_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.353

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ ДИ-(2-ЭТИЛГЕКСИЛ)ФОСФОРНАЯ КИСЛОТА—ДИ-(2-ЭТИЛГЕКСИЛ)ФОСФАТ ЛАНТАНА (ЛЮТЕЦИЯ)—*О*-КСИЛОЛ

© 2022 г. М. Д. Каплина^{*a*}, А. А. Поташников^{*a*}, С. В. Курдакова^{*a*}, Н. А. Коваленко^{*a*,*}, И. А. Успенская^{*a*}

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, Россия

*e-mail: Kovalenko@td.chem.msu.ru Поступила в редакцию 20.04.2022 г. После доработки 06.05.2022 г. Принята к публикации 11.05.2022 г.

Синтезированы и идентифицированы комплексы, образованные редкоземельными элементами (La, Lu) и ди-(2-этилгексил)фосфорной кислотой. Измерены плотности растворов Д2ЭГФК – ди-(2-этилгексил)фосфат лантана (лютеция) – *о*-ксилол, образующих органическую фазу в процессах экстракции лантаноидов; объемные свойства систем Д2ЭГФК – ди-(2-этилгексил)фосфат РЗЭ – *о*-ксилол описаны полиномиальной моделью Редлиха-Кистера. Получены данные о давлении насыщенного пара над растворами Д2ЭГФК – ди-(2-этилгексил)фосфат лантана (лютеция) – *о*-ксилол при температурах 298.15, 303.15 и 308.15 К. Температурно-концентрационные зависимости коэффициентов активности *о*-ксилола в исследуемых тройных системах описаны термодинамической моделью UNIQUAC с учетом образования в растворе димеров Д2ЭГФК.

Ключевые слова: плотность, давление насыщенного пара, ди-(2-этилгексил)фосфат, лантан, лютеций, ди-(2-этилгексил)фосфорная кислота, *о*-ксилол, модель Редлиха-Кистера, модель UNIQUAC **DOI:** 10.31857/S0044453722120159

В настоящее время большое внимание уделяется проблеме загрязнения окружающей среды, в том числе, вопросам переработки техногенных отходов. Одним из примеров таких отходов является фосфогипс, образующийся при получении фосфорной кислоты из апатитового сырья. В фосфогипсе, в числе прочих составляющих, присутствуют соединения лантаноидов, которые представляют интерес для производства различных функциональных материалов. Извлечение редкоземельных элементов из фосфогипса в виде концентрата, с последующим делением на индивидуальные вещества, часто проводят с помощью жилкофазной экстракции с экстрагентом – ди-(2-этилгексил)фосфорной кислотой (Д2ЭГФК) и различными разбавителями, понижающими вязкость органической фазы [1]. В результате химической реакции на границе раздела фаз образуются металлорганические соединения ди-(2-этилгексил)фосфаты лантаноидов LnA₃ (Ln лантаноид, А – кислотный остаток Д2ЭГФК), растворимые в смеси комплексообразователя с разбавителем [2].

Для моделирования экстракционных каскадов, определения условий их устойчивого функционирования необходимо располагать сведениями о температурно-концентрационных зависимостях энергии Гиббса фаз экстракционных систем, в частности, органической. Для определения параметров таких зависимостей необходимы надежные термодинамические данные о свойствах смесей, образованных Д2ЭГФК, ди-(2-этилгексил)фосфатом лантаноида и разбавителем.

Термодинамические свойства растворов систем Д2ЭГФК-разбавитель изучались различными научными коллективами и опубликованы в литературе. Наиболее полно представлены результаты измерений объемных свойств бинарных систем Д2ЭГФК с керосином [3, 4], толуолом [5, 6], о-ксилолом [5, 7], циклогексаном и н-гексаном [8], н-гептаном [3] и н-додеканом [9] при различных температурах. На основании полученных экспериментальных данных об избыточных мольных объемах растворов авторы преимущественно делают выводы о характере межмолекулярных взаимодействий экстрагент-разбавитель и отличии свойств растворов от идеальных. Авторами работы [8] показано, что уменьшение степени отклонения от идеальности систем с Д2ЭГФК наблюдается при переходе от алифатических к ароматическим разбавителям.

Ранее сотрудниками лаборатории химической термодинамики МГУ были получены данные о плотности бинарных растворов Д2ЭГФК – *о*-ксилол в широкой области составов [7], Д2ЭГФК – LnA₃ (Ln = Sm, Eu, Gd) [10] и впервые исследованы объемные свойства тройных систем: Д2ЭГФК – LnA₃ (Ln = Sm, Eu, Gd) – разбавитель (*н*-гептан, толуол, *н*-гексан, циклогексан [11]) и Д2ЭГФК – LnA₃ (Ln = Nd, Sm, Eu, Gd, Tb, Dy) – *о*-ксилол [10].

Аппроксимацию избыточных мольных объемов бинарных и тройных смесей с Д2ЭГФК в большинстве работ проводили полиномами Редлиха-Кистера.

Коэффициенты активности компонентов в бинарных системах Д2ЭГФК-разбавитель получены с использованием различных экспериментальных и расчетных методов. Так, смеси Д2ЭГФК с толуолом, циклооктаном, *н*-додеканом [12, 13], бензолом, циклогексаном [14, 15] изучены методом осмометрии; изопиестическим методом исследованы системы Д2ЭГФК с н-октаном [16], при измерении свойств растворов с ндодеканом использованы данные жидкостной экстракции [17] и эбулиометрии [18]. В большинстве работ экспериментально определяли свойства растворителя, а уже с их помощью рассчитывали коэффициенты активности экстрагента. Результаты расчета коэффициентов активности разбавителя по модели UNIFAC в бинарных системах Д2ЭГФК с гексаном, бензолом, хлороформом и четыреххлористым углеродом представлены в работе [19]. Необходимо отметить, что в большинстве имеющихся работ не приводятся исходные экспериментальные данные, что затрудняет проведение независимой оценки корректности рекомендуемых величин.

Ранее нами были получены данные по парожидкостным равновесиям в бинарных системах Д2ЭГФК - o-ксилол [7] (*н*-гептан, *н*-гексан, толуол, циклогексан [20]) при различных температурах, построены термодинамические модели и проведено сравнение рассчитанных значений коэффициентов активностей с литературными данными. При построении термодинамических моделей растворов с неполярными разбавителями (н-гептан, н-гексан, толуол, циклогексан) учитывозможность образования валась димера $Д2 \Im \Gamma \Phi K (H_2 A_2)$. Показано, что в области с низкой концентрацией Д2ЭГФК исследуемые системы могут быть описаны моделью идеального ассоциированного раствора, тогда как для более концентрированных по Д2ЭГФК растворов необходимо учитывать отклонение от идеальности. Термодинамические свойства растворов Д2ЭГФК–LnA₃–разбавитель в литературе не представлены; исключение составляют объемные

свойства, измеренные ранее в лаборатории химической термодинамики МГУ.

Цель настоящего исследования — построение термодинамических моделей растворов трехкомпонентных систем ди-(2-этилгексил)фосфорная кислота — ди-(2-этилгексил)фосфаты лантаноидов (LaA₃, LuA₃) — *о*-ксилол. В работе измерены давления насыщенного пара *о*-ксилола, получены экспериментальные данные о плотности органических растворов, проведена параметризация термодинамических моделей изученных систем.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали Д2ЭГФК (Acros Organics, ≥97.00 мас. %) и *о*-ксилол (Компонент реактив, ≥99.80 мас. %). Исходными реагентами для синтеза ди-(2-этилгексил)фосфатов лантаноидов являлись нитраты лантана и лютеция (ЛАНХИТ, ≥99.90 мас. %), ацетон (Экос-1, ≥99.85 мас. %).

Дистиллированную воду получали на лабораторной дистилляционной установке марки ДЭ-4-02-"ЭМО". Ди-(2-этилгексил)фосфаты лантаноидов (LnA₃) синтезировали по методике [21]. Приготовленные образцы LnA₃ идентифицировали методами термогравиметрии, порошковой рентгеновской дифракции, элементного анализа.

Термогравиметрические измерения проводили на приборе NETZSCH TG 209 F1 в интервале температур $30.0-800.0^{\circ}$ C (303.15-1073.15 K) в потоке осушенного воздуха (скоростью 20 мл/мин). Погрешность измерения потери массы составляла не более 0.5% (установлено по стандарту CaC₂O₄·H₂O). Инструментальная ошибка при измерении температуры не превышала 0.2° C.

Термогравиметрические кривые для синтезированных комплексов имели вид, аналогичный приведенным в работах [22, 23]. Потеря массы наблюдалась в диапазоне температур 200–300°С (473.15–533.15 К) при одновременном разложении синтезированных образцов – ди-(2-этилгексил)фосфатов лантаноидов. Для комплекса с лантаном потеря массы составляла 65.99 мас. %, для комплекса с лютецием – 63.91 мас. % при нагревании до 1073.15 К. По данным порошковой рентгеновской дифракции образцы разлагались с образованием Ln(PO₃)₃. На основании полученных результатов сделан вывод, что исследованные образцы не содержат воду и разбавитель, который использовался для синтеза соединений.

Дифрактограммы образцов ди-(2-этилгексил)фосфатов РЗЭ получали с помощью камеры Гинье Huber (геометрия съемки на прохождение, Ge-монохроматор, Cu $K_{\alpha 1}$ -излучение, интервал съемки 20 2°–26°, шаг 0.01°). Дифрактограммы синтезированных образцов идентичны представленным в литературе NdA₃ [23–25], PrA₃ [2, 25],

Таблица 1. Содержание элементов (мас. %) в синтезированных комплексах

Элемент	La	A ₃	LuA ₃		
	эксп.	расч.	эксп.	расч.	
С	52.25	52.26	49.90	50.61	
Н	9.33	9.32	8.93	9.02	
Р	8.43	8.42	8.00	8.16	
Ln	12.62	12.59	14.97	15.36	

Примечание. Содержание элементов указано на основании данных элементного анализа (эксп.) и рассчитанных (расч.) из предполагаемой формулы LnA_3 (Ln = La, Lu, $A = C_{16}H_{34}PO_4$).

ErA₃ [2, 25]. Наиболее интенсивный сигнал наблюдался при значении $2\theta = 5.3$ и 5.5° для LaA₃ и LuA₃, соответственно.

При проведении элементного анализа содержание РЗЭ в исследуемых образцах определяли рентгенофлуоресцентным методом; после разделения продуктов сжигания на одной абсорбционной колонке и детектированием по теплопроводности с помощью анализатора Elementar vario MI-CRO сиbe находили содержание углерода и водорода; методом спектрофотометрии установили содержание фосфора.

Результаты элементного анализа синтезированных комплексов приведены в табл. 1. Идентификация образцов, проведенная различными независимыми методами, подтвердила, что синтезированные вещества представляют собой ди-(2-этилгексил)фосфаты лантаноидов.

Приготовление растворов. Органические растворы готовили добавлением твердых ди-(2-этилгексил)фосфатов РЗЭ (лантан, лютеций) к смеси Д2ЭГФК и разбавителя. При определении плотностей данный метод позволял исследовать сечения систем ди-(2-этилгексил)фосфорная кислота—LnA₃—*o*-ксилол с постоянным соотношением Д2ЭГФК : разбавитель.

Определение плотности растворов. Плотности исследуемых растворов измеряли с помощью плотномера ВИП-2МР (ООО "Термэкс") со встроенным термостатом при 25 ± 0.05 °C (298.15 K). Абсолютную ошибку измерения плотности принимали за 0.0001 г/мл. В качестве калибровочных растворов использовали воздух, дистиллированную воду и раствор РЭП-2 со стандартизированной плотностью (эталонный материал ВНИИМ 03.02.002-20/06) [20].

Расширенную неопределенность значений плотности, с учетом зависимости значений ρ от вязкости образца, принимали равной 5 × 10⁻⁴ г/мл (доверительная вероятность 95%). Плотности растворов в системах Д2ЭГФК – *о*-ксилол – LnA₃ (Ln = La, Lu) при комнатной температуре представлены в табл. 2.

\mathcal{A}_{2} ЭГФК (1)- <i>о</i> -ксилол (2)-Lа A_{3} (3)								
x (LaA ₃)	х (Д2ЭГФК)	ρ, г/мл	x (LaA ₃)	х (Д2ЭГФК)	ρ, г/мл			
0.00000	0.09908	0.8975	0.01168	0.32605	0.9407			
0.00323	0.09882	0.9026	0.01744	0.32429	0.9461			
0.00718	0.09849	0.9086	0.02425	0.32218	0.9523			
0.00000	0.18016	0.9108	0.02814	0.32088	0.9556			
0.00505	0.18135	0.9176	0.00000	0.56837	0.9476			
0.01056	0.17826	0.9246	0.01535	0.56797	0.9586			
0.01470	0.17751	0.9296	0.02243	0.56546	0.9634			
0.00000	0.32991	0.9290	0.02970	0.55206	0.9685			
0.00618	0.32800	0.9353	0.04600	0.56023	0.9779			
	Д2ЭГФК (1) – <i>о</i> -ксилол (2) – LuA ₃ (3)							
x (LuA ₃)	х (Д2ЭГФК)	ρ, г/мл	x (LuA ₃)	х (Д2ЭГФК)	ρ, г/мл			
0.00000	0.1799	0.9107	0.01017	0.3314	0.9412			
0.00273	0.1799	0.9152	0.00000	0.5710	0.9477			
0.00478	0.1808	0.9184	0.00604	0.5685	0.9531			
0.00000	0.3321	0.9292	0.01272	0.5748	0.9587			
0.00399	0.3341	0.9341	0.02062	0.5704	0.9649			
0.00697	0.3299	0.9375						

Таблица 2. Плотности растворов в системах Д2ЭГФК (1)–o-ксилол (2)–LnA₃ (3) при температуре 298.15 К

Таблица 3. Измеренные ($P^{\text{эксп}}$) значения давления насыщенного пара, относительные отклонения (δ) для рассчитанных ($P^{\text{расч}}$) значений давления насыщенного пара и активности *о*-ксилола в системе Д2ЭГФК (1) – *о*-ксилол (2) – LnA₃ (3)

Т, К	<i>x</i> ₁	<i>x</i> ₃	<i>Р</i> ^{эксп} , кПа	$\delta^a, \%$	$a_2^{ m sccn}$
Į	І 2ЭГФК	(1) — <i>о</i> -кс	илол (2)	– LaA ₃ (3)
298.15	0.1029	0.0137	0.841	2.00	0.934
	0.0496	0.0053	0.870	1.49	0.967
303.15	0.2518	0.0192	0.958	0.24	0.798
	0.1029	0.0137	1.129	1.31	0.941
	0.2921	0.0383	0.906	1.56	0.755
	0.0496	0.0053	1.166	0.97	0.972
308.15	0.2518	0.0192	1.246	1.69	0.783
	0.1029	0.0137	1.500	1.10	0.943
	0.2921	0.0383	1.203	1.71	0.756
	0.0496	0.0053	1.545	1.03	0.971
Ţ	і2ЭГФК	(1) <i>— о-</i> кс	илол (2)	$-LuA_3$ (3)
298.15	0.1434	0.0032	0.809	0.46	0.899
	0.3233	0.0126	0.623	0.41	0.692
303.15	0.3786	0.0179	0.746	0.03	0.622
	0.1434	0.0032	1.077	0.62	0.898
	0.3233	0.0126	0.835	0.11	0.696
	0.2461	0.0083	0.955	0.58	0.796
308.15	0.1434	0.0032	1.424	0.90	0.895
	0.3233	0.0126	1.111	0.46	0.698
	0.2461	0.0083	1.257	0.15	0.790
${}^{a}\delta = \left \frac{P_{\scriptscriptstyle 9KCII} - P_{\scriptscriptstyle pacq}}{P_{\scriptscriptstyle 9KCII}} \right \times 100\%.$					

Измерение давления насышенного пара. Измерение давления насыщенного пара проводили статическим методом на установке, ранее описанной в работах [20, 26, 27]. Для калибровки прибора использовали дистиллированную воду. Перед измерением исследуемые растворы дегазировали в течение 8 часов для удаления растворенных газов. Ранее было показано, что Д2ЭГФК имеет низкое давление насыщенных паров, поэтому общее давление пара равно парциальному давлению пара разбавителя [7]. Измерения давления насыщенного пара о-ксилола над растворами Д2ЭГФК (1) – *о*-ксилол (2) – LnA₃ (3) проводили при температурах 298.15, 303.15, 308.15 К. Составы исследуемых растворов были ограничены растворимостью ди-(2-этилгексил)фосфатов лантана (лютеция) в смеси Д2ЭГФК – разбавитель при заданной температуре, а также нижним пределом измерения датчика давления (0.66 кПа). Уточнение состава раствора после дегазации (ввиду удаления летучего компонента — *о*-ксилола) проводили, используя калибровочную зависимость плотности от состава. Погрешность измерения давления паров составляла не более 0.5%.

Давление насыщенного пара *о*-ксилола над растворами Д2ЭГФК (1) – *о*-ксилол (2) – LnA₃ (3) при различных температурах приведено в табл. 3. Значения активности *о*-ксилола (a_2) в растворах разного состава системы Д2ЭГФК (1) – *о*-ксилол (2) – LnA₃ (3) (Ln = La, Lu) рассчитывали из экспериментальных данных как отношение парциального давления компонента над раствором (P_2) к давлению насыщенного пара чистого *о*-ксилола (P_2^s) (табл. 3):

$$a_2 = \frac{P_2}{P_2^s}.$$
 (1)

Для исключения систематической ошибки при определении активности и коэффициента активности *о*-ксилола в тройных системах использовали результаты измерения давления насыщенного пара *о*-ксилола, полученные нами ранее [7].

РАСЧЕТНАЯ ЧАСТЬ

Расчеты проводили в среде МАТLAB с помощью метода наименьших квадратов, минимизируя суммы квадратов разностей экспериментальных и рассчитанных с помощью модели величин. Полученные параметры указаны далее с избытком значащих цифр, чтобы предотвратить некорректное воспроизведение значения свойства за счет корреляции параметров модели.

Для упрощения модели при аппроксимации объемных свойств пренебрегали образованием димера Д2ЭГФК в растворах. При описании активностей разбавителя учитывали образование димера Д2ЭГФК в исследуемых органических тройных растворах для получения более точных аналитических зависимостей термодинамических свойств, которые в дальнейшем предполагается использовать для расчета экстракционных равновесий.

Объемные свойства. Для аппроксимации объемных свойств исследуемых растворов использовали полином Редлиха–Кистера [11]:

$$V^{E} = \sum_{i=1}^{N} \sum_{j>i}^{N} \left(x_{i} x_{j} \sum_{\nu=0}^{N} (x_{i} - x_{j})^{\nu} S \right), \qquad (2)$$

где V^E — избыточный объем раствора, N — номер компонента, l_{ii}^v — бинарные варьируемые пара-

LnA ₃	ρ (LnA ₃), г/мл	Количество точек	MAD × 10 ⁴ , г/мл	ААD × 10 ⁴ , г/мл
LaA ₃	1.1328 ± 0.004	18	5.6	1.8
LuA ₃	1.1656 ± 0.004	11	2.6	1.4

Таблица 4. Плотности жидких ди-(2-этилгексил)фосфатов РЗЭ и отклонения рассчитанных от экспериментально измеренных значений плотности растворов системы Д2ЭГФК (1) – *о*-ксилол (2) – LnA₃ (3), (Ln = La, Lu)

MAD – максимальное абсолютное отклонение, AAD – среднее абсолютное отклонение.

метры. В свою очередь, избыточный объем связан с плотностью раствора соотношением:

$$V^{E} = \frac{\sum_{i}^{N} M_{i} x_{i}}{\rho} - \left(\sum_{i}^{N} \frac{M_{i} x_{i}}{\rho_{i}^{0}}\right), \qquad (3)$$

где M_i и ρ_i^0 — молярная масса и плотности чистого компонента *i*, соответственно; N — номер компонента, x_i — мольная доля *i*-го компонента; ρ и V^E — плотность и мольный избыточный объем раствора.

В настоящей работе плотность ди-(2-этилгексил) ϕ ос ϕ ата РЗЭ (ρ_3^0) выбрана в качестве оптимизируемого параметра модели, аналогично работам [10, 11], поскольку получить жидкий LnA₃ не представляется возможным. В условиях провеления измерений плотности ди-(2-этилгексил)фосфат РЗЭ находится в твердом состоянии, а при плавлении (473-573 К) разлагается. Ранее было показано [10, 11], что для описания объемных свойств аналогичных тройных систем достаточно бинарных параметров (l_{ii}) , поэтому в данной работе экспериментальные данные об избыточных мольных объемах растворов {Д2ЭГФК (1) + o-ксилол (2) + LnA₃ (3) аппроксимировали полиномом Редлиха-Кистера вида:

$$V^{E} = x_{1}x_{2}(l_{12}^{0} + l_{12}^{1}(x_{1} - x_{2})), \qquad (4)$$

где x_1 , x_2 — мольные доли компонентов, l_{12}^0 , l_{12}^1 – оптимизируемые параметры, параметры $l_{12}^0 = -(0.813 \pm 0.02)$, $l_{12}^1 = -(0.488 \pm 0.06)$ для подсистемы Д2ЭГФК (1) – *о*-ксилол (2) были взяты из работы [7].

В настоящей работе удовлетворительное описание плотностей (табл. 4) удалось получить с использованием найденных ранее параметров взаимодействия пары "Д2ЭГФК – разбавитель" и оптимизированных значений плотности жидкого комплекса РЗЭ. Максимальное абсолютное отклонение составило 5.6×10^{-4} и 2.6×10^{-4} г/мл для тройных систем с LaA₃ и LuA₃, соответственно. Результаты измерений и моделирования плотности растворов системы Д2ЭГФК – ди-(2-этилгексил)фосфат лантана (лютеция) – *о*-ксилол приведены на рис. 1. Разности измеренных и рассчи-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

танных значений для всех составов показаны на рис. 2.

Таким образом, для предсказания плотности исследуемых тройных растворов достаточно определить плотности бинарных растворов

Рис. 1. Экспериментальные (\mathbf{x}) и рассчитанные (линии) значения плотности растворов в системах Д2ЭГФК – *о*-ксилол – LnA₃: (*a*) LaA₃ (*б*), LuA₃. На линиях одного цвета отношение мольной доли Д2ЭГФК к доле растворителя постоянно: – – x(Д2ЭГФК) : x(o-ксилол) = 1.3; ..., x(Д2ЭГФК) :x(o-ксилол) = 0.5; ..., x(Д2ЭГФК) : x(o-ксилол) = = 0.2; ..., x(J2ЭГФК) : x(o-ксилол) = 0.1.

$\frac{112}{112} \frac{12}{12} \frac{12}{10} \frac{11}{10} \frac{12}{10} \frac{11}{10} \frac{12}{10} \frac{11}{10} \frac{11}{10} \frac{11}{10} \frac{12}{10} \frac{11}{10} $						
H_2A_2	r_1	22.70	q_1	24.00	$\tau_{12} = 0.5$	561
o-C ₈ H ₁₀	r_2	4.66	q_2	3.56	$\tau_{21} = 1.5693$	
					$\tau_{23} = \tau_{32}$	= 1
$La(HA_2)_3$	<i>r</i> ₃	68.35	q_3	72.39	$\tau_{13} = \tau_{31}$	0.9366 ± 0.01
$Lu(HA_2)_3$	<i>r</i> ₃	68.24	<i>q</i> ₃	72.27		0.9770 ± 0.01

Таблица 5. Параметры модели UNIQUAC для системы $H_2A_2(1) - o-C_8H_{10}(2) - Ln(HA_2)_3(3)$

Д2ЭГФК — разбавитель и располагать сведениями о плотности жидких ди-(2-этилгексил)фосфатов лантаноидов.

Моделирование термодинамических свойств растворов $Д2\Im \Gamma\Phi K$ —*о*-ксилол—LnA₃. Для описания термодинамических свойств жидкой фазы $Д2\Im \Gamma\Phi K$ (1) – *о*-ксилол (2) – LnA₃ (3) (Ln = La, Lu) использовали модель UNIQUAC [28]. Вклады

Рис. 2. Разность между рассчитанными и измеренными значениями плотности растворов в тройных системах Д2ЭГФК – *о*-ксилол – LnA₃: (*a*) LaA₃, (*b*) LuA₃.

в коэффициент активности *i*-го компонента находили по формулам:

$$\ln \gamma_i^{\text{comb}} = \ln \frac{\varphi_i}{x_i} + \left(\frac{z}{2}\right) q_i \ln \frac{\Theta_i}{\varphi_i} + l_i - \frac{\varphi_i}{x_i} \sum_j x_j l_j, \quad (5)$$

$$\ln \gamma_i^{\text{res}} = -q_i \ln \left(\sum_j \varphi_j \tau_{ji} \right) + q_i - q_i \sum_j \frac{\varphi_j \tau_{ij}}{\sum_k \varphi_k \tau_{kj}}, \quad (6)$$

где

$$l_j = \left(\frac{z}{2}\right)(r_j - q_j) - (r_j - 1),$$

 τ_{ij} — энергетические параметры взаимодействия компонентов раствора, q_i и r_i — параметры площади поверхности и объема молекулы, z — координационное число (z = 10).

При расчете коэффициентов активности компонентов в растворе полагали, что в неполярных растворах ди-(2-этилгексил)фосфорная кислота образует димеры и в растворе протекает реакция:

$$\mathrm{LnA}_3 + 1.5\mathrm{H}_2\mathrm{A}_2 = \mathrm{Ln}(\mathrm{HA}_2)_3.$$

С учетом этого допущения коэффициент активности *о*-ксилола рассчитывали по формуле:

$$\gamma_2^* = \frac{P_2}{P_2^s x_2^*},\tag{7}$$

где x_2^* — мольная доля *о*-ксилола в растворе $H_2A_2 - o-C_8H_{10} - Ln(HA_2)_3$ (с учетом образования димера Д2ЭГФК).

Структурные параметры r_i и q_i для H₂A₂ и o-С₈Н₁₀ определяли по таблицам Бонди [29], параметры для комплексов Ln(HA₂)₃ оценивали как линейные комбинации параметров для Ln³⁺ [30] и параметров для H_2A_2 . Для расчета параметров τ_{ii} минимизировали целевую функцию, равную сумме квадратов разности активностей о-ксилола, определенных экспериментально и рассчитанных по модели. Параметры τ_{12} , τ_{21} определяли с использованием данных работы [7], остальные бинарные параметры получали при обработке результатов измерений давления пара, измеренных в настоящей работе. Для корректного описания данных в тройной системе оказалось достаточно одного бинарного параметра τ_{13} ($\tau_{13} = \tau_{31}$), параметры τ₂₃, τ₃₂ были приняты равными единице. Структурные и бинарные параметры модели UNIQUAC для систем Д2ЭГФК – о-ксилол – LnA_3 (Ln = La, Lu) приведены в табл. 5. Следует заметить, что при получении новых экспериментальных данных, термодинамическая модель может быть уточнена.

Рассчитанные и измеренные значения давления насыщенного пара находятся в хорошем согласии, относительная ошибка не превышает 2.0% и 0.9% для систем с ди-(2-этилгексил)фосфатом лантана и лютеция, соответственно (см. табл. 4). Коэффициенты активности растворителя (γ_2^*), рассчитанные с учетом наличия димера Д2ЭГФК в растворе, отличаются от 1 практически для всех исследованных растворов системы Д2ЭГФК – *о*-ксилол – LuA₃; для систем с LaA₃ γ_2^* принимает значения меньше единицы при $w(LaA_3) > 0.11$. Из полученных данных видно, что значения коэффициентов активности *о*-ксилола в системах Д2ЭГФК – *о*-ксилол – LnA₃ в исследуемом температурном интервале не зависят от температуры.

ЗАКЛЮЧЕНИЕ

Таким образом, в ходе настоящей работы синтезированы и охарактеризованы комплексы, образованные ди-(2-этилгексил)фосфорной кислотой и лантаноидами (LaA₃, LuA₃). Экспериментально измерены плотности растворов и получен набор параметров моделей, позволяющих описывать объемные свойства систем Д2ЭГФК – ди-(2этилгексил)фосфат лантана (лютеция) – o-ксилол. Показано, что полиномы Редлиха–Кистера с параметрами, полученными при описании бинарных систем, позволяют воспроизводить измеренные значения плотности растворов в системах Д2ЭГФК – ди-(2-этилгексил)фосфат РЗЭ – oксилол с точностью не менее 0.0006 г/мл.

Измерено давление насыщенного пара над растворами $Д2\Im \Gamma \Phi K - LnA_3$ (Ln = La, Lu) – *о*-ксилол при температурах 298.15, 303.15 и 308.15 К.

Полученные данные использованы при оценке параметров модели UNIQUAC; при построении модели учитывалась возможность димеризации Д2ЭГФК в исследованном температурном интервале. Показано, что коэффициенты активности разбавителя не зависят от температуры в интервале 298.15–308.15 К. При этом они отличаются от 1 для всех исследованных составов растворов в системе с LuA₃ и в случае концентрированных растворов, содержащих LaA₃.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-29-24167, а также частично в рамках темы "Химическая термодинамика и теоретическое материаловедение" (№ ЦИТИС – 121031300039-1).

СПИСОК ЛИТЕРАТУРЫ

- 1. Xie F. // Minerals Engineering. 2014. № 56. P. 10.
- 2. *Harada, T., Smutz M., Bautista R.* // J. Chem. Eng. Data. 1972. № 2. P. 203.
- 3. *Srirachat W.* // Fluid Phase Equilib. 2017. V. 434. P. 117.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

- Koekemoer L.R., Badenhorst M.J.G., Everson R.C. // J. Chem. Eng. Data 2005. V. 50. № 2. P. 587.
- 5. Swain N., Singh S.K., Panda D.et al. // J. Mol. Liq. 2001. V. 94. № 3. P. 233.
- 6. *Dalai B., Dash S.K., Singh S.K., Swain B.* // J. Chem. Thermodyn. 2016. V. 93. P. 143.
- 7. *Kurdakova S., Kovalenko N., Uspenskaya I.* // Moscow University Chemistry Bulletin. 2016. V. 71. № 3. P. 147.
- 8. Dalai B., Dash S.K., Singh S.K. et al. // Biointerface Research in Applied Chemistry. 2020. № 10. P. 5323.
- Rout A., Mishra S., Ramanathan N. // J. Mol. Liq. 2020. V. 313. № 1. P. 113498.
- 10. *Kurdakova S.V., Zapolskih T.V., Kovalenko N.A. et al.* // J. Chem. Eng. Data. 2018. V. 63. № 10. P. 3839.
- Бабаян И.И., Курдакова С.В., Коваленко Н.А. и др. // Журн. физ. химии. Т. 96. № 1. С. 61–69. https://doi.org/10.31857/S0044453722010046
- 12. Gray M.F., Zalupski P., Nilsson M. // Procedia Chem. 2012. V. 7. P. 209.
- 13. *Gray M.F., Zalupski P., Nilsson M.* // Solvent Extr. Ion Exch. 2013. V. 31. № 5. P. 550.
- Jedináková-Křížová V., Proyaev V., Dvořák Z. // J. Radioanal. Nucl. Chem. Artic. 1994. V. 183. № 1. P. 33.
- 15. Прояев В., Единакова В. В., Марцоха С.Б. // Радиохимия. 1991. Т. 33. № 2. С. 65.
- 16. Baes C.F. // J. Phys. Chem. 1962. V. 66. № 9. P. 1629.
- 17. *Danesi P.R., Vandegrift G.F.* // Inorg. Nucl. Chem. Lett. 1981. V. 17. № 3–4. P. 109.
- Srirachat W., Maneeintr K., Pancharoen U. et al. // Vacuum. 2019. V. 160. P. 60. https://doi.org/10.1016/j.vacuum.2018.11.011
- 19. *Розен А.М., Юркин В.Г., Коновалов Ю.В. //* Журн. физ. химии. 1996. Т. 70. № 3. С. 500.
- Grigorash D.Yu., Kurdakova S.V., Kovalenko N.A., et al. // J. Chem. Thermodynamics. 2021. V.163. № 5–6. P. 106608.
- 21. Трифонов Ю.И. // Радиохимия. 1985. № 4. С. 422.
- 22. *Milanova M., Todorovsky D.* // Thermochim. Acta. 1994. V. 243. № 1. P. 27.
- 23. *Трифонов Ю., Легин Е., Суглобов Д.* // Радиохимия. 1987. Т. 6. № 2. С. 750.
- 24. *Bozukov L., Milanova M., Todorovsky D. //* Crystal Research and Technology. 1995. V. 30. № 7. P. 985.
- Tasaki-Handa Y. // J. of Colloid and Interface Science. 2014. V. 413. P. 65.
- Kovalenko N.A., Pustovgar E.A., Uspenskaya I.A. // J. Chem.Eng. Data. 2013. V. 1. P. 159. https://doi.org/10.1021/je301087w
- Kosova D.A., Voskov A.L., Kovalenko N.A. et al. // Fluid Phase Equilib. 2016. V. 425 P. 312. https://doi.org/10.1016/j.fluid.2016.06.021
- 28. Abrams D.S., Prausnitz J.M. // AIChE J. 1975. V. 21. № 1. P. 116.
- 29. *Bondi A*. Physical Properties of Molecular Crystals, Liquids, and Glasses, New York: Wiley, 1968. 502 p.
- Maksimov A.I., Kovalenko N.A., Uspenskaya I.A. // Calphad, 2019. V. 67. P. 1–17. https://doi.org/10.1016/j.calphad.2019.101683.