СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.361.3+544.16+544.18

КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ КИСЛОТНО-ОСНОВНОГО ВЗАИМОДЕЙСТВИЯ АЛКИЛАМИНОВ С РАЗЛИЧНЫМИ КИСЛОТАМИ БРЕНСТЕДА

© 2022 г. И. В. Федорова^{*a*,*}, М. Е. Яблоков^{*b*}, Л. П. Сафонова^{*a*}

^аИнститут химии растворов им. Г.А. Крестова РАН, Иваново, Россия

^bИвановский государственный химико-технологический университет, Иваново, Россия

*e-mail: fiv@isc-ras.ru Поступила в редакцию 22.11.2021 г. После доработки 28.04.2022 г. Принята к публикации 19.05.2022 г.

Обобщены и проанализированы результаты квантово-химических исследований взаимодействия NH₃ и алкиламинов (R)_nNH_{3-n} (R = CH₃, C₂H₅, C₃H₇, C₄H₉ и n = 1-3) с рядом протонных кислот различной силы. Получены данные о протонном сродстве алкиламинов и анионов кислот. Оценены энергетические характеристики образующихся в результате кислотно-основного взаимодействия молекулярных комплексов и ионных пар. Предложено использовать величины разности протонного сродства аниона кислоты и алкиламина для оценки степени переноса протона при кислотно-основных взаимодействиях.

Ключевые слова: квантово-химические расчеты, перенос протона, протонное сродство, энергии Гиббса, энергии взаимодействия, алкиламины, кислоты Бренстеда **DOI:** 10.31857/S004445372212010X

За последние несколько десятилетий протонные ионные жидкости (ПИЖ, соли органических оснований и кислот Бренстеда) приобрели особое значение по ряду причин. С точки зрения фундаментальных исследований, данные объекты представляют большой интерес, поскольку в них, наряду с кулоновскими и ван-дер-ваальсовыми взаимодействиями, большую роль в образовании определенной структуры ионной жидкости играет водородное связывание, влияя тем самым на их физико-химические свойства [1–4]. Широкий набор различных катионов и анионов позволяет получить ионные жидкости с необходимыми для практического применения свойствами [5–7].

К настоящему времени существует большое разнообразие ПИЖ на основе различных катионов: имидазолия, фосфония, сульфония, пиридиния, пирролидиния, аммония (объекты данной работы). Протонные ионные жидкости получаются в результате переноса протона от кислоты к основанию [8, 9]. При этом в зависимости от силы кислоты и основания, возможно образование как молекулярного водородно-связанного комплекса $AH + B \rightarrow AH...B$, так и ионной пары $AH + B \rightarrow A^-...BH^+$, в которой, кроме электростатического взаимодействия между катионом и анионом, также возможно образование водородной связи.

Для определения степени переноса протона применяют как спектральные методы (ИК- и ЯМР-спектроскопия) [10-12], так и квантово-химические расчеты [13-15]. Зачастую индикатором степени переноса протона служит различие констант диссоциации основания и кислоты в воде ($\Delta p K_a$). Однако относительно величин $\Delta p K_a$ мнения разных авторов расходятся. Авторы [16] заключили, что для полного переноса протона от кислоты к основанию и образования ПИЖ величина $\Delta p K_a$ должна быть больше 10. При исследокислотно-основного взаимолействия вании сильного органического основания с кислотами Бренстеда различной силы авторы [17] показали, что высокая ионность и термическая стабильность достигается для ПИЖ с р $K_a \ge 15$. Впоследствии теми же авторами в работе [18] с учетом данных о влиянии структуры основания на физико-химические свойства ПИЖ с бис(трифторметилсульфонил)имидным анионом было рекомендовано снизить пороговое значение $\Delta p K_a$ с 15 до 10. Авторы [19], исследуя взаимодействие уксусной кислоты с первичными и третичными аминами, имеющими близкие значения pK_a , указали на различную степень переноса протона, которая во многом зависит от структуры амина, а не от величины $\Delta p K_a$. Помимо этого, в работе [20] был сде**Таблица 1.** Названия и аббревиатура изучаемых кислот и оснований, значения р K_a в воде, экспериментальные (значения в скобках) и вычисленные в данной работе величины протонного сродства (РА, кДж/моль)

Название соединения	p <i>K</i> _a	PA
Серная кислота, H ₂ SO ₄	-3.0 [30]	1290.34
Метансульфоновая кислота, CH ₃ HSO ₃	-1.92 [31]	1330.64
Аминосульфоновая кислота, NH ₂ HSO ₃	0.99 [32]	1325.02
Фосфористая кислота, Н ₃ РО ₃	1.43 [33]	1367.58
Фосфорная кислота, H ₃ PO ₄	2.148 [33]	1360.70
Уксусная кислота, СН ₃ СООН	4.756 [34]	1441.11
Угольная кислота, H ₂ CO ₃	6.35 [33]	1398.71
Аммиак, NH ₃	9.25 [33]	854.57 (853.6 [35])
Этиламин, C ₂ H ₅ NH	10.63 [34]	911.51 (912.0 [35])
Диэтиламин, (C ₂ H ₅) ₂ NH	10.80 [34]	951.93 (952.4 [35])
Триэтиламин, (C ₂ H ₅) ₃ N	10.72 [34]	981.19 (981.8 [35])

лан вывод о том, что значения pK_a для кислот и оснований определены в водных растворах и могут быть не всегда корректны для анализа неводных систем.

Проведенный в работе [21] анализ данных Cambridge Structural Database о кристаллической структуре 6465 комплексов, содержащих ионизированные и неионизированные кислотно-основные пары, совместно с величиной $\Delta p K_a$ показал, что при $\Delta p K_a > 4$ преимущественно образуются ионные пары (99.2%), при $\Delta p K_a < -1$ неионизированные кислотно-основные комплексы (99.1%), а при $\Delta p K_a$ между –1 и 4 кристаллические структуры содержат как ионные пары, так и неионизированные комплексы. При этом в последнем случае имеется линейное соотношение между вероятностью образования соли и величиной $\Delta p K_a$ для указанного диапазона значений.

В данной работе проведено квантово-химическое исследование взаимодействия протонной кислоты с органическим основанием как с позиций расширения представлений о кислотно-основном взаимодействии, так и анализа структурно-энергетических характеристик образующихся соединений. С учетом уже полученных нами ранее данных по структурам и межчастичным взаимодействиям в ионных парах на основе катиона алкиламмония (R)_nNH_{4-n} (R = CH₃, C₂H₅, C₃H₇, C₄H₉ и n = 1-3) и аниона различных кислот [22– 29] и вновь полученных результатов для аммонийных и этиламмонийных соединений мы попытались установить общие закономерности влияния силы кислоты и основания на тип образующегося в результате кислотно-основного взаимодействия комплекса.

Рассмотрена возможность использования параметра Δ РА (разница между протонным сродством аниона кислоты и основания) в качестве альтернативы ΔpK_a при изучении степени переноса протона. Для изучаемых соединений подобных работ ранее не проводилось, и поэтому сделанные нами выводы нельзя сопоставить с аналогичными заключениями других авторов.

МЕТОДИКА РАСЧЕТОВ

С целью восполнения недостающих данных по изучаемым объектам проведено квантово-химическое исследование взаимодействия NH₃ и его этилпроизводных с рядом протонных кислот (табл. 1). Все квантово-химические расчеты выполнены методом функционала плотности с применением гибридного обменно-корреляционного функционала B3LYP с учетом дисперсионной поправки GD3 и базисного набора 6-31++G(d,p)с использованием пакета квантово-химических программ Gaussian09 [36]. Данный метод также применен для анализа структур и межчастичных взаимодействий в ионных парах на основе катиона алкиламмония и аниона различных кислот [22-29], привлекаемых здесь для обобщения данных. Показано, что он наиболее оптимален с точки зрения корректности результатов и времени расчета. В частности, рассчитанные на данном уровне величины протонного сродства третичного амина ((CH₃)₂C₂H₅N, (C₂H₅)₃N, (*i*-C₃H₇)₂C₂H₅N и $(C_4H_9)_3N$) гораздо лучше согласуются с их экспериментальными значениями по сравнению с другими квантово-химическими методами (B3LYP, PBE. M06) [27]. Изменение базиса (6-31++G(d,p), 6-311++G(d,p), 6-311++G(2d,2p)) в рамках метода B3LYP-GD3 качественно не влияет на результаты расчета, и последовательность изменения геометрических параметров водородных связей и энергетических характеристик в ряду молекулярных комплексов и ионных пар остается неизменной [22, 29].

Для всех оптимизированных геометрий проведен расчет частот нормальных колебаний и термодинамических параметров. Отсутствие мнимых частот указывает на достижение минимума энергии найденных структур.

Протонное сродство (РА) амина и аниона кислоты рассчитано как разность между значениями энтальпии образования катиона и соответствующего нейтрального основания, и молекулы кислоты и соответствующего аниона.

Основание	CF ₃ HSO ₃ ^c	H_2SO_4	CH ₃ HSO ₃	NH ₂ HSO ₃	H ₃ PO ₃	H ₃ PO ₄	CH ₃ COOH	H ₂ CO ₃
NH ₃	MK [29]	МК	МК	MK	MK	МК	MK	МК
CH ₃ NH ₂	ИП [26]	ИП [24]	ИП [24]	_	_	_	_	—
$C_2H_5NH_2$	ИП [26]	ИП [24]	ИП [24]	MK	MK [22]	MK	MK	MK
$C_3H_7NH_2$	ИП [26]	_	_	_	_	_	_	—
$C_4H_9NH_2$	ИП [26]	_	_	_	_	_	_	—
$(CH_3)_2NH$	ИП [26]	ИП [24]	ИП [24]	_	_	_	_	—
$(C_2H_5)_2NH$	ИП [28]	ИП [28]	ИП [28]	ИП	MK [22]	МК	MK	МК
$(C_4H_9)_2NH$	ИП [26]	ИП [24]	ИП [24]	_	_	_	_	—
(CH ₃) ₃ N	ИП [26]	ИП [24]	ИП [24]	_	_	_	_	—
$(C_2H_5)_3N$	ИП [25]	ИП [25]	ИП [25]	ИП [25]	ИП [25]	ИП [25]	MK [23]	MK
$(C_{3}H_{7})_{3}N$	ИП [26]	—	_	_	_	_	_	—
$(C_4H_9)_3N$	ИП [26]	—	_	_	—	_	—	

Таблица 2. Матрица образующихся при кислотно-основном взаимодействии молекулярных комплексов (MK)^{*a*} и ионных пар ($\Pi\Pi$)^{*б*}

^{*a*}МК найдены при взаимодействии (C_2H_5)₃N с кислотами: пропионовой (р K_a = 4.87 [33]) и бензойной (р K_a = 4.204 [33]) в работе [23].

⁶ИП получены при взаимодействии (C₂H₅)₃N с рядом кислот: хлороводородной (p $K_a = -6.2$ [34]) [23], азотной (p $K_a = -1.37$ [34]) [23], бензолсульфоновой (p $K_a = 0.7$ [33]) [25] и 3-нитробензолсульфоновой (p $K_a = -7.12$ [40]) [25]; при взаимодействии C₂H₅NH₂ (C₂H₅)₂NH и (C₂H₅)₃N с 4-толуолсульфоновой кислотой (p $K_a = -6.56$ [41]) [22]; при взаимодействии третичных аминов (CH₃)₂C₂H₅N, (C₂H₅)₃N, (i-C₃H₇)₂C₂H₅N и (C₄H₉)₃N с трифторуксусной кислотой (p $K_a = 0.5$ [34]) [27].

Изменение свободной энергии Гиббса (ΔG_{298}) при образовании молекулярного комплекса (ионной пары) определено как разность свободной энергии комплекса (ионной пары) и суммы свободных энергий оптимизированных молекул кислоты и основания.

Энергия межчастичного взаимодействия (ΔE) рассчитана как разность полной энергии системы и суммы энергий всех составляющих ее частиц (молекул или ионов) с поправкой на суперпозицию базисных наборов (BSSE [37]).

Оценка энергии водородных связей выполнена в соответствии с уравнением Лекомта–Эспинозы [38] по формуле $E_{BC} = 1/2V(r)$, где V(r) – плотность потенциальной энергии в критической точке водородной связи, полученная на основе анализа распределения электронной плотности и ее топологии в комплексах с использованием программного пакета AIMAll (Version 10.05.04) [39].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для проведения анализа и обобщения сведений о строении и свойствах соединений, образующихся в результате взаимодействия NH₃ и алкиламинов с различными кислотами, на рисунках и в таблицах, наряду с результатами настоящего исследования (16 новых структур), представлены также полученные нами ранее данные [22–29]. Как видно из табл. 2, NH₃ и алкиламины могут образовывать с кислотами два типа соединений: молекулярные водородно-связанные комплексы и ионные пары, получаемые в результате переноса протона от кислоты к амину. Тип образующегося соединения зависит от силы кислоты и основания. Чем сильнее кислота, тем выше ее способность отдавать протон и тем больше склонность к образованию ионной пары. Увеличение числа и размера алкильных групп, положительный индуктивный эффект которых повышает электронную плотность на атоме азота, приводит к усилению основных свойств амина, увеличивая тем самым вероятность его протонирования.

Следует отметить, что образующиеся при кислотно-основном взаимодействии молекулярные комплексы и ионные пары, в том числе изученные в данной работе (табл. 3), термодинамически устойчивы ($\Delta G_{298} < 0$). При этом величины ΔG_{298} при образовании ионных пар более отрицательны, чем при образовании молекулярных комплексов. Из рис. 1а видно, что для всех соединений прослеживается общая зависимость ΔG_{298} от параметра Δ PA, на которой выделяется четкая граница между комплексами и ионными парами. Исходя из представленных данных, можно ожидать, что взаимодействие NH₃ и алкиламинов с кислотой будет приводить к переносу протона и образованию ионных пар ПИЖ в том случае, если

Соединение	$-\Delta G_{298}$	$-\Delta E$	$-\Sigma E_{\rm BC}$	ΔΡΑ	$\Delta p K_a$
NH ₃ -H ₂ SO ₄	36.14	93.85	97.62	435.77	12.25
NH ₃ -NH ₂ HSO ₃	28.41	85.27	88.20	470.45	8.26
NH ₃ -CH ₃ HSO ₃	25.04	81.63	86.81	476.07	11.17
NH ₃ -H ₃ PO ₄	22.26	80.37	75.17	506.13	7.102
NH ₃ -H ₃ PO ₃	21.90	73.34	68.70	513.01	7.82
NH ₃ -H ₂ CO ₃	18.85	67.91	66.23	544.14	2.90
NH ₃ -CH ₃ COOH	10.93	57.82	58.40	586.54	4.494
C ₂ H ₅ NH ₂ -NH ₂ HSO ₃	40.22	114.26	112.41	413.51	9.64
C ₂ H ₅ NH ₂ -H ₃ PO ₄	28.65	97.44	98.65	449.19	8.482
$C_2H_5NH_2-H_2CO_3$	27.30	78.19	80.04	487.20	4.28
C ₂ H ₅ NH ₂ -CH ₃ COOH	16.21	66.44	63.59	529.60	5.874
C ₂ H ₅ NH ₃ /HSO ₄ [24]	50.06	496.47	118.17	378.83	13.63
$(C_2H_5)_2NH-H_3PO_4$	38.01	116.57	120.61	408.77	8.652
$(C_2H_5)_2NH-H_2CO_3$	28.42	89.20	97.74	446.78	4.45
(C ₂ H ₅) ₂ NH–CH ₃ COOH	16.69	72.80	78.88	489.18	6.044
$(C_2H_5)_2NH_2/NH_2SO_3$	54.35	484.30	93.64	373.09	9.81
(C ₂ H ₅) ₂ NH ₂ /HSO ₄ [28]	65.48	462.51	86.66	338.41	13.8
$(C_2H_5)_3N-H_2CO_3$	25.99	98.53	101.47	417.52	4.37
(C ₂ H ₅) ₃ NH/NH ₂ SO ₃ [25]	58.94	464.47	87.20	343.83	9.73
(C ₂ H ₅) ₃ NH/HSO ₄ [25]	71.15	450.45	80.02	309.15	13.72

Таблица 3. Рассчитанные значения энергии Гиббса образования молекулярных комплексов и ионных пар (ΔG_{298} , кДж/моль), энергии кислотно-основного и ион-ионного взаимодействия (ΔE , кДж/моль), суммарные энергии водородных связей (ΣE_{BC} , кДж/моль), величины ΔPA (кДж/моль) и ΔpK_a

величина разности протонного сродства аниона кислоты и амина составляет менее 400 кДж/моль.

Так как параметр РА характеризует свойства молекулы в газовой фазе, а р K_a – свойство молекулы в конденсированном состоянии, характер

зависимости между величинами ΔG_{298} и $\Delta p K_a$ (рис. 1б) не столь очевиден, но общая тенденция ясна — при увеличении параметра $\Delta p K_a$ усиливается тенденция к образованию ионных пар. Можно видеть, что при $\Delta p K_a > 12$ образуются исключи-

Рис. 1. Зависимости энергии Гиббса образования молекулярных комплексов и ионных пар от параметра Δ PA (а) и Δ p K_a (б).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

Рис. 2. Структуры образующихся при кислотно-основном взаимодействии молекулярных комплексов (а) и ионных пар (б).

тельно ионные пары, тогда как при $\Delta p K_a < 8$ — молекулярные комплексы. Существует также область значений $\Delta p K_a$ между 8 и 12, в которой соединения статистически не различимы, т.е. возможно образование и молекулярных комплексов, и ионных пар.

На основе данных геометрического анализа молекулярных комплексов можно заключить, что для различных кислот комплексы с одним и тем же основанием имеют во многом схожие между собой структуры (рис. 2а) на примере комплексов, образованных NH₃ и его этилпроизводными $(C_2H_5NH_2, (C_2H_5)_2NH$ и $(C_2H_5)_3N))$ с H_2CO_3). Во всех структурах молекулярных комплексов образуется водородная связь за счет атома азота, имеющего свободную (неподеленную) электронную пару, и атома водорода группы ОН кислоты. Водородная связь О-Н...N в комплексах характеризуется довольно коротким расстоянием Н... N 1.555–1.729 Å (комплексы с NH₃), 1.482–1.673 Å (комплексы с C₂H₅NH₂), 1.476–1.640 Å (комплексы с (C₂H₅)₂NH) и 1.541 Å ((C₂H₅)₃NH–H₂CO₃) и линейностью водородно-связанного фрагмента (табл. 4). При образовании молекулярных комплексов во всех случаях наблюдается заметное удлинение ковалентной связи О-Н в кислоте на 0.116-0.038 Å от ее величины в изолированной молекуле. На примере комплексов с NH₃, охватывающих весь круг изучаемых кислот, можно видеть, что длина связи O–H...N постепенно увеличивается в ряду кислот $H_2SO_4 < NH_2HSO_3 < CH_3HSO_3 < H_3PO_4 < H_3PO_3 < H_2CO_3 < CH_3COOH. При увеличении степени замеще$ ния атомов водорода при азоте в молекуле основания NH₃ < C₂H₅NH₂ < (C₂H₅)₂NH < (C₂H₅)₃N водородная связь в комплексах с H₂CO₃ становится более короткой.

Необходимо отметить, что в отличие от комплекса с третичным амином, в комплексах с NH₃, $C_2H_5NH_2$ и (C_2H_5)₂NH и рассматриваемыми кислотами также возможно образование водородной связи N-H...О (рис. 2а, табл. 4). Расстояния Н...О в водородно-связанном фрагменте составляют 2.358-2.434 Å (комплексы с NH₃), 2.526-2.644 Å (комплексы с C₂H₅NH₂) и 2.406-2.442 Å (комплексы с $(C_2H_5)_2NH$), и все они гораздо больше, чем расстояния H...N в фрагменте O-H...N, но при этом меньше суммы ван-дер-ваальсовых радиусов связывающих атомов ΣvdW(H...O) = 2.72 Å [43], что, в соответствии с рекомендацией IUPAK [44], служит доказательством существования водородной связи между молекулами. Углы N-Н...О сильно искажены от линейной геометрии и находятся в интервале значений 101.7°-126.1°. При образовании комплексов ковалентная связь N-Н в амине во всех случаях удлиняется незначительно 0.006-0.002 Å.

1781

Таблица 4. Удлинение ковалентной связи X-Н протонодонора (Δr_{X-H} , Å), длина связи H...Y в водородно-связан-ном фрагменте X—H...Y ($r_{H...Y}$, Å), угол связи (\angle XHY, град), топологические характеристики критических точек на связях H...Y ($\rho(r)$, $\nabla^2 \rho(r)$, H(r), ат. ед. и отношение |V(r)|/G(r)) и энергии водородных связей (E_{BC} , кДж/моль) в рассматриваемых молекулярных комплексах и ионных пар

Соединения	Тип связи	$\Delta r_{\rm X-H}$	r _{HY}	∠XHY	ρ(<i>r</i>)	$\nabla^2 \rho(r)$	H(r)	V(r) /G(r)	$E_{\rm BC}$
NH ₃ -H ₂ SO ₄	O-HN	0.081	1.555	171.4	0.0779	0.0843	-0.0236	1.4830	-86.88
	N–HO	0.004	2.431	116.5	0.0112	0.0414	0.0011	0.8829	-10.74
NH ₃ -NH ₂ HSO ₃	O-HN	0.070	1.590	169.4	0.0712	0.0960	-0.0176	1.4229	-77.67
	N–H…O	0.004	2.434	118.9	0.0110	0.0402	0.0010	0.8872	-10.53
NH ₃ -CH ₃ HSO ₃	O-HN	0.067	1.600	170.9	0.0691	0.0976	-0.0161	1.3977	-74.32
	N–H…O	0.005	2.358	119.7	0.0126	0.0454	0.0009	0.9122	-12.49
NH ₃ -H ₃ PO ₄	O-HN	0.060	1.639	166.0	0.0625	0.1026	-0.0114	1.3078	-63.62
	N-HO	0.006	2.375	125.5	0.0119	0.0415	0.0008	0.9171	-11.55
NH ₃ -H ₃ PO ₃	O-HN	0.052	1.672	166.3	0.0575	0.1039	-0.0084	1.2440	-56.13
	N-HO	0.006	2.341	126.1	0.0128	0.0436	0.0007	0.9357	-12.57
NH ₃ -H ₂ CO ₃	O-HN	0.047	1.678	168.0	0.0565	0.1061	-0.0077	1.2242	-54.93
	N-HO	0.004	2.412	117.9	0.0119	0.0423	0.0009	0.8979	-11.30
NH ₃ -CH ₃ COOH	O-HN	0.038	1.729	167.1	0.0498	0.1024	-0.0048	1.1565	-46.06
	N-HO	0.004	2.367	121.0	0.0129	0.0440	0.0008	0.9212	-12.34
C ₂ H ₅ NH ₂ -NH ₂ HSO ₃	O-HN	0.115	1.482	172.7	0.0895	0.0255	-0.0311	1.6383	-104.47
	N-HO	0.003	2.526	114.9	0.0082	0.0315	0.0009	0.8680	-7.94
C ₂ H ₅ NH ₂ -H ₃ PO ₄	O-HN	0.081	1.569	175.44	0.0783	0.0838	-0.0238	1.5323	-90.14
	N-HO	0.003	2.567	113.6	0.0089	0.0340	0.0011	0.8575	-8.51
$C_2H_5NH_2-H_2CO_3$	O-HN	0.061	1.623	168.5	0.0666	0.1025	-0.0138	1.3498	-69.84
	N-HO	0.004	2.540	106.9	0.0098	0.0384	0.0010	0.8712	-10.20
C ₂ H ₅ NH ₂ -CH ₃ COOH	O-HN	0.049	1.673	168.7	0.0588	0.1046	-0.0090	1.2561	-57.96
	N-HO	0.002	2.644	101.7	0.0067	0.0251	0.0012	0.8115	-5.63
C ₂ H ₅ NH ₃ /HSO ₄ [24]	N-HO	0.065	1.527	160.3	0.0733	0.1596	-0.0134	1.2517	-87.59
	N-HO	0.008	1.943	128.1	0.0301	0.0864	-0.0007	1.0111	-30.58
$(C_2H_5)_2NH-H_3PO_4$	O-HN	0.116	1.476	171.3	0.0992	0.0263	-0.0336	-1.6695	-109.32
	N-HO	0.005	2.409	123.1	0.0117	0.0407	0.0008	0.9151	-11.29
$(C_2H_5)_2NH-H_2CO_3$	0–HN	0.077	1.575	171.6	0.0769	0.0882	-0.0220	1.4991	86.71
	N-HO	0.004	2.442	116.8	0.0116	0.0412	0.0009	0.8986	11.03
(C ₂ H ₅) ₂ NH–CH ₃ COOH	O-HN	0.058	1.640	170.1	0.0651	0.1006	-0.0129	1.3398	-67.02
	N-HO	0.003	2.406	118.3	0.0124	0.0429	0.0008	0.9141	-11.86
$(C_2H_5)_2NH_2/NH_2SO_3$	N-HO	0.037	1.665	152.1	0.0526	0.1409	-0.0034	1.0871	-55.07
	N-HO	0.019	1.814	140.8	0.0378	0.1064	-0.0014	1.0498	-38.57
$(C_2H_5)_2NH_2/HSO_4$ [28]	N-HO	0.029	1.719	149.3	0.0463	0.1277	-0.0021	1.0617	-47.42
	N-HO	0.020	1.805	145.8	0.0384	0.1076	-0.0014	1.0501	-39.24
$(C_2H_5)_3N-H_2CO_3$	O-HN	0.090	1.541	175.4	0.0851	0.0718	-0.0297	1.6233	-101.47
(C ₂ H ₅) ₃ NH/NH ₂ SO ₃ [25]	N-HO	0.057	1.529	172.4	0.0725	0.1662	-0.0124	1.2304	-87.20
(C ₂ H ₅) ₃ NH/HSO ₄ [25]	N-HO	0.052	1.552	171.8	0.0685	0.1645	-0.0098	1.1948	-80.02

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12

2022

Характерные структурные особенности ионных пар с катионом (R)_{*n*}NH_{4-*n*} (R = CH₃, C₂H₅, $C_{3}H_{7}, C_{4}H_{9}$ и *n* = 1–3) и анионом различных кислот подробно рассматривались в наших предыдущих работах [22-29]. На рис. 26 приведены в каструктуры честве примера ионной пары $(C_2H_5)_2NH_2/NH_2SO_3$, полученной в данной работе, и ионных пар с различными катионами (C₂H₅NH₃ [24], (C₂H₅)₂NH₂ [28], (C₂H₅)₃NH [25]) и гидросульфат анионом, привлекаемых для сравнения результатов. Как видно из этого рисунка и данных табл. 4, ионные пары с катионами $C_2H_5NH_3$ и (C_2H_5)₂NH₂, в отличие от ионных пар с третичным катионом $(C_2H_5)_3NH$, имеют две водородные связи N-H...O, образованные между атомами водорода аминогруппы катиона и различными атомами кислорода аниона. Водородные связи в ионных парах такого строения имеют различную длину (1.527—1.719 Å для одной связи и 1.805–1.943 Å для другой), а валентные углы NHO во всех случаях сильно искажены от линейной геометрии. Подобные конфигурации с двумя водородными связями характерны и для ионных пар с первичными (метил, пропил, бутил) и вторичными (диметил, дибутил) катионами аммония и анионами различных сульфокислот [24, 26, 28]. При этом связи N–H...О в последних более симметричны, что проявляется в более близких значениях длин обеих водородных связей.

Необходимо отметить, что при наличии в соединении нескольких водородных связей достаточно сложно определить вклад каждого из них в образование структуры, а в рамках геометрического подхода это практически невозможно. Для того чтобы перейти на количественный уровень оценки прочности водородной связи в структурах изучаемых соединений был применен топологический анализ электронной плотности в рамках теории Бейдера (ОТАІМ) [45–47]. Наличие связывающих взаимодействий в рассматриваемых соединениях фиксировалось по наличию критической точки (КТ) с сигнатурой (3, -1) между парой атомов, характеристики которой такие как электронная плотность $\rho(r)$, лапласиан электронной плотности $\nabla^2 \rho(r)$, плотность полной энергии *H*(*r*) и отношение плотности потенциальной энергии к плотности кинетической энергии |V(r)|/G(r) даны в табл. 4. Можно видеть, что топологические свойства КТ связей Н... N и Н...О в молекулярных комплексах хорошо различимы между собой. Все связи Н... N характеризуются параметрами: $\rho(r) \sim 10^{-2}$, $\nabla^2 \rho(r) > 0$, H(r) < 0, |V(r)|/G(r) > 1 и, согласно классификации ОТАІМ [48-50], относятся к взаимодействиям промежуточного типа (частично ионные, частично ковалентные). Связи Н...О в комплексах относятся к типу взаимодействия закрытых оболочек ($\nabla^2 \rho(r) >$ >0, H(r) > 0, |V(r)|/G(r) < 1) и могут быть интерпретированы как очень слабые водородные связи или взаимодействия ван-дер-ваальсового типа. Согласно величинам энергий водородных связей $E_{\rm BC}$, рассчитанным с использованием корреляции Лекомта—Эспинозы, связи О—Н...N во всех молекулярных комплексах во много раз сильнее, чем связи N—H...O. Суммарная (с учетом двух связей) энергия водородных связей в комплексах сопоставима с величинами энергии их кислотноосновного взаимодействия (табл. 3), и, по-видимому, при образовании молекулярных комплексов водородные связи — основное структурообразующее взаимодействие.

В отличие от водородных связей в молекулярных комплексах, все связи Н...О в представленных здесь ионных парах носят характер промежуточных взаимодействий (табл. 4). При этом более короткие водородные связи Н...О в ионных парах характеризуются более высокими величинами $\rho(r)$, $\nabla^2 \rho(r)$, H(r) и $E_{\rm BC}$. Из табл. 3 следует, что суммарная энергия водородных связей в ионной паре с катионом $C_2H_5NH_3$ заметно больше, чем в ионных парах с катионами $(C_2H_5)_2NH_2$ и $(C_2H_5)_3NH$. Вклад водородных связей при образовании структуры ионных пар с анионом NH₂SO₃ более значителен, чем для ионных пар с анионом HSO₄. Очевидно, что анионы с более высоким сродством к протону (табл. 1) имеют более сильную тенденцию к образованию водородных связей с катионом. Рассчитанные энергии межионного взаимодействия для ионных пар, в отличие от молекулярных комплексов, во много раз превышают энергии их водородных связей (табл. 3). Причина этого в том, что взаимодействие катиона и аниона в ионной паре осуществляется не только за счет образования водородной связи как в молекулярном комплексе, но и за счет кулоновского ион-ионного взаимодействия.

Анализ данных по энергетическим характеристикам молекулярных комплексов и ионных пар, приведенным в табл. 2, показал, что величина ΔE коррелирует с параметром ΔPA (рис. 3а). Однако в отличие от зависимости для ΔG_{298} (рис. 1а), полученные зависимости ΔE от параметра ΔPA различны для молекулярных комплексов и ионных пар. Как видно из рис. 3а, достаточно четко прослеживается тенденция к усилению взаимодействия между ионами в ионных парах и ослаблению взаимодействия между молекулами в комплексах с ростом параметра ΔPA . Подобной связи между величинами ΔE и ΔpK_a не наблюдается (рис. 3б).

Таким образом, обобщены и проанализированы результаты квантово-химических исследований кислотно-основного взаимодействия NH₃ и алкиламинов (R)_nNH_{3-n} (R = CH₃, C₂H₅, C₃H₇, C₄H₉ и n = 1-3) с рядом протонных кислот раз-

Рис. 3. Зависимости энергии катион-анионного взаимодействия в ионных парах и кислотно-основного взаимодействия в молекулярных комплексах от величины ΔPA (a) и ΔpK_a (б).

личной силы. Показано, что для оценки степени переноса протона от кислоты к основанию в качестве альтернативы $\Delta p K_a$ можно использовать величины разности протонного сродства аниона кислоты и основания. Установлено, что взаимодействие кислоты с NH₃ и алкиламином сводится к переносу протона и образованию ионных пар в том случае, если $\Delta PA < 400 \ \kappa \square m$ /моль или $\Delta p K_a > 12$. Увеличение параметра ДРА приводит к усилению ион-ионного взаимодействия в ионных парах и ослаблению кислотно-основного взаимодействия в молекулярных комплексах. Полученные результаты обеспечивают альтернативу экспериментальным поискам подходящих кислот и оснований с целью получения новых протонных ионных жидкостей.

СПИСОК ЛИТЕРАТУРЫ

1. Weingärtner H. // Angew. Chem. Int. Ed. 2008. V. 47. P. 654.

https://doi.org/10.1002/anie.200604951

- 2. Hunt P.A., Ashworth C.R., Matthews R.P. // Chem. Soc. Rev. 2015. V. 44. P. 1257. https://doi.org/10.1039/C4CS00278D
- 3. Fumino K., Ludwig R. // J. Mol. Liq. 2014. V. 192. P. 94. https://doi.org/10.1016/j.molliq.2013.07.009
- 4. Dong K., Zhang S., Wang J. // Chem. Commun. 2016. V. 52. P. 6744. https://doi.org/10.1039/C5CC10120D
- 5. Plechkova N.V., Seddon K.R. // Chem. Soc. Rev. 2008. V. 37. P. 123. https://doi.org/10.1039/B006677J
- 6. Liu H., Yu H. // J. Mater. Sci. Technol. 2019. V. 35. P. 674.
 - https://doi.org/10.1016/j.jmst.2018.10.007
- 7. Stoimenovski J., Dean P.M., Izgorodina E.I., MacFarlane D.R. // Faraday Disc. 2012. V. 154. P. 335. https://doi.org/10.1039/C1FD00071C

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 2022 № 12

- 8. Greaves T.L., Drummond C.J. // Chem. Rev. 2008. V. 108. P. 206. https://doi.org/10.1021/cr068040u
- 9. Nuthakki B., Greaves T.L., Krodkiewska I. et al. // Aust. J. Chem. 2007. V. 60. P. 21. https://doi.org/10.1071/CH06363
- 10. Shen M., Zhang Y., Chen K. et al. // J. Phys. Chem. B. 2017. V. 121. P. 1372. https://doi.org/10.1021/acs.jpcb.6b11624
- 11. Davidowski S.K., Thompson F., Wei Huang et al. // J. Phys. Chem. B. 2016. V. 120. P. 4279. https://doi.org/10.1021/acs.jpcb.6b01203
- 12. Burrell G.L., Burgar I.M., Separovic F., Dunlop N.F. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 1571. https://doi.org/10.1039/b921432a
- 13. Chipanina N.N., Aksamentova T.N., Adamovich S.N. et al. // Comp. Theor. Chem. 2012. V. 985. P. 36. https://doi.org/10.1016/j.comptc.2012.01.033
- 14. Thummuru D.N.R., Mallik B.S. // J. Phys. Chem. A. 2017. V. 121. P. 8097. https://doi.org/10.1021/acs.jpca.7b05995
- 15. Ludwig R. // J. Phys. Chem. B. 2009. V. 113. P. 15419. https://doi.org/10.1021/jp907204x
- 16. Yoshizawa M., Xu W., Angell C.A. // J. Am. Chem. Soc. 2003. V. 125. P. 15411. https://doi.org/10.1021/ja035783d
- 17. Miran M.S., Kinoshita H., Yasuda T. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 5178. https://doi.org/10.1039/c2cp00007e
- 18. Miran M.S., Hoque M., Yasuda T. et al. // Ibid. 2019. V. 21. P. 418. https://doi.org/10.1039/c8cp06973e
- 19. Stoimenovski J., Izgorodina E.I., MacFarlane D.R. // Ibid. 2010. V. 12. P. 10341. https://doi.org/10.1039/c0cp00239a
- 20. Martinez, M., Molmeret Y., Cointeaux L. et al. // J. Power Sources. 2010. V. 195. P. 5829. https://doi.org/10.1016/j.jpowsour.2010.01.036

- Cruz-Cabeza A.J. // CrystEngComm. 2012. V. 14. P. 6362. https://doi.org/10.1039/c2ce26055g
- Fedorova I.V., Krestyaninov M.A., Safonova L.P. // J. Phys. Chem. A. 2017. V. 121. P. 7675. https://doi.org/10.1021/acs.jpca.7b05393
- 23. Shmukler L.E., Fedorova I.V., Gruzdev M.S., Safonova L.P. // J. Phys. Chem. B. 2019. V. 123. P. 10794. https://https://doi.org/10.1021/acs.jpcb.9b08032
- Fedorova I.V., Safonova L.P. // J. Phys. Chem. A. 2020.
 V. 124. P. 3170. https://doi.org/10.1021/acs.jpca.0c01282
- Fedorova I.V., Safonova, L.P. // Ibid. 2019. V. 123. P. 293. https://doi.org/10.1021/acs.jpca.8b10906
- Shmukler L.E., Fedorova I.V., Fadeeva Yu.A., Safonova L.P. // J. Mol. Liq. 2021. V. 321. P. 114350. https://doi.org/10.1016/j.mollig.2020.114350
- Fedorova I.V., Safonova L.P. // J. Phys. Chem. A. 2018.
 V. 122. P. 5878. https://doi.org/10.1021/acs.jpca.8b04003
- Шмуклер Л.Э., Федорова И.В., Груздев М.С. и др. // Изв. АН. Сер. хим. 2019. С. 2009. https://doi.org/10.1007/s11172-019-2660-7
- Fedorova I.V., Krestyaninov M.A., Safonova L.P. // J. Mol. Liq. 2021. V. 328. P. 115449. https://doi.org/10.1016/j.molliq.2021.115449
- 30. *Guthrie J.P.* // Can. J. Chem. 1978. V. 56. P. 2342. https://doi.org/10.1139/v78-385
- Covington A.K., Thompson R. // J. Sol. Chem. 1974.
 V. 3. P. 603. https://doi.org/10.1007/BF00650404
- King E.J., King G.W. // J. Am. Chem. Soc. 1952. V. 74. P. 1212. https://doi.org/10.1021/ja01125a022
- 33. *Haynes W.M.* Handbook of Chemistry and Physics. 95th Edition. CRC Press, 2014. 2666 p.
- 34. *Dean J.A.* Lange's Handbook of Chemistry. 15th Edition. McGraw-Hill Inc., New York, 1998. 1424 p.
- Hunter E.P.L., Lias S.G. // J. Phys. Chem. Ref. Data. 1998. V. 27. P. 413. https://doi.org/10.1063/1.556018

- 36. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.
- 37. *Boys S., Bernardi F.* // Mol. Phys. 2002. V. 19. P. 553. https://doi.org/10.1080/00268977000101561
- Espinosa E., Molins E., Lecomte C. // J. Chem. Phys. Lett. 1998. V. 285. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
- 39. Keith T.A. AIMAll, version 10.05.04 (aim.tkgristmill.com), 2010.
- 40. French D.C., Crumrine D.S. // J. Org. Chem. 1990. V. 55. P. 5494. https://doi.org/10.1021/jo00307a021
- Cerfontain H., Koeberg-Telder A., Kruk C. // Tetrahedron Lett. 1975. V. 16. P. 3639. https://doi.org/10.1016/S0040-4039(00)91345-5
- 42. Raamat E., Kaupmees K., Ovsjannikov G. // J. Phys. Org. Chem. 2013. V. 26. P. 162. https://doi.org/10.1002/poc.2946
- 43. *Bondi A.* // J. Phys. Chem. 1964. V. 68. P. 441. https://doi.org/10.1021/j100785a001
- 44. Arunan E., Desiraju G.R., Klein R.A. et al. // Pure Appl. Chem. 2011. V. 83. P. 1637. https://doi.org/10.1351/PAC-REC-10-01-02
- 45. *Bader R.F.W.* // Acc. Chem. Res. 1985. V. 18. P. 9. https://doi.org/10.1021/ar00109a003
- 46. *Bader P.F.W.* // Chem. Rev. 1991. V. 91. P. 893. https://doi.org/10.1021/cr00005a013
- 47. *Bader R.F.W.* Atoms in Molecules. A Quantum Theory. Oxford University Press, 1990. 458 p.
- 48. Bader R.F.W., Essen H.J. // J. Chem. Phys. 1984. V. 80. P. 1943. https://doi.org/10.1063/1.446956
- 49. Cremer D., Kraka E. // Angew. Chem. Int. Ed. Engl. 1984. V. 23. P. 627. https://doi.org/10.1002/anie.198406271
- Espinosa E., Alkorta I., Elguero J., Molins E. // J. Chem. Phys. 2002. V. 117. P. 5529. https://doi.org/10.1063/1.1501133