_____ ХИМИЧЕСКАЯ КИНЕТИКА __ И КАТАЛИЗ

УДК 548.31

СИНТЕЗ И СТРОЕНИЕ АДДУКТОВ МЕТАКРИЛАТА УРАНИЛА С ДИЭТИЛАЦЕТАМИДОМ И ДИМЕТИЛФОРМАМИДОМ

© 2022 г. В. Н. Сережкин^{а,*}, Н. А. Шимин^а, М. С. Григорьев^b, Л. Б. Сережкина^a

^аСамарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия ^bИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия

> *e-mail: serezhkin@samsu.ru Поступила в редакцию 23.04.2022 г. После доработки 26.05.2022 г. Принята к публикации 30.05.2022 г.

Осуществлены синтез, ИК-спектроскопическое и рентгеноструктурное исследование кристаллов $UO_2(mac)_2 \cdot L$, где mac – метакрилат-ион $C_3H_5COO^-$, L – диэтилацетамид (DEA) или диметилформамид (DMF). Установлено, что структура кристаллов полученных аддуктов имеет однотипное строение и содержит димеры $[UO_2(mac)_2 \cdot L]_2$, относящиеся к кристаллохимической группе $AB^2B^{01}M^1$ (A = UO_2^{2+} , B^2 и B^{01} = mac⁻, M^1 = DEA или DMF) комплексов уранила. Обсуждено влияние природы амидов на особенности состава и строения аддуктов, образующихся в системах $UO_2(mac)_2 - L - H_2O$.

Ключевые слова: уранил, метакрилат, диэтилацетамид, диметилформамид, кристаллическая структура

DOI: 10.31857/S0044453722120238

К настоящему времени изучено строение четырех аддуктов метакрилата уранила $UO_2(mac)_2$ (mac – метакрилат-ион $C_3H_5COO^-$) с амидами [1, 2]. Без учета внешнесферных молекул воды три из них имеют одинаковый стехиометрический состав [$UO_2(mac)_2 \cdot 1.5L$], где L – карбамид, метил-карбамид или диметилкарбамид. По данным рентгеноструктурного анализа монокристаллов, для этих аддуктов характерно диспропорционирование по схеме:

$$2UO_2(mac)_2 \cdot nL \rightarrow [UO_2(mac) \cdot 3L]^+ + [UO_2(mac)_3]^- + (2n-3)L.$$
(1)

Следствием указанного диспропорционирования является сосуществование в кристаллах аддуктов одноядерных катионных и анионных комплексов соответственно с координационным числом (КЧ) атомов урана 7 или 8 и кристаллохимическими формулами (КХФ) $AB^{01}M_3^1$ или AB_3^{01} , где $A = UO_2^{2+}$, $B^{01} = mac$, $M^1 = L$. Параметры КХФ и указанные в них типы координации лигандов здесь и далее даны в соответствии с [3–5]. Поскольку диспропорционирование по схеме (1) теоретически возможно только при $n \ge 1.5$, то неудивительно, что еще один известный аддукт [UO₂(mac)₂·Tmur] (L = Tmur – тетраметилкарба-

мид [1]), для которого n = 1, имеет другое строение, а именно, содержит димеры с кристаллохимической формулой $AB^2B^{01}M^1$ ($A = UO_2^{2+}$, B^2 и $B^{01} = mac^-$, $M^1 = L$) и $KY_U = 7$.

Имеющиеся данные позволили предположить, что строение аддуктов метакрилата уранила зависит от состава амидов. Так, в случае амидов, имеющих атомы Н. которые способны образовать прочные водородные связи (карбамид, метилкарбамид или диметилкарбамид), происходит диспропорционирование по схеме (1). Если же такие атомы Н отсутствуют (как в случае Tmur), то образуются электронейтральные димеры. Для проверки указанной гипотезы нами были получены и охарактеризованы два новых аддукта $[UO_2(mac)_2 \cdot L]$, в которых молекулы амидов, подобно Tmur, не содержат активных атомов Н. Результаты исследования этих адлуктов. где L – диэтилацетамид (DEA) (I) или диметилформамид (DMF) (II), представлены в данной работе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез кристаллов І. К водно-спиртовому (1:1 по объему) раствору дигидрата метакрилата уранила (0.22 ммоль, 0.10 г), полученного взаимодействием оксида урана(VI) с метакриловой

СЕРЕЖКИН и др.

Координационная формула	$[UO_2(mac)_2 \cdot DEA]$	[UO ₂ (mac) ₂ ·DMF]			
Сингония, пр. гр., <i>Z</i>	Моноклинная, <i>P</i> 2 ₁ / <i>c</i> , 2	Моноклинная, <i>P</i> 2 ₁ / <i>n</i> , 2			
<i>a</i> , Å	11.4316(11)	11.6275(3)			
b, Å	10.3327(9)	11.2770(3)			
<i>c</i> , Å	16.2797(13)	12.2629(3)			
β, град	99.246(6)	91.843(1)			
V, Å ³	1898.0(3)	1607.12(7)			
$ρ_x$, $Γ/cm^3$	1.944	2.121			
μ, мм ⁻¹	8.582	10.126			
Т, К	100(2)	296(2)			
Излучение, λ, Å	$MoK_{\alpha}, 0.71073$				
Размер кристалла, мм	$0.14 \times 0.34 \times 0.36$	$0.12\times0.16\times0.22$			
θ _{max} , град	27.50	29.99			
Область <i>h, k, l</i>	$-13 \le h \le 14,$	$-16 \le h \le 16,$			
	$-13 \le k \le 13,$	$-15 \le k \le 15,$			
	$-21 \le l \le 21$	$-17 \le l \le 16$			
Число отражений: измеренных/независимых	17753/4337	40134/4675			
$(N_1), R_{\text{int}}/c I > 1.96 \sigma(I) (N_2)$	0.1481/2299	0.0321/3632			
Число уточняемых параметров	209	185			
<i>R</i> ₁ по <i>N</i> ₂	0.0741	0.0269			
<i>wR</i> ₂ по <i>N</i> ₁	0.1760	0.0619			
S	1.033	1.021			
Остаточная электронная плотность (min/max), e/Å ³	-2.069/2.773	-1.471/2.831			

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I и II

кислотой, добавляли диэтилацетамид (DEA) (1.10 ммоль, 0.13 г). Полученный раствор оставляли для изотермического испарения при комнатной температуре в затемненном месте, поскольку на свету метакриловая кислота и ее производные склонны к полимеризации с образованием гелеобразного осадка. Через 3–4 дня формировались желтые кристаллы состава UO₂(mac)₂·DEA (I) (найдено (%): U, 42.6; вычислено (%): U, 42.9), выход – 72%.

Синтез кристаллов II. К водно-спиртовому (1:1 по объему) раствору, содержащему метакриловую кислоту (3.50 ммоль, 0.300 г) и диметилформамид (DMF) (5.25 ммоль, 0.383 г), добавляли UO₃ (0.35 ммоль, 0.150 г) и оставляли в затемненном месте до полного растворения. Из полученного раствора через 4–5 суток выделялись желтые кристаллы состава UO₂(mac)₂·DMF (II) (найдено (%): U, 46.0; вычислено (%): U, 46.4), выход – 67%.

ИК-спектроскопия. ИК-спектры исследуемых веществ в виде таблеток с КВг были записаны на фурье-спектрометре Φ T-801 в области волновых чисел 4000—500 см⁻¹.

Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker КАРРА АРЕХ II. Параметры элементарных ячеек уточнены по всему массиву данных [6]. В экспериментальные интенсивности рефлексов внесены поправки на поглощение с использованием программ *SADABS* [7]. Структуры расшифрованы прямым методом (*SHELXS97* [8]) и уточнены полноматричным методом наименьших квадратов (*SHELXL-2018* [9]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов.

Атомы водорода размещены в геометрически вычисленных позициях с $U_{iso} = 1.2U_{equ}(C)$ для групп CH и CH₂ и $U_{iso} = 1.5U_{equ}(C)$ для групп CH₃, при этом ориентацию части групп CH₃ в структуре I и всех в структуре II уточняли. В структуре I положения групп CH₂ и CH₃ в одном из метакрилат-ионов разупорядочены.

Кристаллографические характеристики и детали дифракционного эксперимента приведены в табл. 1, а основные геометрические параметры полиэдров атомов урана — в табл. 2. КЧ всех атомов рассчитывали по методу пересекающихся сфер [10]. Координаты атомов и величины температурных параметров в структурах I и II депони-

1740

Таблица 2. Основные геометрические параметры полиэдра UO_7 в структурах $UO_2(mac)_2$ ·DEA (I) и $UO_2(mac)_2$ ·DMF (II)

Связь	<i>d</i> , Å	$\Omega,\%$	Угол	ω, град				
Структура І								
Пентагональная бипирамида UO ₇								
U-O(1)	1.680(13)	22.58	O(1)UO(2)	179.2(5)				
U-O(2)	1.735(10)	21.71	O(3)UO(5)	71.4(4)				
U-O(3)	2.357(10)	11.76	O(5)UO(4)	53.3(4)				
U-O(4)	2.432(12)	9.71	O(4)UO(7)	75.8(4)				
U-O(5)	2.459(9)	9.24	O(7)UO(6)	81.9(4)				
U-O(6)	2.315(11)	12.49	O(6)UO(3)	77.5(4)				
U-O(7)	2.310(10)	12.51						
Структура II								
Пентагональная бипирамида UO ₇								
U-O(1)	1.760(3)	21.65	O(1)UO(2)	179.42(16)				
U-O(2)	1.755(3)	21.65	O(3)UO(4)	52.58(11)				
U-O(3)	2.383(3)	11.80	O(4)UO(5)	73.70(11)				
U-O(4)	2.466(3)	9.27	O(6)UO(5)	84.05(12)				
U-O(5)	2.423(3)	9.79	O(7)UO(6)	77.94(12)				
U-O(6)	2.314(3)	12.81	O(3)UO(7)	71.78(11)				
U-O(7)	2.315(3)	13.04						

Обозначение: Ω — здесь и далее телесный угол (выражается в процентах от 4π стерадиан), под которым общая грань ПВД соседних атомов видна из ядра любого из них.

рованы в Кембриджском центре кристаллографических данных под номерами CCDC 2144780 и 2144779.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В ИК-спектрах I и II присутствуют характеристические полосы поглощения, соответствующие колебаниям ионов UO_2^{2+} , $C_3H_5COO^-$, а также молекул DEA (в спектре I) и DMF (в спектре II) (табл. 3) [11–14]. В свободных DEA и DMF частота валентных колебаний группы C=O составляет 1635 и 1685 см⁻¹ соответственно, в то время как в ИК-спектре полученных комплексов она понижена до 1598 и 1649 см⁻¹ в спектрах I и II, что свидетельствует о координации молекул амида катионом уранила через атом кислорода. Антисимметричные и симметричные валентные колебания метакрилат-ионов проявляются в областях, отвечающих их характеристическим колебаниям (табл. 3). Полоса поглощения характеристического антисимметричного валентного колебания иона уранила наблюдается при 925 (I) и 924 см⁻¹ (II).

Кристаллы I и II имеют однотипное строение. В обеих структурах координационным полиэдром (КП) единственного независимого атома урана является пентагональная бипирамида UO₇, на главной оси которой находятся атомы кислорода ионов UO₂²⁺. Из пяти атомов кислорода эк-ваториальной плоскости два принадлежат двум бидентатно-мостиковым метакрилат-ионам (тип координации B^2), два входят в состав бидентатноциклического метакрилат-иона (тип координации В⁰¹) и один – в состав молекулы амида (DEA или DMF) с монодентатным типом координации M¹. Основная структурная группировка – димеры $[UO_2(mac)_2 \cdot L]_2$ (рис. 1), относится к кристаллохимической группе $AB^2B^{01}M^1$ ($A = UO_2^{2+}$, B^2 и $B^{01} = mac^-$, $M^1 = DEA$ или DMF) комплексов уранила. Диоксокатионы UO_2^{2+} в структурах почти линейны (угол O=U=O равен 179.2(5)° (I) и 179.42(16)° (II)). Уранильная группа в структуре II симметрична (расстояния U=O равны 1.760(3) и 1.755(3) Å), в структуре I для $UO_2^{2^+}$ наблюдается заметная неравноплечность: d(U=O) = 1.680(13) и 1.735(10) Å. Объем полиэдра Вороного-Дирихле (ПВД) атома урана, имеющего форму пентагональной призмы, в структурах I и II равен соответственно 8.78 и 9.09 Å³ и приемлемо согласуется со средним значением 9.2(2) Å³, установленным

Рис. 1. Строение димеров $[UO_2(mac)_2 \cdot L]_2$ в структурах кристаллов I (а) и II (б). Для упрощения рисунков атомы водорода метакрилат-ионов и молекул амида L (DEA и DMF соответственно для I и II) не указаны.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

	Ι	II			
ν, см ⁻¹	Отнесение	ν, см ⁻¹	Отнесение		
2980 сл. 2950 сл.	v(CH ₃)	2959 сл. 2930 сл.	ν(CH ₃)		
1643 cp.	v(C=C)	1649 c.	$v(CO)_{amid}, v(C=C)$		
1598 c.	$v(CO)_{amid}$	1561 с. 1497 с.	$v_{as}(COO)$		
1564 c. 1515 c. 1496 c.	v _{as} (COO)	1458 c. 1438 c. 1412 c.	v _s (COO)		
1459 с. 1438 с. 1419 с.	v _s (COO)	1376 c.	δ(CH ₂)		
1374 ср. 1362 ср. 1348 сл. 1289 сл. 1243 ср.	δ(CH ₂)	1243 cp.	$\delta(CH_2), \nu_{as}(N-CH_3)$		
1044 сл.	$\omega(C-CH_3)$	1115 сл.	γ(N–CH ₃)		
1005 сл.	$r(C-CH_3)$				
951 cp.	$v(CC)_{mac}$	951 cp.	v(CC)		
925 c.	$v_{as}(UO_2^{2+})$	924 c.	$v_{as}(UO_2^{2+})$		
830 сл.	$v_s(UO_2^{2+})$	866 cp.	v _s (N-CH ₃)		
660 сл.	$\delta(O=C-N)$	828 сл.	$v_{s}(UO_{2}^{2+})$		
625 cp.	ρ(COO)	682 сл.	$\delta(O=C-N)$		
579 cp.	δ(OCO)	627 cp.	ρ(COO)		
		577 сл.	δ(OCO)		

Таблица 3. Предположительное отнесение полос поглощения в ИК-спектрах $UO_2(mac)_2$ ·DEA (I) и $UO_2(mac)_2$ ·DMF (II)

Примечание. Интенсивность полос: с. – сильная, ср. – средняя, сл. – слабая.

для атомов U(VI) в составе КП UO_{*n*} при *n* в диапазоне от 5 до 9 [15].

Анализ невалентных взаимодействий в кристаллах I и II был проведен с помощью метода молекулярных ПВД (ММПВД) [16, 17], в рамках которого учитываются все возможные невалентные контакты, а не только те, которые принято считать значимыми. Как известно [16, 17], важной характеристикой любой грани ПВД является ее ранг, целочисленное значение которого указывает минимальное число химических связей, соединяющих два атома, ПВД которых имеют общую грань. Именно ранг граней (РГ) позволяет легко и однозначно различать химические связи (для них всегда РГ = 1), внутримолекулярные (РГ >1) и

межмолекулярные ($P\Gamma = 0$) невалентные взаимодействия. Согласно полученным данным, в обсуждаемых кристаллах, которые содержат в своем составе атомы пяти элементов, реализуется по 8 из 15 теоретически возможных типов межмолекулярных контактов с $P\Gamma = 0$ (табл. 4). Взаимное связывание урансодержащих комплексов в обеих структурах осуществляется в основном за счет дисперсионных взаимодействий (контакты Н/Н и Н/С), которым отвечает суммарный парциальный вклад ≈68 (I) или 55% (II), а также водородных связей Н/О, парциальный вклад которых в площадь поверхности молекулярных ПВД составляет ≈31 (I) и 42% (II). Парциальные вклады всех остальных межмолекулярных контактов (O/O, N/O, C/O, H/N, C/N и C/C) незначительны и в сумме не превышают 3%. Наблюдающиеся отличия, в частности, отсутствие контактов типа С/С в структуре I или N/О в II (табл. 4, рис. 2) являются следствием особенностей супрамолекулярной структуры обсуждаемых аддуктов. Характеристики наиболее прочных водородных связей (включая внутримолекулярные) в структурах I и II указаны в табл. 5.

Для сравнения на рис. 2 указаны также характеристики межмолекулярных взаимодействий A/Z в кристаллах ранее изученных [UO₂(mac)₂· .⁻Tmur] (III) и [UO₂(mac)₂·1.5Dmur] (IV) [1], для которых также установлены координаты всех атомов. К сожалению, для упоминавшихся [UO₂(mac)₂·1.5L], где L – метилкарбамид(V) или карбамид (VI), из-за отсутствия сведений о позициях части атомов H анализ по ММПВД невозможен.

Отметим, что все аддукты I–VI были получены в однотипных условиях при кристаллизации водных растворов, в которых отношение L : U \geq 5. Поэтому возникает вопрос, почему кристаллы аддуктов I–III построены из электронейтральных димеров [UO₂(mac)₂·L]₂, тогда как аддукты IV–VI имеют состав [UO₂(mac)₂·1.5L] и содержат в структурах кристаллов одноядерные катионные [UO₂(mac)·3*L*]⁺ и анионные [UO₂(mac)₃]⁻ комплексы?

Заметим, что в известных одноядерных катионах [UO₂(mac)·3L]⁺ присутствуют амиды L, каждая молекула которых содержит соответственно две (IV), три (V) или четыре (VI) связи N–H. В то же время в димерах [UO₂(mac)₂·L]₂ содержатся амиды L, в которых связи N–H отсутствуют, поскольку все атомы водорода аминогрупп замещены этильными (I) или метильными (II и III) группами. Чтобы отличать два указанных типа амидов, обозначим первые как L_H, а алкилированные как L_C. На наш взгляд, можно предположить, что разный состав и строение "димерных" (I–III) и "мономерных" (IV–VI) аддуктов обусловлены

Тип		Ι			II			
контакта А/Z	k _{AZ}	D, Å	$S_{\rm AZ}, {\rm \AA}^2$	$\Delta_{AZ}, \%$	k _{AZ}	d. Å	$S_{\rm AZ},{ m \AA}^2$	$\Delta_{\rm AZ},$ %
0/0	2	3.65-3.65	0.51	0.12	2	3.69-3.69	0.76	0.20
N/O	2	3.48-3.48	1.35	0.33	_	_	_	_
C/O	4	3.25-3.57	2.94	0.72	4	3.36-3.66	2.21	0.59
H/O	84	2.60-4.27	125.71	30.67	84	2.60-4.44	159.08	42.37
H/N	4	4.11-4.35	0.02	0.004	4	3.73-3.73	0.24	0.06
C/N	2	4.15-4.15	0.13	0.03	12	3.71-4.08	3.78	1.01
C/C	_	_	_	_	12	3.51-3.93	3.37	0.90
H/C	78	2.92-5.75	51.39	12.54	70	3.10-4.17	41.22	10.98
H/H	143	2.24-5.75	227.87	55.59	95	2.70-4.73	164.82	43.90
Сумма	319	2.24-5.75	409.91	100	283	2.60-4.73	375.49	100

Таблица 4. Характеристики межмолекулярных взаимодействий в структурах $UO_2(mac)_2 DEA$ (I) и $UO_2(mac)_2 DMF$ (II) с позиций ММПВД

Обозначения: k_{AZ} – общее число всех граней с РГ = 0, d – диапазон соответствующих межатомных расстояний A–Z, S_{AZ} – общая площадь всех граней указанного типа у ПВД-атомов, содержащихся в одной формульной единице вещества, Δ_{AZ} –

парциальный вклад (в процентах) соответствующих невалентных контактов A/Z в величину интегрального параметра ${}^{0}S = \Sigma S_{AZ}$ (указан в нижней строке) молекулярного ПВД.

разной природой важнейших межмолекулярных водородных связей. Так, связи N-H...О возможны только в кристаллах IV–VI, которые содержат L_H , тогда как связи C-H...О теоретически могут возникать во всех кристаллах I–VI благодаря наличию метакрилат-ионов в их составе.

К сожалению, интегральные характеристики межмолекулярных взаимодействий H/O, которые указаны в табл. 4 и на рис. 2, не принимают во внимание природу донорных атомов D (N или C) в связях D–H…O. Учесть природу доноров D поз-

Рис. 2. Гистограмма, отображающая парциальные вклады межмолекулярных взаимодействий A/Z в величину ⁰*S* в структурах кристаллов [UO₂(mac)₂·L] при L = DEA (I), DMF (II), Tmur (III) и [UO₂(mac)₂·1.5Dmur] (IV). Значения Δ_{AZ} для III и IV взяты из работы [1].

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 12 2022

воляют двухмерные распределения $P\Gamma = f(d)$, которые характеризуют длину межатомных контактов A/Z в зависимости от ранга соответствующих им граней ПВД [18]. Поэтому для ответа на поставленный выше вопрос, на наш взгляд, удобно использовать данные для аддуктов II и IV, содержащих амиды R-C(O)N(CH₃)₂, которые отличаются только природой группы R. Так, в структуре II: R = H (L – DMF), тогда как в IV: R = NH₂ (L – Dmur).

По имеющимся данным, взаимодействиям С-Н/О в кристаллах ІІ отвечают грани ПВД с рангом 0, 2, 4 и 6 (рис. 3а), тогда как в аддукте IV им соответствуют контакты $H/O c P\Gamma = 0, 4 u$ 6 (рис. 3б). Существенно, что при $P\Gamma = 0$ в кристаллах II и IV самые короткие контакты С-Н…О имеют $d(H/O \ge 2.47 Å$ (рис. 3а, 3б) и, согласно [19], все они являются слабыми водородными связями (BC). В то же время в отличие от II, в структуре IV имеются межмолекулярные контакты N-H…O с d(H/O) = 2.16-2.22 Å (рис. 3в), которые, в соответствии с [19], являются средними по силе ВС. Эти связи с $P\Gamma = 0$ образуются в структуре IV именно благодаря наличию групп -NH₂, с участием которых одновременно возникают и еще более короткие внутримолекулярные контакты N-H···O с PГ = 5 и d(H/O) = 2.07 - 2.09 Å (рис. 3в), способствующие устойчивости катионных комплексов [UO₂(mac)·3Dmur]⁺ [1].

Поскольку в обсуждаемых аддуктах, содержащих алкилированные амиды L_C , контакты N–H···O невозможны, то данные рис. 3 подтвержда-

D–H…A	Расстояния, Å			Угол D–Н…А,		O(HA) %	Dour provin		
	D-H	Н…А	D…A	град.	Δ2(D-Π), %	$S2(11^{-1}A), 70$	гані грани		
Структура І									
С5-Н9…О2	0.990	2.728	3.508	135.91	27.78	10.38	0		
C11-H14…O5	0.978	2.284	2.786	137.14	13.61	13.67	4		
С10-Н17…О2	0.950	2.603	3.520	162.21	14.37	12.85	0		
C15-H24…O4	0.981	2.416	3.369	163.71	26.62	14.94	0		
C16-H28O3	0.948	2.608	3.519	161.13	33.23	13.26	0		
Структура II									
C3-H1…O2	0.930	2.596	3.460	154.68	33.00	13.95	0		
C4-H5…O1	0.960	2.796	3.609	142.98	26.68	13.20	0		
C8–H9…O4	0.960	2.473	3.314	146.25	26.73	12.56	6		
C9-H11…O1	0.930	2.794	3.652	153.97	33.39	10.19	0		
C11-H15…O1	0.959	2.608	3.543	164.79	26.85	12.75	0		
C11-H16…O2	0.960	2.625	3.465	146.29	26.66	13.73	0		

Таблица 5. Параметры водородных связей в структурах I и II

Примечание. Представлены BC с H···A < 3 Å, углом D–H···A > 130 град. и $\Omega(H···A) > 10\%$.

Рис. 3. Распределения $P\Gamma = f(d(H/O))$ для контактов C-H/O в структурах кристаллов [UO₂(mac)₂·DMF] (II) (а) или [UO₂(mac)₂·1.5Dmur] (IV) (б), а также контактов N-H/O в структуре [UO₂(mac)₂·1.5Dmur] (IV) (в).

ют, на наш взгляд, мнение о влиянии внутримолекулярных контактов $N-H\cdots O$ на образование катионов $[UO_2(mac)\cdot 3L]^+$, которые в конечном итоге обусловливают появление устойчивых противоионов $[UO_2(mac)_3]^-$ [1].

Отметим также, что помимо IV–VI к настоящему времени изучены еще три карбоксилатсодержащих аддукта уранила, а именно: $[UO_2(ac)(urea)_3]$ $[UO_2(ac)_3]$ (VII) [20], $[UO_2(prop)(meur)_3][UO_2(prop)_3]$ (ргор)_3] (VIII) и $[UO_2(prop)(s-dmur)_3][UO_2(prop)_3]$ (IX) [21], где ас и ргор – ацетат- или пропионатанионы, а игеа, meur и s-dmur – соответственно карбамид, метилкарбамид и N,N'-диметилкарбамид. В полном согласии с данными для IV–VI, строение VII–IX также подтверждает указанное заключение о том, что наличие у молекулы амида связей N–H обусловливает диспропорционирование аддуктов по схеме (1) с образованием одноядерных катионных и анионных комплексов.

Следует также отметить, что наличие или отсутствие взаимодействий N-H····O влияет не только на состав и строение рассмотренных аддуктов метакрилата уранила с амидами, но и на свойства самих амидов. Так, все упоминавшиеся амиды типа L_H в структурах IV–IX (диметилкарбамид, метилкарбамид или карбамид) благодаря взаимодействиям N-H···O при стандартных условиях являются твердыми веществами с температурами плавления в области 103–133°С, тогда как амиды типа L_C в структурах I–III (диэтилацетамид, диметилформамид и тетраметилкарбамид), в которых взаимодействия N-H···O отсутствуют, – жидкие вещества, температуры плавления которых лежат в области от –1 до –61°С. СИНТЕЗ И СТРОЕНИЕ АДДУКТОВ МЕТАКРИЛАТА УРАНИЛА

Рентгенодифракционные эксперименты проведены в ЦКП ФМИ ИФХЭ РАН при частичном финансировании Министерством науки и высшего образования РФ (тема N 122011300061-3). Один из соавторов – Н.А. Шимин – благодарен Российскому научному фонду за финансовую поддержку (проект № 20-73-10250).

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сережкина Л.Б., Григорьев М.С., Шимин Н.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 6. С. 746. https://doi.org/10.7868/S0044457X15060124
- Клепов В.В., Сережкина Л.Б., Григорьев М.С. и др. // Там же. 2018. Т. 63. № 8. С. 982. https://doi.org/10.1134/S0044457X18080111
- 3. Сережкин В.Н., Медведков Я.А., Сережкина Л.Б., Пушкин Д.В. // Журн. физ. химии. 2015. Т. 89. № 6. С. 978. https://doi.org/10.1134/S0036024415060254
- 4. Сережкин В.Н., Полынова Т.Н., Порай-Кошиц М.А. // Коорд. химия. 1995. Т. 21. № 4. С. 253.
- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Crystallogr. B. 2009. V. 65. № 1. P. 45. https://doi.org/10.1107/S0108768108038846
- 6. SAINT-Plus (Version 7.68). Bruker AXS Inc., Madison, Wisconsin, USA. 2007.
- 7. *Sheldrick G.M.* SADABS. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- 8. *Sheldrick G.M.* // Acta Crystallogr. 2008. V. A64. № 1. P. 112.

- 9. Sheldrick G.M. // Ibid. 2015. V. C71. № 1. P. 3.
- 10. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
- 11. *Накамото К.* ИК-спектры и спектры КР неорганических и координационных соединений: Пер. с англ. М.: Мир, 1991. 536 с.
- Allan J.R., Beaumont P.C., Milburn G.H.W., Wood I.J. // Thermochimica Acta. 1993. V. 230. P. 123. https://doi.org/10.1016/0040-6031(93)80353-C
- Badawi H.M., Al-Khaldi M.A.A., Al-Abbad S.S.A., Al-Sunaidi Z.H.A. // Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2007. V. 68. Iss. 3. P. 432. https://doi.org/10.1016/j.saa.2006.11.048
- Venkata Chalapathi V., Venkata Ramiah K. // Proc. Ind. Ar Sci. 1968. A. V. LXVIII. Pl. V. P. 109–123.
- 15. Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Applied Solid State Chem. 2018. № 2. P. 2.
- Сережкин В.Н., Сережкина Л.Б. // Кристаллография. 2012. Т. 57. № 1. С. 39. https://doi.org/10.1134/S1063774511030291
- 17. Serezhkin V.N., Serezhkina L.B., Vologzhanina A.V. // Acta Cryst. B. 2012. V. 68. № 3. P. 305.
- Serezhkin V.N., Savchenkov A.V. // CrystEngComm. 2021. V. 23. P. 562. https://doi.org/10.1039/d0ce01535k
- 19. Steiner T. // Angew. Chem. 2002. V. 41. № 1. P. 48.
- 20. *Мистрюков В.Е., Михайлов Ю.Н., Юранов И.А. //* Коорд. химия. 1983. Т. 9. № 2. С. 272.
- Сережкин В.Н., Григорьев М.С., Абдульмянов А.Р., Сережкина Л.Б. // Радиохимия. 2016. Т. 58. № 2. С. 103. https://doi.org/10.1134/S1066362216020028