_____ ФИЗИЧЕСКАЯ ХИМИЯ ___ РАСТВОРОВ ____

УДК 544.3

ПРИМЕНЕНИЕ РАСШИРЕННОГО УРАВНЕНИЯ СОСТОЯНИЯ ХЕЛГЕСОНА–КИРКХАМА–ФЛОВЕРСА ДЛЯ СИЛЬНОПОЛЯРНЫХ НЕДИССОЦИИРОВАННЫХ ВЕЩЕСТВ: СВОЙСТВА МЫШЬЯКОВИСТОЙ И ОРТОФОСФОРНОЙ КИСЛОТ ПРИ БЕСКОНЕЧНОМ РАЗБАВЛЕНИИ

© 2022 г. А. А. Новиков^{*a*,*}

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, Россия

*e-mail: novikov.chem@gmail.com Поступила в редакцию 14.04.2022 г. После доработки 14.04.2022 г. Принята к публикации 20.04.2022 г.

Предложено уточнения уравнение состояния Хелгесона–Киркхама–Фловерса (НКF) для полярных недиссоциированных веществ при бесконечном разбавлении. С его помощью описаны свойства водных растворов As(OH)₃ и H₃PO₄ при бесконечном разбавлении, а также некоторые равно-

весия с их участием. Уточнены параметры уравнения состояния для $H_2PO_4^-$ аниона. Предложенное уравнение состояния позволяет теоретически последовательно описывать полярные незаряженные частицы, не уступая в точности классическому уравнению HKF.

Ключевые слова: уравнение состояния НКF, термодинамическая модель, уровень отсчета, ортофосфорная кислота, мышьяковистая кислота

DOI: 10.31857/S004445372211022X

Описание стандартных свойств растворенных веществ является важной частью термодинамического моделирования растворов. В зависимости от выбранной нормировки для термодинамических величин, стандартными свойствами (уровнем отсчета) могут служить либо свойства чистого вещества (Z° , симметричная система сравнения), либо свойства составляющих в бесконечно разбавленном растворе (Z^{∞} , асимметричная система сравнения). Во втором случае составляющими в электролитных системах служат ионы, а для неэлектролитов — молекулы:

$$Z_{m} = x_{1}Z_{1}^{\circ} + x_{2}Z_{2}^{\infty} + Z^{\text{ex}},$$

где индексы 1 и 2 соответствуют растворителю и растворенному веществу, x_i — мольная доля *i*-го компонента (или составляющего), Z^{ex} — избыточное свойство, Z_m — молярное свойство раствора (например, теплоемкость $C_{p,m}$, объем V_m и пр.), Z_1° — молярное свойство чистого растворителя, Z_2^{∞} — стандартное свойство растворенного вещества. С точки зрения терминологии по отношению к последней величине, строго говоря, следует использовать термин "свойство вещества в состоянии, выбранном за уровень отсчета" или "референсное свойство", однако в настоящей ра-

боте мы будем придерживаться терминологии, принятой в международных изданиях, используя термин "стандартное свойство" и символ ∞ .

Для расчета фазовых и химических равновесий часто удобно использовать константу равновесия (*K*):

$$\ln K = -(RT)^{-1} \left[\sum_{i}^{\text{прод}} \Delta_{f} G_{i}^{\otimes} - \sum_{j}^{\text{pear}} \Delta_{f} G_{j}^{\otimes} \right],$$

где *T* – абсолютная температура, *R* – универсаль-

ная газовая постоянная, $\Delta_{\rm f} G_i^{\otimes}$ — стандартная энергия Гиббса образования *i*-го компонента как чистого вещества ($\Delta_{\rm f} G_i^{\circ}$) или в бесконечно разбавленном растворе ($\Delta_{\rm f} G_i^{\circ}$) в зависимости от нормировки.

Одной из наиболее популярных моделей стандартных свойств бесконечно разбавленных растворов является уравнение состояния Хелгесона-Киркхама-Фловерса (НКГ) [1–4]. Оно характеризуется простотой, широким рабочим диапазоном и высокой предсказательной способностью. Уравнение состояния НКГ было изначально введено для описания ионов в водных растворах, однако затем Shock et al. [5] предложили расширить его на нейтральные частицы. Они показали, что уравнение способно с высокой точностью описывать незаряженные составляющие, однако работу неоднократно критиковали за теоретическую непоследовательность. Последующие исследования [6] также показали, что модель испытывает сложности и с предсказанием свойств малополярных веществ.

Большинство последующих уравнений состояния отказывались от введения электростатического вклада в свойства Z^{∞} , в том или ином виде заменяя его на полуэмпирические зависимости от плотности растворителя [7, 8]. В рамках настоящей работы предложено уточнение электростатического вклада в уравнение состояния, которое позволяет теоретически непротиворечиво применять его к нейтральным частицам; проанализированы его достоинства и ограничения.

На основе предложенной расширенной модели описаны стандартные термодинамические свойства водных растворов мышьяковистой (As(OH)₃) и ортофосфорной (H₃PO₄) кислот и некоторые равновесия с их участием.

1. МОДИФИЦИРОВАННОЕ УРАВНЕНИЕ НКГ

Большинство уравнений состояния бесконечно разбавленного раствора основаны на рассмотрении процесса сольватации частицы описываемого вещества. Уравнение состояния НКГ не является исключением.

Неlgeson et al. [3, 4] предложили представлять стандартные свойства (Z^{∞}) суммой электростатического (ΔZ_{el}^{∞}) и неэлектростатического структурного (ΔZ_n^{∞}) вкладов. Первый вклад описывается теорией сольватации Борна, второй выводится из эмпирических уравнений для $\Delta C_{p,n}^{\infty}$ и ΔV_n^{∞} . Примечательно, что полученное описание не вводит абсолютные значения основных термодинамических функций ($\Delta_f G^{\infty}$, $\Delta_f H^{\infty}$, S^{∞}), а описывает только отклонения от их значений в состоянии, выбранном за уровень отсчета ($T_r = 298.15$ K, $p_r = 0.1$ МПа).

$$Z^{\infty} = Z^{\infty}(p_r, T_r) + [\Delta Z^{\infty}(p, T) - \Delta Z^{\infty}(p_r, T_r)],$$
$$\Delta Z^{\infty} = \Delta Z^{\infty}_{el} + \Delta Z^{\infty}_{n}.$$

Значения $Z^{\infty}(T_r, p_r)$ берутся из справочной литературы.

Электростатический вклад

Теория Борна [9], лежащая в основе уравнения состояния НКГ, не может быть приложена к нейтральным частицам, что является основным логическим противоречием при применении урав-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

нения НКГ к описанию свойств растворов, содержащих незаряженные составляющие:

$$\Delta G_{el}^{\infty}(\text{ион}) = \frac{N_{\text{A}}}{8\pi\varepsilon_0} \frac{z^2 \epsilon^2}{r} \left(\frac{1}{\epsilon} - 1\right) = \omega_0 \left(\frac{1}{\epsilon} - 1\right), \quad (1)$$

где $N_{\rm A}$ — число Авогадро, ε_0 — электрическая постоянная, ε — диэлектрическая проницаемость растворителя, ϵ — элементарный заряд, z — заряд иона, r — эффективный радиус иона.

По нашему мнению, рациональной альтернативой теории Борна в таком случае является теория Кирквуда [10]. Она также основана на континуальной модели растворителя, однако рассматривает систему точечных зарядов в полости диэлектрика — то есть полярную молекулу или многоатомный ион. Энергия сольватации по Кирквуду представлена мультипольным разложением

$$\Delta G_{el}^{\infty} = \frac{N_{\rm A}}{8\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{Q_n}{r^{2n+1}} \frac{(n+1)(1-\varepsilon)}{(n+1)\varepsilon - n},\tag{2}$$

где Q_n – параметр, значение которого определяется только расположением зарядов в пространстве. В общем случае, для расчета Q_n используются громоздкие формулы, однако они существенно упрощаются, если считать, что система зарядов может быть представлена точечными зарядом, диполем, квадруполем и т.д., помещенными в центр полости. В этом случае энергия сольватации может быть записана в виде:

$$\Delta G_{el}^{\infty} = \Delta G_{el}^{\infty}$$
(ион) + ΔG_{el}^{∞} (дип) + ΔG_{el}^{∞} (квад) +

При рассмотрении единственного точенного заряда уравнение Кирквуда обращается в уравнениеие (1), диполя — в (3) (формула Онзагера), квадруполя — в (4):

$$\Delta G_{el}^{\infty}(\mu n) = \frac{N_{\rm A}}{4\pi\epsilon_0} \frac{\mu^2}{r^3} \frac{1-\epsilon}{2\epsilon-1} = \omega_{\rm I} \frac{1-\epsilon}{2\epsilon-1}, \qquad (3)$$

$$\Delta G_{el}^{\infty}(\text{квад}) = \frac{N_{\text{A}}}{4\pi\varepsilon_{0}} \frac{3\theta}{2r^{5}} \frac{1-\varepsilon}{3\varepsilon-2} = \omega_{2} \frac{1-\varepsilon}{3\varepsilon-2},$$

$$\theta = \sum_{i,j=x,y,z}^{i\neq j} [4q_{ii}^{2} + 3(q_{ij} + q_{ji})^{2} - 4q_{ii}q_{jj}],$$
(4)

где µ — дипольный момент, *q_{ij}* — элементы тензора квадрупольного момента.

Комбинируя константы, можно заменить разложение на сумму произведений констант ω_n и функций от диэлектрической проницаемости растворителя:

$$\Delta G_{el}^{\infty} = \sum_{n=0}^{\infty} \omega_n f_n,$$
$$f_n = \frac{1-\varepsilon}{(n+1)\varepsilon - n}.$$

Поскольку параметры (μ , θ , r) для большинства молекул неизвестны или характеризуются большими погрешностями, то константы ω_n в большинстве случаев целесообразно рассматривать как эмпирические коэффициенты.

Сходимость мультипольного ряда может варьироваться в зависимости от геометрии нейтральной молекулы, однако, как правило, наибольший вклад в сумму вносят первые 2-3 ненулевых члена [11]. В термодинамических моделях же редко учитываются вклады после первого ненулевого члена (например, [12, 13]).

Эти соображения, наряду со сходством зависимостей f_n от температуры и давления при разных n, позволяют аппроксимировать реальную сумму ΔG_{el}^{∞} одной функцией вида $\omega_1 f_1$ или $\omega_2 f_2$, где ω_1 , ω_2 — оптимизируемые константы. Выбор предпочтительной функции определяется симметрией распределения заряда молекулы: диполи следует описывать вкладом $\omega_1 f_1$, квадруполи вкладом $\omega_2 f_2$.

Хотя в рамках предлагаемого подхода параметры ω_1 , ω_2 являются эмпирическими, анализ уравнений, с помощью которых они вводятся, позволяет сделать некоторые заключения по существу модели. Неотрицательные значения ω_k (k = 0, 1, 2), вытекающие из уравнений (3), (4), накладывают определенные ограничения на рассчитываемые величины. Очевидно, что вклад электростатических сил в стандартные свойства малополярных и неполярных частиц ($\mu \approx 0, \theta \approx 0$) будет пренебрежимо мал. Как следствие, электростатическая часть уравнения состояния НКГ не будет вносить вклад в значения стандартных свойств малополярных молекул.

Неэлектростатический вклад

Как показали Tanger and Helgeson [14], струк-

турный вклад (ΔG_n^{∞}) связан с низкотемпературными аномалиями свойств воды. Ионы нарушают сетку водородных связей и стабилизируют вокруг себя структуру "нормальной" воды, поэтому их влияние на стандартные свойства раствора противоположно влиянию аномальных свойств воды. Аналогичные эффекты также должны проявляться в растворах сильнополярных молекул. В связи с этим, для описания неэлектростатического вклада молекул могут использоваться те же самые функции, которые были предложены Tanger and Helgeson [14] для ионов.

2. РАСЧЕТНАЯ ЧАСТЬ

Вычисления производились в программной среде MATLAB® R2021b. Оптимизация параметров модели осуществлялась минимизацией целевой функции (τ) методом наименьших квадратов с использованием алгоритма Левенберга–Марквардта [15].

$$\tau = \sum_{Z} \sum_{i=1}^{N_{Z}} \left(\frac{Z_{i}^{\exp} - Z_{i}^{\operatorname{calc}}}{Z_{i}^{\exp}} \right)^{2},$$

где Z_i – значения свойства $Z(V^{\infty}, C_p^{\infty}, pK_{a,1}), N_Z$ – число значений, верхние индексы *calc* и *exp* соответствуют расчетным и экспериментальным значениям свойства Z.

Вычисление свойств воды производилось на основе уравнения состояния IAPWS [16, 17], реализованного Восковым А.Л. для среды MATLAB в работе [18].

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Мышьяковистая кислота As(OH)₃

Стандартные термодинамические функции As(OH)₃⁰ при бесконечном разбавлении (V^{∞} , C_p^{∞}). Равновесная геометрия молекулы [19, 20] позволяет предположить, что молекула As(OH)₃⁰ может быть эффективно описана как диполь ($\mu = 2.32$ D [19]), поэтому при моделировании стандартных свойств As(OH)₃⁰ для ΔG_{el}^{∞} использовали (3).

Сведения о стандартной теплоемкости (C_n^{∞}) и

объеме (V^{∞}) мышьяковистой кислоты (As(OH)₃⁰) немногочисленны. Большая часть данных относится к работе Perfetti et al. [21], посвященной изучению свойств бесконечно разбавленных растворов в широком диапазоне температур и давлений, от 298.15 до 623.15 К и от 0.1 до 30 МПа. Свойства при отдельных значениях *T* и *p* также могут быть оценены из литературных данных о свойствах раствора As(OH)₃.

Регfetti et al. получили оценку $C_p^{\infty}(298.15 \text{ K}) = ~98 \ \text{Дж/(моль K)}$ на основе результатов работ Bjellerup et al. [22]. Pokrovski et al. [23] оценили $V^{\infty}(298.15 \text{ K}) = 49 \ \text{см}^3/$ моль из данных Anderson and Story, приведенных в работе [24]. В настоящей работе на основе линейной экстраполяции данных о плотности раствора, образованного при растворении As₂O₃, из справочника ICT [25] получено следующее значение $V^{\infty}(288.15 \text{ K}) =$ = 43.8 см³/моль. Эти оценки находятся в хорошем согласии с результатами работы [21].

Рекомендованные нами параметры модифицированной модели НКГ приведены в табл. 1. О качестве описания имеющихся данных можно судить по рис. 1. Как видно, расширенное уравнение состояния НКГ позволяет описать литературные данные в пределах экспериментальной погрешности.

Параметр	Значение свойства (параметра)	Параметр	Значение свойства (параметра)	
$\Delta_{f}G^{\infty}$, кДж/моль	-639.50	$a_4 \times 10^{-4}$, Дж К/(моль)	-38.30	
S^{∞} , Дж/(моль К)	218	<i>с</i> ₁ , Дж/(моль К)	165.97	
<i>а</i> ₁ , Дж/(моль МПа)	4.209	$c_2 \times 10^{-4}$, Дж К/(моль)	-65.36	
$a_2 \times 10^{-2}$, Дж/моль	146.43	$\omega_1 \times 10^{-5}, $ Дж/моль	0.579	
$a_3 \times 10^{-1}$, Дж К/(моль МПа)	59.84			

Таблица 1. Параметры модифицированного уравнения состояния HKF для $As(OH)_3^0$

Равновесия с участием оксидов мышьяка. Процессы растворения двух кристаллических модификаций As₂O₃ – арсенолита и клаудетита – описываются уравнением

$$1.5 \text{As}_2 \text{O}_3(\text{TB.}) + 0.5 \text{H}_2 \text{O} \rightleftharpoons \text{As}(\text{OH})_3^0 \tag{I}$$

и характеризуются константой равновесия (K_s).

Константа K_s может быть вычислена из стандартных свойств участников реакции. К оксидам и воде применяется симметричная нормировка, поэтому при их описании учитывали термодинамические функции образования чистых веществ ($\Delta_f G^\circ$); в случае мышьяковистой кислоты были использованы функции образования бесконечно разбавленного раствора ($\Delta_f G^\infty$) с параметрами из табл. 1:

$$\ln K_{s} = -\frac{\Delta_{s}G^{\circ}}{RT},$$

$$\Delta_{s}G^{\circ} = \Delta_{f}G^{\circ}(As(OH)_{3}^{0}) - 1.5\Delta_{f}G^{\circ}(As_{2}O_{3}) + 0.5\Delta_{f}G^{\circ}(H_{2}O).$$

В настоящей работе при расчетах использованы термодинамические данные о соединениях мышьяка из обзора [26]; при этом рекомендованные значения функций образования оксидов мышьяка брались без изменений, в то время как зна-

чения функций образования водной As(OH)⁰₃ были переоптимизированы. Полученные при этом значения оказались в хорошем согласии с другими литературными данными и близки к рекомен-

Таблица 2. Стандартные термодинамические функции $As(OH)_3^0$ (водн)

$-\Delta_{\rm f} G_{298.15 { m K}}^{\infty},$ кДж/моль	$-\Delta_{\rm f} H_{298.15 { m K}}^{\infty},$ кДж/моль	<i>S</i> _{298.15 K} , Дж/(моль К)	Источник
639.50 ± 0.4	735.30 ± 3.0	218.06 ± 11	Наст. раб.*
639.85 ± 0.5	740.00 ± 1.0	203.7 ± 0.5	[26]
639.80	_	187.42	[27]

 * Значения даны с избыточным числом знаков из-за корреляции параметров. дованным значениям из обзора Nordstrom et al. (табл. 2).

Мольные объемы и температурные зависимости теплоемкостей оксидов мышьяка были взяты из статьи Pokrovski et al. [23], так как в обзоре Nordstrom et al. [26] они не рассматривались.

На рис. 2 представлены температурные зависимости растворимости мышьяковых минералов. Модельные предсказания растворимости арсенолита в пределах погрешностей согласуются с экспериментальными данными, в то время как для клаудетита наблюдается отклонение при высоких температурах. Согласно работе [23], при температурах выше 450 К в растворе начинают образовываться полиядерные комплексы мышьяка, чем обусловлена заниженная расчетная растворимость клаудетита.

Равновесия с участием газообразной мышьяковистой кислоты. Связь давления пара компонента раствора с его концентрацией при низких температурах характеризуется константой Генри (K_h). Она может быть рассчитана из стандартных функций образования газообразной кислоты и ее бесконечно разбавленного раствора.

As(OH)⁰₃(водн)
$$\rightleftharpoons$$
 As(OH)₃(г), (II)

$$\ln K_h = -\frac{\Delta_h G^\circ}{RT},$$

$$\Delta_h G^\circ = \Delta_f G^\circ (As(OH)_3(r)) - \Delta_f G^\circ (As(OH)^0_3) - -RT \ln \frac{1000}{M_1},$$

где M_1 — молярная масса растворителя. Вклад $RT \ln \frac{1000}{M_1}$ отражает переход от одного стандартного состояния к другому.

Температурную зависимость термодинамических функций газообразного As(OH)₃ рассчитывали с помощью формул статистической термодинамики идеального газа (табл. 3). Сведения о геометрии и частотах колебаний молекулы взяты

Рис. 1. Температурная зависимость стандартных термодинамических свойств бесконечно разбавленного раствора $As(OH)_3^0$ при различных давлениях: $p = p_{sat}$ (a, б), p = 29.5 МПа (в, г). Сплошная линия – расчет по модифицированному уравнению НКF (наст. раб.), пунктирная линия – расчет по уравнению НКF [21], символы – литературные данные ($\bigcirc -[21], \square -[22], \triangle -[23], \diamondsuit -[25]$).

из работы [20] (расчет для устойчивой конформации C₁ уровня MP2/AVTZ). Полученная зависимость теплоемкости пара близка к предложенной в [26].

Рассчитанные значения константы равновесия реакции (II) при разных температурах изображены на рис. 3 сплошной линией, символы соответствуют экспериментальным данным, приве-

2022

Таблица 3. Стандартные термодинамические функции As(OH)₃(г)

-∆ _f G _{298.15 K} , кДж/моль	<i>S</i> [°] _{298.15 K} , Дж∕(моль К)	С° _{р,298.15 К} , Дж/(моль К)	Источник
601.35 ± 3^{a}	406.64^{b}	92.60 ^b	Наст. раб.
575.5 ± 10^{a}	428.0 ± 30^{a}	84.5 ± 10^{a}	[23]
598.78	307.94	94.11	[26]

^а Значения даны с избыточным числом знаков из-за корреляции параметров.

^b Вычислены с использованием формул статистической термодинамики идеального газа.

Рис. 2. Температурные зависимости растворимости мышьяковых минералов: а – арсенолита, б – клаудетита. Сплошная линия – расчет по модифицированному уравнению НКГ (наст. раб.), пунктирная линия – расчет по уравнению НКГ [21], точечно-пунктирная линия – расчет по уравнению AD [27], символы – литературные данные (арсенолит: \diamond – [24], \triangle – [28], ∇ – [29], \Box – [30], \bigcirc – [23]; клаудетит: ∇ – [29], \bigcirc – [23]).

Рис. 3. Температурная зависимость константы равновесия реакции (II). Сплошная линия – расчет по модифицированному уравнению НКГ (наст. раб.), символы – экспериментальные данные (\bigcirc – [31], \triangle – [32]).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

денным в работах [31, 32]. Видно, что модель описывает имеющиеся данные в пределах погрешностей эксперимента.

3.2. Ортофосфорная кислота H₃PO₄

Стандартные термодинамические функции $H_3PO_4^0$ при бесконечном разбавлении (V^{∞} , C_p^{∞}). Стандартные термодинамические свойства $H_3PO_4^0$ исследованы лучше, чем у большинства недиссоциированных кислот. Хорошо известны стандартная теплоемкость и объем при бесконечном разбавлении при 298.15 К и 0.1 МПа (табл. 4).

Sharygin et al. [39] определили стандартные теплоемкости при бесконечном разбавлении (C_p^{∞}) H₃PO₄ при 28 МПа в диапазоне температур от 303

до 623 К. Они также рассчитали C_p^{∞} при 0.1 МПа на основе сглаженных данных Egan et al. [40] по теплоемкостям растворов ортофосфорной кислоты при умеренных концентрациях. Хотя экстра-

1752

С _{р298.15 К} , Дж∕(моль К)	<i>V</i> _{298.15 K} , см ³ /моль	Источник
86.19	—	TKB [33]
-	43.3	[34]
94	48.1	[35]
-	47.71	[36]
	47.67	
_	48.01	[37]
98	47.5	[38]
89	47.8	Наст. раб.

Таблица 4. Стандартные термодинамические свойства $H_3PO_4^0$ при бесконечном разбавлении при 298.15 K, 0.1 МПа

поляция зависимостей из области умеренных и высоких концентраций может привести к высоким погрешностям, расчетные результаты хорошо согласуются с экспериментальными, за исключением точки при 353.15 К. Ballerat-Busserolles et al. [38] определили значения C_p^{∞} и V^{∞} в диапазоне от 322 до 623 К, от 1.8 до 29.4 МПа. Их данные находятся в хорошем согласии с другими работами.

Тем не менее, в литературе нет иных сведений о температурной зависимости V^{∞} , кроме работы Ballerat-Busserolles et al. [38]. В связи с этим в настоящей работе была произведена оценка $V^{\infty}(T)$ на основе данных [41].

Объем $H_3PO_4^0$ при бесконечном разбавлении (V^{∞}) связан с кажущимся объемом (${}^{\phi}V_2$) растворенного вещества уравнением:

$${}^{\phi}V_{2} = \frac{v - n_{l}V_{m,l}^{\circ}}{n_{2,\text{kaw}}},$$
(5)
$${}^{\phi}V_{2} = \alpha V^{\infty}(\mathrm{H}^{+}, \mathrm{H}_{2}\mathrm{PO}_{4}^{-}) + (1 - \alpha)V^{\infty}(\mathrm{H}_{2}\mathrm{PO}_{4}^{0}) + V^{\mathrm{ex}},$$

где α – степень диссоциации, $V_{m,1}^{\circ}$ – мольный объем чистого растворителя, n_i – количество *i*-го компонента (в приближении, что кислота не диссоциирует), V^{ex} – избыточный объем, описываемый выбранной моделью раствора, $V^{\infty}(\text{H}^+, \text{H}_2\text{PO}_4^-) = V^{\infty}(\text{H}^+) + V^{\infty}(\text{H}_2\text{PO}_4^-)$.

По конвенции, $V^{\infty}(H^+) = 0$, поэтому $V^{\infty}(H^+, H_2PO_4^-) = V^{\infty}(H_2PO_4^-)$. Объем аниона $H_2PO_4^-$ при бесконечном разбавлении рассчитывался из уравнения состояния HKF [42]. Для описания температурной зависимости $V^{\infty}(H_3PO_4^0)$

использована следующая эмпирическая зависимость:

$$V^{\infty}(\mathrm{H}_{3}\mathrm{PO}_{4}^{0}) = d_{1} + \frac{d_{2}}{(T - 230)^{2}}$$

где d_i – эмпирические параметры.

Константа диссоциации ортофосфорной кислоты ($K_{a,1}$), необходимая для расчета α , рассчитывалась на основе эмпирического уравнения, предложенного в [43]

$$K_{a,1} = \frac{\alpha^2 \gamma_{\pm}^2 m_{\text{каж}}}{\gamma_n (1 - \alpha)}$$

где $m_{\text{каж}}$ — кажущаяся моляльность ортофосфорной кислоты, γ_{\pm} — среднеионный коэффициент активности, γ_n — коэффициент активности ортофосфорной кислоты.

Для описания свойств системы $H_2O-H_3PO_4$ использовалась модель Питцера в шкале мольных долей. За основу выбран вариант модели, предложенный Pitzer and Silvester для 298.15 К [44].

Данные Egan and Luff [41] относятся к интервалу 289—355 К, в связи с чем была введена эмпирическая зависимость параметров модели от температуры и давления:

$$y_i(p,T) = y_{i0} + y_{i1}(p - p_r) + (y_{i2} + y_{i3}(p - p_r))(T - T_r),$$

где y_i – параметры модели Питцера, y_{ij} – эмпирические параметры, $T_r = 298.15$ К, $p_r = 0.1$ МПа.

Значения параметров y_{i0} и y_{i1} были взяты из работ Pitzer and Silvester [44] и Barta and Bradley [37] соответственно. Предложенные в них модели ограничены концентрацией до 6 моль/кг, в связи с чем в настоящей работе использовались экспериментальные данные только из этого диапазона составов.

Параметры y_{i2} были оптимизированы нами на основе данных об активностях воды (a_1) при температурах до 383.15 К [45–50]. Данные [47] обладают низкой точностью, что видно при сравнении с данными других авторов при 298.15 К (рис. 4, символы \bigcirc), поэтому учитывались с пониженным статистическим весом (w = 0.1). Как видно из рис. 4, предложенная модель позволяет удовлетворительно описать приведенные в литературе значения активностей.

Значения всех варьируемых параметров y_{ij} приведены в табл. 5.

С учетом погрешностей, полученные значения стандартных объемов V^{∞} находятся в удовлетворительном согласии с результатами Ballerat-Busserolles et al. [38]. Рекомендуемое нами значение

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

Рис. 4. Активность воды в растворах ортофосфорной кислоты при различных температурах и $m \le 6$ моль/кг. Линия – расчет по модели Питцера (наст. раб.), символы – экспериментальные данные ($\triangle - [45], \Box - [46], \Diamond - [49], \bigcirc - [47], \times - [48], \bigtriangledown - [50]$). Расчетные линии и экспериментальные данные сдвигаются на +0.1 для каждой температуры для лучшего восприятия графиков.

 $V^{\infty} = 47.8 \text{ см}^3$ /моль при комнатной температуре находится в удовлетворительном согласии с литературными данными (табл. 4).

Основываясь на экспериментальных данных из литературы, а также данных, полученных на основе измерений Egan and Luff [41], мы провели оптимизацию параметров расширенного уравнения состояния HKF. Как видно из рис. 5, оно описывает литературные данные в широком диапазоне давлений и температур. Рисунок также наглядно демонстрирует нефизичное поведение свойств при бесконечном разбавлении, рассчитанных по модели Shock et al. [42].

Наибольшие отклонения от эксперимента наблюдаются при высоких температурах. Частично эти отклонения могут быть связаны с погрешностью эксперимента. Как видно из сравнения экспериментальных значений C_p^{∞} при 28 МПа на рис. 5 [38, 39], отклонения между данными различных авторов могут значительно превышать номинальные значения погрешностей измерения. При этом следует отметить, что при приближении к критической температуре (~647 K) не только возрастает погрешность расчета свойств чистой воды, но и уравнение HKF также демонстрирует не лучшее экстраполяционное поведение.

Рекомендованные параметры модифицированного уравнения НКГ приведены в табл. 6.

Термодинамические функции H₂PO₄⁻ при бесконечном разбавлении (V^{∞} , C_p^{∞}). На основе анализа экспериментальных данных, Ballerat-Busserolles et al. [38] заключили, что модель HKF с параметрами, рекомендованными Shock et al. [42], непригодна для описания стандартных свойств H₂PO₄⁻. По их мнению, данная модель не способна удовлетворительно описать теплоемкость, плотность растворов ортофосфорной кислоты, а также температурную зависимость константы диссоциации

по первой ступени ($K_{a,1}$) ортофосфорной кислоты. В связи с этим, они предложили собственное описание $H_2PO_4^-$.

Таблица 5. Параметры модели Питцера и эмпирической зависимости объема растворенного вещества при бесконечном разбавлении в системе H₂O-H₃PO₄

Температурные зависимости параметров модели Питцера				Стандартны бесконечном	й объем при разбавлении		
$y_i(p,T) = y_{i0} + y_{i1}(p - p_r) + (y_{i2} + y_{i3}(p - p_r))(T - T_r)$					$V^{\infty}(T) = d_1 + \frac{d_2}{(T - 230)^2}$		
Параметр	y_{i0}	<i>Y</i> _{<i>i</i>1}		$10^4 y_{i2}$	$10^{3}y_{i3}$	d_1	$10^{-3}d_2$
$\lambda_{H,HA}$	0.290	$\lambda_{H,HA} + \lambda_{A,HA}$	2.187	0	0	49.09 ± 0.6	-5.380 ± 3
$\lambda_{A,HA}$	-0.400						
$\lambda_{\rm HA,HA}$	0.05031	0.906	2	-3.5540 ± 0.2	11.717 ± 8		
$\mu_{HA,HA,HA}$	0.01095	0.2237	7	-0.7871 ± 0.02	-4.998 ± 1		
Источник	[44]	[37]		Наст. раб.	Наст. раб.	Наст. раб.	Наст. раб.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

Рис. 5. Температурная зависимость стандартных термодинамических свойств $H_3PO_4^0$ при бесконечном разбавлении при различных давлениях: p = 0.1 МПА (a, б), $p = p_{sat}$ (в, г), p = 28 МПА (д, е). Сплошная линия – расчет по модифицированному уравнению НКF (наст. раб.), пунктирная линия – расчет по модели НКF с параметрами Shock et al. [5], символы – экспериментальные данные (+ – [35], $\triangle - [41]$, $\nabla - [40]$, $\bigcirc - [39]$, $\square - [38]$).

Рис. 6. Температурные зависимости (а, б) стандартных термодинамических свойств $H_2PO_4^-$ при бесконечном разбавлении, при p = 0.1 МПа (при $T \le 373.15$ K), $p = p_{sat}$ (при T > 373.15 K) (черная линия) и p = 15 МПа (серая линия). Сплошная линия – расчет по модифицированному уравнению НКГ (наст. раб.), пунктирная линия – расчет по модифицированному уравнению НКГ (наст. раб.), пунктирная линия – расчет по модифицированному уравнению НКГ (наст. раб.), пунктирная линия – расчет по модифицированному уравнению НКГ (наст. раб.), пунктирная линия – расчет по модели НКГ с параметрами Shock et al. [5], символы – экспериментальные данные (V^{∞} : О – [25], ● – [52], □ – [34] ^{*a*}, \Diamond – [53] ^{*a*}, \triangle – [37], ∇ – [36], \triangleright – [35], \triangleleft – [54], + – [55] ^{*a*}, × – [51] ^{*a*}; C_p^{∞} : О – [56], □ – [35], \Diamond – [54]), * – табуированные значения, рекомендованные *Ballerat-Busserolles et al.* [38]. ^{*a*} Объем при бесконечном разбавлении (V^{∞}) вычислен по (6) с использованием уравнения состояния SOCW Sedlbauer et al. [8].

По результатам Ballerat-Busserolles et al., классическое уравнение НКГ предсказывает завышенные значения V^{∞} и C_p^{∞} аниона при высоких температурах. Этот вывод согласуется со значениями V^{∞} , которые могут быть получены из экспериментальных данных Woolston et al. [51] о плотностях растворов NaH₂PO₄:

$$V^{\infty}(\mathrm{H}_{2}\mathrm{PO}_{4}^{-}) = V^{\infty}(\mathrm{Na}^{+}, \mathrm{H}_{2}\mathrm{PO}_{4}^{-}) - V^{\infty}(\mathrm{Na}^{+}).$$
 (6)

В настоящей работе для вычисления $V^{\infty}(Na^+)$ использовано уравнение состояния SOCW, предложенное Sedlbauer et al. [8].

Основываясь на литературных данных о константе диссоциации $K_{a,1}$, были переоптимизиро-

ваны параметры модели НКГ для $H_2PO_4^-$ -аниона. Как видно на рис. 6, полученное нами описание свойств $H_2PO_4^-$ при бесконечном разбавлении близко к результатам Ballerat-Busserolles et al., но лучше описывает экспериментальные данные Woolston et al. (рис. 6, символы ×) и экспериментальные данные по р $K_{a,l}$.

Константа кислотности ($K_{a,l}$). Константа диссоциации по первой ступени ортофосфорной кислоты может быть рассчитана из стандартных термодинамических свойств ортофосфорной кислоты и дигидрофосфат-аниона

$$H_3PO \rightleftharpoons H^+ + H_2PO_4^-,$$
 (III)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

Рис. 7. Температурные зависимости константы диссоциации ортофосфорной кислоты по первой ступени ($K_{a,1}$) при p = 0.1 МПа (при $T \le 373.15$ К), при $p = p_{sat}$ (а) при T > 373.15 К и при p = 20, 100, 200 МПа (б). Сплошная линия – расчет по модифицированному уравнению НКF (наст. раб.), пунктирная линия – расчет по модели НКF с параметрами Shock et al. [5], точечно-пунктирная линия – расчет по модели SOCW с параметрами Ballerat-Busserolles et al. [38], символы – экспериментальные данные ($\bigcirc -$ [59], $\square -$ [60], + - [61], $\triangle -$ [62], $\diamondsuit -$ [44], $\bigtriangledown -$ [63], $\triangleright -$ [43], $\triangleleft -$ [64], * - [65], $\times -$ [66]).

$$\ln K_{a,1} = -\frac{\Delta_{a}G^{\circ}}{RT},$$
$$\Delta_{a}G^{\circ} = \Delta_{f}G^{\circ}(H_{3}PO_{4}) - \Delta_{f}G^{\circ}(H_{2}PO_{4}^{-}).$$

Параметр	$H_3PO_4^0$	$H_2PO_4^-$
$\overline{\Delta_{\mathrm{f}}G^{\infty}}$, кДж/моль	-1142.54	-1130.28
S^{∞} , Дж/(моль К)	158.2	90.43
<i>а</i> ₁ , Дж/(моль МПа)	57.16	49.93
$a_2 \times 10^{-2},$ Дж/моль	-12.13	-33.16
$a_3 \times 10^{-1}$, Дж К/(моль МПа)	-68.06	-28.60
$a_4 \times 10^{-4}$, Дж К/(моль)	10.69	3.572
<i>с</i> ₁ Дж/(моль К)	170.8	145.0
$c_2 \times 10^{-4}$, Дж К/(моль)	-34.69	-55.31
$\omega_n \times 10^{-5}$, Дж/моль	1.896	8.152

Таблица 6. Параметры модифицированного уравнения состояния НКГ для $H_3PO_4^0$ и $H_2PO_4^-$ (наст. работа)

Свойства аниона могут быть удовлетворительно описаны посредством обычного уравнения состояния [42]. В настоящей работе стандартные функции образования составляющих были взяты из справочника NBS [57, 58].

Для сравнения на рис. 7 представлен расчет на основе обычного уравнения состояния НКГ, предложенного в [5], и уравнения состояния SOCW с параметрами, рекомендованными в [38]. Полученное описание не уступает в точности литературным моделям. Заметим, что в отличие от модели Shock et al., полученная нами модель не жертвует описанием стандартных свойств $H_3PO_4^0$ для точного воспроизведения р $K_{a,1}$. При температурах ниже 373.15 К, эта модель предсказывает значения константы кислотности лучше, чем модель Shock et al. Существенные отклонения наблюдаются только от данных Read et al. [63], которые оказываются заниженными в сравнении с данными других авторов при $p = p_{sat}$, включая недавнюю работу [64].

4. ВЫВОДЫ

Анализ физического смысла параметров уравнения НКГ указывает на то, что его применение к малополярным и неполярным недиссоциированным частицам теоретически непоследовательно, с чем может быть связана ограниченная экстраполяционная способность модели НКГ.

Для устранения внутреннего логического противоречия модели НКГ при описании систем с нейтральными частицами в настоящей работе предложено заменить вклад Борна на вклад, описывающий сольватацию точечного диполя или квадруполя.

Предложенное модифицированное уравнение состояния НКГ способно описывать сильнополярные частицы, что продемонстрировано на стандартных термодинамических свойствах $As(OH)_3$, H_3PO_4 и некоторых равновесиях с участием этих веществ.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 21-33-70031), а также частично в рамках темы "Химическая термодинамика и теоретическое материаловедение" (№ ЦИТИС – 121031300039-1).

ПРИЛОЖЕНИЕ РАСШИРЕННОЕ УРАВНЕНИЕ СОСТОЯНИЯ НКГ

Диэлектрические функции:

$$f_n = \frac{1-\varepsilon}{(n+1)\varepsilon - n},$$

$$Q_n = -\left(\frac{\partial f_n}{\partial p}\right)_T = \frac{1}{((n+1)\varepsilon - n)^2} \left(\frac{\partial \varepsilon}{\partial p}\right)_T,$$

$$Y_n = -\left(\frac{\partial f_n}{\partial T}\right)_p = \frac{1}{((n+1)\varepsilon - n)^2} \left(\frac{\partial \varepsilon}{\partial T}\right)_p,$$

$$X_n = \left(\frac{\partial Y_n}{\partial T}\right)_p = -\left(\frac{\partial^2 f_n}{\partial T^2}\right)_p = -\frac{2(n+1)}{((n+1)\varepsilon - n)^3} \left(\frac{\partial \varepsilon}{\partial T}\right)_p^2 + \frac{1}{((n+1)\varepsilon - n)^2} \left(\frac{\partial^2 \varepsilon}{\partial T^2}\right)_n,$$

где ε — диэлектрическая проницаемость воды, n — целочисленная константа, соответствующая симметрии распределения заряда частицы (0 — точечный заряд, 1 — точечный диполь, 2 — точечный квадруполь и т.д.), ω_n — оптимизируемый параметр модели.

Стандартные термодинамические свойства:

$$V^{\infty} = a_1 + \frac{a_2}{p + \Psi} + \left(a_3 + \frac{a_4}{p + \Psi}\right) \frac{1}{T - \Theta} - \omega_n Q_n,$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

$$\begin{split} C_p^{\infty} &= c_1 + \frac{c_2}{(T-\Theta)^2} - \left(\frac{2T}{(T-\Theta)^3}\right) \times \\ &\times \left(a_3(p-p_r) + a_4 \ln \frac{p+\Psi}{p_r + \Psi}\right) + \omega_n T X_n, \\ S^{\infty} &= S_{p_r,T_R}^{\infty} + c_1 \ln \frac{T}{T_r} - \frac{c_2}{\Theta} \left[\frac{1}{T-\Theta} - \frac{1}{T_r - \Theta} + \right. \\ &+ \frac{1}{\Theta} \ln \frac{T_r(T-\Theta)}{T(T_r - \Theta)}\right] + \frac{1}{(T-\Theta)^2} \times \\ &\times \left(a_3(p-p_r) + a_4 \ln \frac{p+\Psi}{p_r + \Psi}\right) + \omega_n (Y - Y_{p_r,T_r}), \\ \Delta_f H^{\infty} &= \Delta_f H_{p_r,T_r}^{\infty} + c_1 (T-T_r) - c_2 \left[\frac{1}{T-\Theta} - \frac{1}{T_r - \Theta}\right] + \\ &+ a_1(p-p_r) + a_2 \ln \frac{p+\Psi}{p_r + \Psi} + \frac{2T-\Theta}{(T-\Theta)^2} \times \\ &\times \left(a_3(p-p_r) + a_4 \ln \frac{p+\Psi}{p_r + \Psi}\right) + \\ &+ \omega_n [TY - T_r Y_{p_r,T_r} + f_n - f_{n_{p_r,T_r}}], \\ \Delta_f G^{\infty} &= \Delta_f G_{p_r,T_r}^{\infty} - S_{p_r,T_R}^{\infty} (T-T_r) - c_1 \left(T \ln \frac{T}{T_r} + T_r - T\right) - \\ &- c_2 \left(\left[\frac{1}{T-\Theta} - \frac{1}{T_r - \Theta}\right] \frac{\Theta - T}{\Theta} - \frac{T}{\Theta^2} \ln \frac{T_r(T-\Theta)}{T(T_r - \Theta)}\right) + \\ &+ a_1(p-p_r) + a_2 \ln \frac{p+\Psi}{p_r + \Psi} + \frac{1}{T-\Theta} \times \\ &\times \left(a_3(p-p_r) + a_4 \ln \frac{p+\Psi}{p_r + \Psi}\right) + \\ &+ \omega_n(f_n - f_{n_{p_r,T_r}} - Y_{p_r,T_r}(T-T_r)), \end{split}$$

где $\Theta = 228$ K, $\Psi = 260$ МПа, $T_r = 298.15$ K, $p_r = 0.1$ МПа, a_i , c_i – оптимизируемые параметры модели.

СПИСОК ЛИТЕРАТУРЫ

- Helgeson H.C., Kirkham D.H. // Am. J. Sci. 1974.
 V. 274. № 10. P. 1089.
- Helgeson H.C., Kirkham D.H. // Ibid. 1974. V. 274. № 10. P. 1199.
- 3. *Helgeson H.C., Kirkham D.H.* // Ibid. 1976. V. 276. № 2. P. 97.
- 4. Helgeson H.C., Kirkham D.H., Flowers G.C. // Ibid.1981. V. 281. № 10. P. 1249.
- 5. Shock E.L., Helgeson H.C., Sverjensky D.A. // Geochim. Cosmochim. Acta. 1989. V. 53. № 9. P. 2157.
- Plyasunov A.V. // Geochim. Cosmochim. Acta. 2015. V. 168. P. 236.
- Majer V., Sedlbauer J., Wood R.H. Chapter 4. Calculation of standard thermodynamic properties of aqueous electrolytes and nonelectrolytes // Aqueous Systems at Elevated Temperatures and Pressures / Ed. Palmer D.A. Elsevier Ltd., 2004. P. 99.

- 8. *Sedlbauer J.*, *O'Connell J.P.*, *Wood R.H.* // Chem. Geol. 2000. V. 163. № 1–4. P. 43.
- 9. Born M. // Zeitschrift für Phys. 1920. V. 1. P. 45.
- 10. Kirkwood J.G. // J. Chem. Phys. 1934. V. 2. № 7. P. 351.
- 11. *Duignan T.T., Parsons D.F., Ninham B.W.* // J. Phys. Chem. B. 2013. V. 117. № 32. P. 9421.
- Clarke R.G., Tremaine P.R. // J. Phys. Chem. B. 1999.
 V. 103. № 24. P. 5131.
- 13. Lvov S.N., Hall D.M., Bandura A.V., Gamwo I.K. // J. Mol. Liq. 2018. V. 270. P. 62.
- Tanger J.C., Helgeson H.C. // Am. J. Sci. 1988. V. 288. № 1. P. 19.
- 15. Moré J.J. // Numerical analysis. 1978. P. 105.
- Wagner W., Pruβ A. // J. Phys. Chem. Ref. Data. 2002.
 V. 31. № 2. P. 387.
- Fernández D.P., Goodwin A.R.H., Lemmon E.W. et al. // J. Phys. Chem. Ref. Data. 1997. V. 26. № 4. P. 1125.
- Voskov A.L., Kovalenko N.A. // Fluid Phase Equilib. 2020. V. 507. P. 112419.
- Porquet A., Filella M. // Chem. Res. Toxicol. 2007. V. 20. № 9. P. 1269.
- Ramírez-Solís A., Hernández-Cobos J., Vargas C. // J. Phys. Chem. A. 2006. V. 110. № 24. P. 7637.
- Perfetti E., Pokrovski G.S., Ballerat-Busserolles K. et al. // Geochim. Cosmochim. Acta. 2008. V. 72. № 3. P. 713.
- 22. Bjellerup L., Sunner S., Wadsö I. // Acta Chem. Scand. 1957. V. 11. P. 1761.
- Pokrovski G., Gout R., Schott J., Zotov A., Harrichoury J.-C. // Geochim. Cosmochim. Acta. 1996. V. 60. № 5. P. 737.
- 24. Anderson E., Story L.G. // J. Am. Chem. Soc. 1923. V. 45. № 5. P. 1102.
- International Critical Tables of Numerical Data, Physics, Chemistry and Technology. V. 3 / ed. Washburn E.W. Knovel, 2003. P. 61, 90.
- 26. Nordstrom D.K., Majzlan J., Konigsberger E. // Rev. Mineral. Geochemistry. 2014. V. 79. № 1. P. 217.
- 27. Akinfiev N.N., Plyasunov A.V. // Geochim. Cosmochim. Acta. 2014. V. 126. P. 338.
- Linke W.F., Seidell A. Solubilities of Inorganic and Metal-Organic Compounds: a compilation of solubility data from the periodical literature. V. 1. / 4th ed. 1958. P. 234–240.
- Stranski I.N., Plieth K., Zoll J. // Z. Elektrochem. 1958.
 V. 62. P. 366.
- 30. Baes C.F., Mesmer R.E. The Hydrolysis of Cations. New York, USA: Wiley, 1976.
- 31. *Pokrovski G.S., Zakirov I.V., Roux J. et al.* // Geochim. Cosmochim. Acta. 2002. V. 66. № 19. P. 3453.
- Plyasunov A.V., Tagirov B.R., Malkovskaya M.N. // J. Mol. Liq. 2021. V. 342. P. 117531.
- Иориш В.С., Юнеман В.С. Термические константы веществ (рабочая версия – 2) [Электронный ресурс]. 2016. URL: http://www.chem.msu.ru/cgibin/tkv.pl?show=welcome.html/welcome.html (дата обращения: 01.04.2022).
- 34. Green L.W., Kruus P., McGuire M.J. // Can. J. Chem. 1976. V. 54. № 20. P. 3152.
- Larson J.W., Zeeb K.G., Hepler L.G. // Ibid. 1982. V. 60. № 16. P. 2141.

- 36. Lo Surdo A., Bernstrom K., Jonsson C.A., Millero F.J. // J. Phys. Chem. 1979. V. 83. № 10. P. 1255.
- Barta L., Bradley D.J. // J. Solution Chem. 1983. V. 12. № 9. P. 631.
- 38. *Ballerat-Busserolles K., Sedlbauer J., Majer V.* // J. Phys. Chem. B. 2007. V. 111. № 1. P. 181.
- Sharygin A.V., Inglese A., Šedlbauer J., Wood R.H. // J. Solution Chem. 1997. V. 26. № 2. P. 183.
- 40. Egan E.P., Luff B.B., Wakefield Z.T. // J. Phys. Chem. 1958. V. 62. № 9. P. 1091.
- Egan E.P., Luff B.B. // Ind. Eng. Chem. 1955. V. 47.
 № 6. P. 1280.
- 42. Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. // Geochim. Cosmochim. Acta. 1997. V. 61. № 5. P. 907.
- 43. *Daniele P.G., De Robertis A., De Stefano C. et al.* // J. Solution Chem. 1991. V. 20. № 5. P. 495.
- 44. Pitzer K.S., Silvester L.F. // Ibid.1976. V. 5. № 4. P. 269.
- 45. *Elmore K.L., Mason C.M., Christensen J.H.* // J. Am. Chem. Soc. 1946. V. 68. № 12. P. 2528.
- 46. *Platford R.F.* // J. Solution Chem. 1975. V. 4. № 7. P. 591.
- 47. Kablukov I.A., Zagwosdkin K.I. // Zeitschrift für Anorg. und Allg. Chemie. 1935. V. 224. № 3. P. 315.
- 48. Tammann G. // Ann. Phys. 1885. V. 260. № 4. P. 523.
- 49. *Yang H., Zhao Z., Zeng D., Yin R.* // J. Solution Chem. 2016. V. 45. № 11. P. 1580.
- 50. Holmes H.F., Mesmer R.E. // Ibid.1999. V. 28. № 4. P. 327.
- Woolston G.E., Trevani L.N., Tremaine P.R. // J. Chem. Eng. Data. 2008. V. 53. № 8. P. 1728.
- 52. Mukerjee P. // J. Phys. Chem. 1961. V. 65. № 5. P. 740.
- 53. Veintemillas V.S., Perez F.R. // Zeitschrift für Phys. Chemie. 1994. V. 187. № 1. P. 93.
- 54. *Bianchi H., Tremaine P.R.* // J. Solution Chem. 1995. V. 24. № 5. P. 439.
- 55. Zafarani-Moattar M.T., Mehrdad A. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 386.
- 56. *Abraham M.H., Marcus Y. //* J. Chem. Soc., Faraday Trans. 1. 1986. V. 82. № 10. P. 3255.
- 57. Wagman D.D., Evans W.H., Parker V.B., Schumm R.H., Halow I. // J. Phys. Chem. Ref. data. 1982. V. 11. № Supplement No. 2. P. 2–73.
- Wagman D.D., Evans W.H., Parker V.B., Schumm R.H., Halow I., Bailey S.M., Churney K.L., Nuttall R.L. // J. Phys. Chem. Ref. Data. 1989. V. 18. № 4. P. 1807.
- 59. *Bates R.G.* // J. Res. Natl. Bur. Stand. 1951. V. 47. № 3. P. 127.
- 60. *Mesmer R.E., Baes C.F.* // J. Solution Chem. 1974. V. 3. Nº 4. P. 307.
- 61. *Nims L.F.* // J. Am. Chem. Soc. 1934. V. 56. № 5. P. 1110.
- 62. *Mason C.M., Culvern J.B.* // Ibid.1949. V. 71. № 7. P. 2387.
- 63. *Read A.J.* // J. Solution Chem. 1988. V. 17. № 3. P. 213.
- 64. Rudolph W.W. // Ibid.2012. V. 41. № 4. P. 630.
- 65. *Rudolph W.W.* // Dalt. Trans. 2010. V. 39. № 40. P. 9642.
- Erickson K.M. High Temperature D₂O Isotope Effects on Hydrolysis and Ionization Equilibria in Water: Thesis. The University of Guelph, 2013. 395 p.