  (2), 2г, Y = 4-Cl,  $\sigma_{Y} = 0.23$  (*3*), 2е, Y = 3-NO<sub>2</sub>,  $\sigma_{Y} = 0.71$  (*4*).

Как уже отмечалось при обсуждении этих серий в табл. 1, они являются изоэнтальпийными относительно эффектов структурных факторов.

Яркое проявление феномена изопараметричности наблюдается в катализируемых пиридинами **7а**-д реакциях оксирана **1a** с аренкарбоновыми кислотами **36**-г (схема 5) [32, 34]. Для описания совместного влияния на скорость этих реакций температуры и заместителей Z в катализаторе Z-Ру использовано уравнение

$$lg k_{ZT} = lg k_{HT=\infty} + \rho_Z^{T=\infty} \sigma_Z + + q_T^{Z=H} \times 10^3 / T + q_{ZT} \sigma_Z \times 10^3 / T.$$
(16)

Коэффициенты уравнения (16) и рассчитанные на их основе значения ИПТ  $\sigma_Z^{\Pi\Pi} = -q_T^{Z=H}/q_{ZT}$ и  $T^{\Pi\Pi} = -q_{ZT} \times 10^3/\rho_Z^{T=\infty}$  приведены в табл. 3 для РС 1–3. Здесь также представлены коэффициенты уравнений (9) и (16), в которых отсутствуют перекрестные члены ( $q_{YT}=0, q_{ZT}=0$ ), для РС 4, 5.

ИПТ по температуре  $T^{и\Pi}$  в PC 1–3 соответствуют наклонам компенсационных зависимостей (17)–(19) в изменении энтальпии  $\Delta H_Z^{\neq}$  и энтропии  $\Delta S_Z^{\neq}$  активации под влиянием заместителей Z в катализаторе 7 в ряду кислот **36**, в, г (r = = 0.999) [32].

$$\Delta H_Z^{\neq} = (97.8 \pm 0.6) \times 10^3 + (296 \pm 3) \Delta S_Z^{\neq}, \qquad (17)$$

$$\Delta H_Z^{\neq} = (95.6 \pm 0.3) \times 10^3 + (294 \pm 2) \Delta S_Z^{\neq}, \quad (18)$$

$$\Delta H_Z^{\neq} = (93.4 \pm 0.3) \times 10^3 + (293 \pm 1) \Delta S_Z^{\neq}.$$
 (19)

В этих РС Т<sup>ИП</sup> не выходят за пределы температурного интервала 279-343 К в эксперименте, что свидетельствует об их физической реальности. Данные табл. 4 показывают, что согласно концепции энтальпийно-энтропийной компенсации при температуре эксперимента 295 К, соответствующей  $T^{\text{ип}}$ , параметр чувствительности  $\rho_Z^T$  к эффектам заместителей Z в пиридинах **7а**–д в реакциях оксирана 1а с кислотами 36-г приближается к нулевому значению, т.е. реакционная система становится изокинетической. Противоположные знаки  $\rho_Z^T$  после перехода через  $T^{U\Pi}$  указывают на обращение порядка влияния заместителей Z на каталитическую активность пиридинов, что являются убедительным свидетельством парадокса изопараметричности, экспериментально наблюдаемого при изменении температуры от 279 до 343 К. Графическая иллюстрация этого парадокса в РС 3 представлена на рис. 4, где в координатах уравнения Аррениуса показано, что по разные стороны от  $T^{\Pi\Pi} = 296$  К  $(10^3/T^{\rm И\Pi} = 3.38 \ K^{-1})$  порядок влияния заместителей Z на каталитическую активность пиридинов является противоположным.

|    |          |      | _                            | =                                |                |                   |                     | _                          |                   |
|----|----------|------|------------------------------|----------------------------------|----------------|-------------------|---------------------|----------------------------|-------------------|
| PC | Кислота  | Ру   | $\lg k_{\mathrm{H}T=\infty}$ | $\rho_Z^{T=\infty}$              | $q_T^{ m Z=H}$ | $q_{ZT}$          | $\sigma_Z^{\Pi\Pi}$ | <i>Т</i> <sup>ИП</sup> , К | Ссылки            |
| 1  | 36       | 7а—г | $5.0 \pm 0.1$                | $-15.6\pm0.8$                    | $-2.81\pm0.04$ | $4.6\pm0.2$       | 0.61                | 295 <sup>6</sup>           | [32] <sup>B</sup> |
| 2  | 3в       | 7а—д | $5.6\pm0.1$                  | $-15.5\pm0.5$                    | $-2.86\pm0.04$ | $4.5\pm0.2$       | 0.62 <sup>6</sup>   | 295 <sup>6</sup>           | [32] <sup>в</sup> |
| 3  | 3г       | 7а—д | $5.6\pm0.2$                  | $-16.9\pm0.8$                    | $-2.80\pm0.06$ | $5.0\pm0.2$       | 0.56 <sup>6</sup>   | 296 <sup>6</sup>           | [34]              |
| 4  | 6б       | 7б—д | $7.8\pm0.1$                  | $-0.81\pm0.02$                   | $-3.83\pm0.04$ | _                 | —                   | _                          | [33] <sup>B</sup> |
|    |          |      | $\lg k_{\mathrm{H}T=\infty}$ | $\rho_{\rm Y}^{{\cal T}=\infty}$ | $q_T^{ m Y=H}$ | $q_{\mathrm{Y}T}$ |                     |                            |                   |
| 5  | 6а, б, д | 7в   | $7.7\pm0.3$                  | $1.21\pm0.03$                    | $-3.79\pm0.09$ | —                 | _                   | -                          | [33] <sup>B</sup> |

**Таблица 3.** Коэффициенты уравнений (9)<sup>a</sup>, (16)<sup>a</sup> и значения ИПТ по параметрам варьируемых факторов для катализируемых пиридинами **7а**–д реакций оксирана **1a** с кислотами **36–г** и **6a**, **б**, д в ацетонитриле

<sup>а</sup> Коэффициенты перекрестной корреляции *R*≥0.996. <sup>б</sup> Экспериментально наблюдаемая ИПТ. <sup>в</sup> Рассчет коэффициентов выполнен с использованием данных указанных работ.

|                  |                   |                    | 1 21             | L - 1            |                |  |  |  |  |
|------------------|-------------------|--------------------|------------------|------------------|----------------|--|--|--|--|
| Кислота (Ү)      | $\rho_Z^T$        |                    |                  |                  |                |  |  |  |  |
|                  | 279 K             | 295 K              | 308 K            | 323 K            | 343 K          |  |  |  |  |
| <b>36 (</b> H)   | $0.751\pm0.005$   | $-0.078 \pm 0.002$ | $-0.77\pm0.06$   | $-1.62\pm0.06$   | $-2.4\pm0.2$   |  |  |  |  |
| <b>Зв</b> (3-Вг) | $0.81\pm0.08$     | $-0.077 \pm 0.009$ | $-0.77\pm0.04$   | $-1.74\pm0.04$   | $-2.4\pm0.1$   |  |  |  |  |
| $3r(3-NO_2)$     | $0.761 \pm 0.009$ | $-0.083 \pm 0.003$ | $-0.75 \pm 0.04$ | $-1.30 \pm 0.07$ | $-2.4 \pm 0.1$ |  |  |  |  |

**Таблица 4.** Значения  $\rho_Z^T$  ( $r \ge 0.995$ ) в уравнении Гаммета для катализируемых пиридинами **7а**–д реакций оксирана **1а** с кислотами **36**–г (схема 5) в ацетонитриле при разных температурах [32]

Что касается ИПТ  $\sigma_Z^{U\Pi}$ , то они фактически ре-ализованы в PC 2 и 3 в случае пиридина 7д (Z = = 3-CN,  $\sigma_{Z}$  = 0.56). В этих точках на скорость каталитического процесса не влияет температурный фактор ( $q_T^Z = 0$ ). Экспериментальное достижение  $\sigma_Z^{U\Pi} = 0.56$  в PC 3 показано на рис. 4, где корреляционная прямая 4 с нулевым наклоном демонстрирует отсутствие влияния температуры на каталитическую активность пиридина 7д. Рисунок 5 демонстрирует реализацию  $\sigma_Z^{\Pi\Pi}=0.56$ в координатах уравнения Гаммета. Отсутствие влияния температуры в этой точке на скорость каталитического процесса возможно, если в уравнении (6) угловой коэффициент  $B_T^{j} =$  $= -\Delta H_{j}^{\neq}/2.3R = 0$  ( $B_{T}^{Z} = -\Delta H_{Z}^{\neq}/2.3R = 0$ ) вследствие равенства нулю энтальпии активации  $\Delta H_{j}^{\neq} = 0$  ( $\Delta H_{Z}^{\neq} = 0$ ). Действительно, в PC 2, 3 величина энтальпии активации близка к нулевому значению ( $\Delta H_Z^{\neq} = 3.3$  кДж/моль, Z = 3-CN) вблизи  $\sigma_{z}^{И\Pi}$  0.62 и 0.56. При этом энтропия активации достигает больших отрицательных значений ( $\Delta S_{Z}^{\neq}$  =



Рис. 4. Обращение влияния температуры на каталитическую активность пиридинов 7а (1), 7б (2), 7в (3), 7д (4) после перехода через ИПТ  $10^3/T^{И\Pi} = 3.38 \text{ K}^{-1}$ ( $T^{\Pi\Pi} = 296 \text{ K}, \rho_Z^T = 0$ ) в РС 3 (табл. 3).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 11 2022

= -314 и -308 Дж/(моль К)) [34], а вклад энтро-

пийного терма  $T\Delta S_Z^{\neq}$  в величину свободной энергии активации при 298 К превышает 96%. Эти данные указывают на то, что при достижении рассматриваемых ИПТ каталитический процесс осуществляется фактически без активационного барьера.

В РС 4, 5 (табл. 3) отсутствует взаимодействие эффектов структуры и температуры ( $q_{ZT} = 0, q_{YT} =$ = 0). Они является изоэнтальпийными относительно заместителей Z в катализаторе 7 и Y в кислотном реагенте 6. Так, например, в этих сериях при закрепленном заместителе Y = H (Z = H) энтальпия активации  $\Delta H_Z^{\neq}$  ( $\Delta H_Y^{\neq}$ ) практически не изменяется при переходе от одного заместителя Z (Y) к другому:  $\Delta H_Z^{\neq}$ , кДж/моль = 72, 71, 73, 73 в ряду пиридинов 76, в, г, д ( $\Delta H_Y^{\neq}$ , кДж/моль = 71, 71, 71 в ряду кислот 6а, б, д) [33]. Влияние структурных факторов на свободную энергию активации каталитического процесса происходит в основном за счет изменения энтропийного терма, на-



Рис. 5. Пересечение корреляционных прямых в коор-

динатах уравнения Гаммета в ИПТ  $\sigma_Z^{\Pi\Pi} = 0.56 (q_T^Z = 0)$  в реакции оксирана **1а** с кислотой **3в**, катализируемой пиридинами Z-Ру **7а**–д при температурах 343 (*1*), 323 (*2*), 308 (*3*), 295 (*4*), 279 (*5*) К (РС 3, табл. 3).

| PC | Кислота  | Ру   | $\Delta G_{\mathrm{H}T=0}^{\neq}$ | $Q_{Z}^{T=0}$    | $Q_T^{ m Z=H}$  | $Q_{ZT}$      | $\sigma_Z^{\Pi\Pi(G)}$ | $T^{VII(G)}, \mathbf{K}$ | Ссылки            |
|----|----------|------|-----------------------------------|------------------|-----------------|---------------|------------------------|--------------------------|-------------------|
| 1  | 36       | 7а—г | 53 ± 1                            | $-81 \pm 6$      | $0.150\pm0.005$ | $0.27\pm0.02$ | -0.56                  | 300 <sup>б</sup>         | [32] <sup>в</sup> |
| 2  | 3в       | 7а—д | $52 \pm 2$                        | $-80 \pm 4$      | $0.148\pm0.005$ | $0.27\pm0.01$ | -0.55                  | 296 <sup>6</sup>         | [32] <sup>в</sup> |
| 3  | 3г       | 7а—д | $53 \pm 1$                        | $-86 \pm 3$      | $0.138\pm0.003$ | $0.29\pm0.01$ | -0.48                  | 296 <sup>6</sup>         | [34]              |
| 4  | 6б       | 7б—д | $79 \pm 3$                        | $6.6\pm0.6$      | $0.08\pm0.01$   | —             | _                      | _                        | [33] <sup>в</sup> |
|    |          |      | $\Delta G_{\mathrm{H}T=0}^{\neq}$ | $Q_{ m Y}^{T=0}$ | $Q_T^{ m Y=H}$  | $Q_{YT}$      |                        |                          |                   |
| 5  | 6а, б, д | 7в   | 78 ± 2                            | $-7.8\pm0.2$     | $0.078\pm0.007$ | _             | _                      | _                        | [33] <sup>B</sup> |

**Таблица 5.** Коэффициенты уравнений  $(14)^a$ ,  $(20)^a$  и значения ИПТ по параметрам варьируемых факторов для катализируемых пиридинами **7а**–д реакций оксирана **1а** с кислотами **36–г** и **6а**, **б**, **д** в ацетонитриле

<sup>а</sup> Коэффициенты перекрестной корреляции *R*≥0.987. <sup>б</sup> Экспериментально наблюдаемая ИПТ. <sup>в</sup> Расчет коэффициентов выполнен с использованием данных указанных работ.

пример,  $\Delta G_{ZT=308}^{\neq}$  (Y = H) = (44 ± 6) + (-0.58 ± ± 0.06) $\Delta S_Z^{\neq}$  (r = 0.998);  $\Delta G_{YT=323}^{\neq}$  (Z = H) = (66 ± 2) + + (-0.37 ± 0.02) $\Delta S_Y^{\neq}$  (r = 0.998) (рассчитано по данным работы [33]).

Для оценки совместного влияния температуры и структуры кислотного реагента **3**, **5** (заместители Y), а также структуры катализатора **7** (заместители Z) на свободную энергию активации каталитических реакций (схемы 5, 6) использовались уравнения (14) и (20).

$$\Delta G_{ZT}^{\neq} = \Delta G_{HT=0}^{\neq} + Q_Z^{T=0} \sigma_Z + Q_T^{Z=H} T + Q_{ZT} \sigma_Z T.$$
(20)

В табл. 5 приведены коэффициенты уравнения (20) для PC 1–3 с экспериментально реализованными ИПТ по параметрам варьируемых факто-



Рис. 6. Переход через ИПТ  $T^{\Pi(G)} = 296 \text{ K} (\rho_Z^T = 0)$  в реакции оксирана 1а с кислотой 3в, катализируемой пиридинами 7а (1), 7в (2), 7г (3), 7д (4) (РС 3, табл. 5).

ров. Здесь также представлены уравнения (14), (20) без перекрестных членов ( $Q_{ZT} = 0$ ,  $Q_{YT} = 0$ ), а также значения ИПТ по температуре  $T^{\text{ИП}(G)} =$  $= -Q_Z^{T=0}/Q_{ZT}$ и по константе заместителя Z  $\sigma_Z^{\text{ИП}(G)} =$  $= -Q_T^{Z=H}/Q_{ZT}$ . Значения  $T^{\text{ИП}(G)}$  в указанных сериях

соответствуют приведенным в табл. 3. В этих точках исчезает влияние заместителей Z на свобод-

ную энергию активации  $\Delta G_{ZT}^{\neq}$  вследствие энтальпийно-энтропийной компенсации. Так, в РС 3 при температуре 295 К, близкой к изокинетиче-

ской 296 К, величина  $\Delta G_{ZT}^{\neq}$  становится практически неизменной при варьировании заместителя Z в

пиридинах **7а**, **в**, **г**, д:  $\Delta G_{ZT=295}^{\neq}(Z) = 93.7$  (4-OCH<sub>3</sub>), 94.1 (H), 93.8 (3-COOEt), 94.2 (3-CN) кДж/моль (рассчитано по данным работы [34]). На рис. 6 показан один из примеров перехода через  $T^{и\Pi(G)}$ 296 К в РС 3, сопровождающийся обращением каталитической активности указанных пиридинов.

В ИПТ  $\sigma_Z^{ИП(G)}$  величина  $\Delta G_{ZT}^{\neq И\Pi}$  не должна зависеть от температуры вследствие равенства нулю энтропии активации (при  $\Delta S_Z^{\neq} = 0 \Delta G_{ZT}^{\neq И\Pi} = \Delta H_Z^{\neq}$ ). Однако, эти ИПТ не были реализованы в эксперименте.

Что касается PC 4, 5 в табл. 5, то в них отсутствует взаимодействие эффектов структуры и температуры. Они являются изоэнтальпийными относительно вариации заместителей Z в катализаторе 7 ( $\delta_Z \Delta H^{\neq} = 0$ ) и в кислотном реагенте 6 ( $\delta_Y \Delta H^{\neq} = 0$ ). В PC 4 в ряду пиридинов 76-д значения  $\Delta H_Z^{\neq}$  и  $\Delta S_Z^{\neq}$  равны соответственно 72, 71, 73, 73 кДж/моль и -97, -100, -104, -106 Дж/(моль K), а в PC 5 в ряду кислот 6а, б, д  $\Delta H_Y^{\neq} = 71$ , 71, 71 кДж/моль;  $\Delta S_Y^{\neq} = -104$ , -100, -83 Дж/(моль K).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 11 2022

### ЗАКЛЮЧЕНИЕ

В рассмотренных реакциях раскрытия оксиранового цикла доказана физическая реальность абстрактных свойств формальных полилинейных соотношений типа (2), из которых наиболее важным является энтальпийно-энтропийная компенсация, проявляющаяся в изопараметрических РС вследствие взаимодействия эффектов температуры и структуры в активационном процессе. Количественным атрибутом этих серий являются ИПТ по параметрам варьируемых факторов (структура, температура), в которых реальная реагирующая система приобретает особые "магические" свойства. В этих точках исчезает влияние соответствующих факторов на кинетические и активационные характеристики химического процесса, а при переходе через ИПТ наблюдается парадокс изопараметричности – обращение знаков соответствующих коэффициентов чувствительности, а также знака такого активационного параметра, как энтропия активации. Последнее происходит в РС 1-3 (табл. 2) при переходе через ИПТ  $\sigma_{Y}^{И\Pi(G)}$ :  $\Delta S_{Y}^{\neq} < 0$ ,  $\Delta S_{Y}^{\neq} = 0$ ,  $\Delta S_{Y}^{\neq} > 0$ . Что касается энтальпии активации, то ее величина приближается к нулю ( $\Delta H_Z^{\neq} = 3.3 \text{ кДж/моль}$ ) в ИПТ  $\sigma_{7}^{\Pi \Pi}$  в РС 2, 3 (табл. 3). В этом случае химический процесс осуществляется фактически при близком к нулю значении энергии активации. Дальнейшие исследования следует направить на поиск реакций с трудно воспринимаемой отрицательной энтальпией (энергией) активании.

Знание изопараметрических свойств PC с энтальпийно-энтропийным КЭ расширяет наши представления о малоизученных количественных аспектах органических реакций. В этом контексте следует ожидать новых интересных открытий при изучении совместного влияния структуры, температуры, среды, катализатора и других факторов на кинетические, активационные, термодинамические и другие характеристики химических процессов.

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Wells P.R. // Chem. Rev. 1963. V. 63. № 3. P. 171. https://doi.org/10.1021/cr60222a005
- Chapman N., Shorter J. Eds. Advances in Linear Free Energy Relationships. New York: Plenum Press, 1972. 481 p. https://doi.org/10.1007/978-1-4615-8660-9
- 3. Джонсон К. Уравнение Гаммета. М.: Мир, 1977. 240 с.
- 4. Пальм В.А Основы количественной теории органических реакций. Л.: Химия, 1977. 360 с.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 11

5. *Chapman N.B., Shorter J.* Eds. Correlation Analysis: Recent Advances. New York: Plenum Press, 1978. 541 p.

https://doi.org/10.1007/978-1-4615-8831-3

- 6. *Shorter J.* Correlation Analysis of Organic Reactivity, with Particular Reference to Multiple Regression. Somerset, NJ: John Wiley and Sons Inc., 1982. 235 p.
- 7. *Рейнхарт К.* Растворители и эффекты среды в органической химии. М.: Мир, 1991. 763 с.
- 8. *Williams A*. Free Energy Relationships in Organic and Bioorganic Chemistry. Cambridge: RSC, 2003. 298 p. https://doi.org/10.1039/9781847550927
- 9. *Пальм В.А., Истомин Б.И.* // Реакц. спос. орг. соед. 1969. Т. 6. № 2. С. 427.
- 10. *Shpanko I.V., Kim S.I., Koh H.J., Lee I.* // Bull. Korean Chem. Soc. 1995. V. 16. № 6. P. 533.
- 11. Шпанько И.В. // ТЭХ. 1999. Т. 35. № 2. С. 67.
- 12. Шпанько И.В. // Там же. 2001. Т. 37. № 5. С. 265.
- Leffler J.E., Grunwald E. Rates and Equilibrium of Organic Reactions. New York: John Wiley and Sons Inc., 1963. 458 p.
- 14. Exner O. // Prog. Phys. Org. Chem. 1973. V. 10. P. 411.
- 15. *Liu L., Guo Q.-X.* // Chem. Rev. 2001. V. 101. № 3. P. 673. https://doi.org/10.1021/cr990416z
- 16. *Sharp K.* // Protein Sci. 2001. V. 10. № 3. P. 661. https://doi.org/10.1110/ps.37801
- Norwisz J., Musielak T.J. // Therm. Anal. Calorim. 2007. V. 88. P. 751. https://doi.org/10.1007/s10973-006-8139-4
- Barrie P.J. // Phys. Chem. Chem. Phys. 2012. V. 14. N
   N
   1. P. 327. https://doi.org/10.1039/c1cp22667c
- 19. Cornish-Bowden A. // J. Biosci. 2017. V. 42. № 4. P. 665. https://doi.org/10.1007/s12038-017-9719-0
- Mianowski A., Radko T., Siudyga T. // Reac. Kinet. Mech. Cat. 2021. V. 132. P. 37. https://doi.org/10.1007/s11144-020-01898-2
- 21. Sapunov V.N., Saveljev E.A., Voronov M.S., Valtiner M., Linert W. // Thermo. 2021. V. 1. № 1. P. 45. https://doi.org/10.3390/thermo1010004
- 22. Дворко Г.Ф., Пономарев Н.Е., Пономарева Э.А. // ЖОХ. 2010. Т. 80. № 1. С. 5. https://doi.org/10.1134/S1070363210010019
- Шпанько И.В., Садовая И.В., Китайгородский А.М. // ТЭХ. 2000. Т. 36. № 6. С. 367. https://doi.org/10.1023/A:1005272628953
- 24. Шпанько И.В., Садовая И.В. // Там же. 2010. Т. 46. № 3. С. 171. https://doi.org/10.1007/s11237-010-9136-z
- Шпанько И.В., Садовая И.В. // Журн. физ. химии. 2016. Т. 90. № 12. С. 1771. https://doi.org/10.1134/S0036024416120268
- 26. Шпанько И.В., Садовая И.В. // ЖОХ. 2017. Т. 87. № 11. С. 1810. https://doi.org/10.1134/S107036321711007X

- 27. Shpan'ko, I.V., Sadovaya, I.V. // Reac. Kinet. Mech. Cat. 2018. V. 123. P. 473. https://doi.org/10.1007/s11144-017-1340-6
- 28. Шпанько И.В., Садовая И.В., Китайгородский А.М. // Укр. хим. журн. 2003. Т. 69. № 6. С. 111.
- 29. Шпанько И.В., Садовая И.В. // ЖОрХ. 2005. Т. 41. № 7. С. 1011.
- https://doi.org/10.1007/s11178-005-0282-z 30. Шпанько И.В., Садовая И.В. // Укр. хим. журн. 2004. Т. 70. № 4. С. 104.
- 2004. 1. 70. № 4. С. 104. 31. Шпанько И.В., Садовая И.В. // Там же. 2015. Т. 81. № 10. С. 124.
- 32. Шпанько И.В., Садавая И.В. // Кинетика и катализ. 2014. Т. 55. № 1. С. 59. https://doi.org/10.1134/S002315841401011X
- Шпанько И.В., Садовая И.В. // ЖОХ. 2019. Т. 89. № 12. С. 1835. https://doi.org/10.1134/ S0044460X19120059
- 34. Шпанько И.В., Садовая И.В. // Журн. физ. химии. 2013. Т. 87. № 12. С. 1994. https://doi.org/10.1134/S0036024413120224
- 35. Шпанько И.В., Садовая И.В., Куликова Н.В. // ЖОрХ. 2011. Т. 47. № 5. С. 685. https://doi.org/10.1134/S107042801105006X