= ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 541.123.6 + 549.76

АНАЛИЗ ТРОЙНЫХ ВЗАИМНЫХ СИСТЕМ Na⁺, Ba²⁺||Hal⁻, SO₄²⁻ (Hal⁻ – F⁻, Cl⁻, Br⁻, I⁻) И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СИСТЕМЫ Na⁺, Ba²⁺||I⁻, SO₄²⁻

© 2022 г. М. А. Сухаренко^{а,*}, И. К. Гаркушин^а, К. И. Керимова^а

^аСамарский государственный технический университет, 443100 Самара, Россия

*e-mail: sukharenko_maria@mail.ru Поступила в редакцию 17.08.2021 г. После доработки 25.09.2021 г. Принята к публикации 25.09.2021 г.

Проанализирован ряд трехкомпонентных взаимных систем Na⁺, Ba²⁺||I⁻, SO₄²⁻, осуществлен прогноз топологии ликвидуса для неисследованных систем данного ряда. Проведено разбиение на симплексы конверсионным методом, описано химическое взаимодействие и построено древо фаз трехкомпонентной взаимной системы Na⁺, Ba²⁺||I⁻, SO₄²⁻. Экспериментальное исследование системы проведено методом дифференциального термического анализа. Выявлены температуры плавления и составы точек нонвариантных равновесий в стабильных элементах системы.

Ключевые слова: физико-химический анализ, фазовые диаграммы, сульфат бария, эвтектика **DOI:** 10.31857/S004445372202025X

Физико-химический анализ многокомпонентных солевых систем различной мерности является актуальной задачей современного материаловедения, поскольку разработка новых составов и изучение их свойств невозможны без детального исследования фазовых диаграмм [1– 11]. Фазовые равновесия в системах, содержащих сульфаты и галогениды щелочных металлов и, в частности, бария, остаются недостаточно хорошо изученными [12, 13]. В качестве объекта исследования в настоящей работе выбран ряд трехкомпонентных взаимных систем Na⁺, Ba²⁺||Hal⁻, SO₄²⁻ (Hal⁻ – F⁻, Cl⁻, Br⁻, I⁻)

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

На рис. 1 представлен ряд трехкомпонентных взаимных систем Na⁺, Ba²⁺||Hal⁻, SO₄²⁻ (Hal⁻ – F⁻, Cl⁻, Br⁻, I⁻). Две системы данного ряда – Na⁺, Ba²⁺||Cl⁻, SO₄²⁻ [11] и Na⁺, Ba²⁺||Br⁻, SO₄²⁻ являются исследованными [14]. На рис. 1 прогнозируемые линии моновариантных равновесий нанесены пунктиром. Система Na⁺, Ba²⁺||F⁻, SO₄²⁻ имеет слишком высокую температуру ликвидуса. Поэтому, в качестве объекта для дальнейшего теоретического и экспериментального исследования, выбираем неизученную трехкомпонентную систему Na^+ , $Ba^{2+} \| I^-$, SO_4^{2-} .

Разбиения на симплексы трехкомпонентной взаимной системы Na^+ , $Ba^{2+} \| I^-$, SO_4^{2-} проведем конверсионным методом [15]. В трехкомпонентной взаимной системе в точке полной конверсии К протекает реакция обмена:

BaI₂ + Na₂SO₄
$$\rightleftharpoons$$
 2NaI + BaSO₄,
 $\Delta_{\rm r} H_{298}^{\circ} = -42.32$ кДж/моль, (1)
 $\Delta_{\rm r} G_{298}^{\circ} = -46.56$ кДж/моль.

Из термодинамических характеристик видно, равновесие смещено в сторону пары солей NaI– BaSO₄. Таким образом, древо фаз трехкомпонентной взаимной системы состоит из двух стабильных треугольников: NaI–BaI₂–BaSO₄ и NaIP–Na₂SO₄–BaSO₄, соединенных стабильной секущей NaI–BaSO₄.

На основании полученного древа фаз стало возможно осуществить прогнозирование числа и состава кристаллизующихся фаз в каждом симплексе системы. В стабильном треугольнике NaI–Na₂SO₄–BaSO₄ будут кристаллизоваться три твердые фазы: NaI, BaSO₄, граничный твердый раствор (OTP) на основе сульфата натрия (фаза

Рис. 1. Ряд трехкомпонентных взаимных систем Na⁺, Ba²⁺ ||Hal⁻, SO₄²⁻ (Hal⁻ – F⁻ (a), Cl⁻ (б), Br⁻ (в), I⁻(г)).

 γ); в стабильном треугольнике NaI–BaI₂–BaSO₄ также кристаллизуются три фазы: NaI, BaI₂, BaSO₄.

ОБЪЕКТЫ И МЕТОДЫ

В качестве объекта экспериментального исследования в настоящей работе выбрана трехкомпонентная взаимная система Na⁺, Ba²⁺||I⁻, SO₄²⁻. Она включает в свой состав четыре индивидуальных вещества, термические и термодинамические свойства которых приведены в табл. 1 [16, 17].

Элементами огранения трехкомпонентной

взаимной системы Na⁺, Ba²⁺ I⁻, SO₄²⁻ являются четыре двухкомпонентные системы: две системы с общим катионом — $NaI-Na_2SO_4$ и BaI_2-BaSO_4 и две системы с общим анионом NaI-BaI₂ и Na₂SO₄-BaSO₄. Из них исследованными являются только две двухкомпонентные системы — Na_2SO_4 — $BaSO_4$ и NaI-Na₂SO₄. Система Na₂SO₄-BaSO₄ эвтектического типа, температура эвтектики 913°С, состав 80 мол. % Na₂SO₄ + 20 мол. % BaSO₄; со стороны сульфата натрия образуется ограниченный твердый раствор (ОТР) на основе α-Na₂SO₄ с максимумом температуры кристаллизации при 917°С и 83 мол. % Na₂SO₄. Твердые фазы в эвтектике – α -BaSO₄ и γ (OTP α -Na₂SO₄) [18]. Система NaI-Na₂SO₄ – эвтектического типа с координатами: 598°С и 82.7 мол. % Na₂SO₄ + 17.3 мол. % NaI, которые приведены в работе [19] по данным [20].

Экспериментальные исследования фазовых равновесий в трехкомпонентной взаимной системе Na⁺, Ba²⁺||I⁻, SO₄²⁻ и элементах ее огранения проводили с помощью дифференциального термического анализа (ДТА) с использованием установки, включающей печь нагрева шахтного типа, комбинированную платина-платинородиевую термопару ПП-1 и аналоговый цифровой преобразователь [21]. Для регистрации выходных данных использовали IBM совместимая ПЭВМ с программным обеспечением DSK Tool 2.0.

Термоаналитические исследования проводили в стандартных платиновых микротиглях (изделие № 108-3 по ГОСТ 13498-68). Холодные спаи термопар термостатировали при 0°С в сосуде Дьюара с тающим льдом. Скорость нагрева (охлаждения) образцов составляла 10–15 К/мин. Индифферентным веществом служил свежепрокаленный оксид алюминия марки "ч.д.а.". Точность измерения температур составляла ±2.5°С; точность взвешивания составов на аналитических весах VIBRAHT ±0.0001 г. Масса исходных смесей составляла 0.3 г. Составы всех смесей, приведенные в настоящей работе, выражены в молярных концентрациях эквивалентов, температуры – в градусах Цельсия.

В работе использовались реактивы следующих марок: NaI "ч.д.а." (ГОСТ 8422-76, содержание основного вещества 99.5%), BaI₂ "х.ч." (ТУ 6-09-1481-85, содержание основного вещества 99.9%), Na₂SO₄ "ч.д.а." (ТУ 6-09-04-80-82 содержание ос-

Вещество	<i>М</i> (г/моль)	<i>Т</i> _{пл} , °С	Полиморфный переход, °C	$-\Delta_{\mathrm{f}} H^{\circ},$ кДж/моль	$-\Delta_{\mathrm{f}}G^{\circ},$ кДж/моль	Литература
NaI	149.890	661		288.06	284.84	[13]
Na ₂ SO ₄	142.042	884	714	1389.50	1271.73	[13]
BaI ₂	139.136	711		604.15	600.18	[14]
BaSO ₄	233.430	1580	1150	1459.85	1348.78	[14]

Таблица 1. Термические и термодинамические свойства индивидуальных веществ

Рис. 2. Фрагмент *Т-х*-диаграммы системы NaI-Na₂SO₄.

новного вещества 99.5 мас. %), $BaSO_4$ "ч.д.а." (ГОСТ 4463-76 содержания основного вещества 99.5%). Температуры плавления исходных солей, определенные методом ДТА (при точности измерения ±2.5°С) равны: NaI – 661°С, $BaI_2 - 740°$ С, Na₂SO₄ – 884°С, влияние имеющихся примесей на температуры плавления исходных солей незначительны. Поэтому принимаем данные литературы [16, 17] для всех четырех индивидуальных веществ. Исходные реактивы были предварительно высушены, и после охлаждения в сухом боксе, помещены в бюксы. Бюксы хранились в эксикаторах с осушителем – силикагелем.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальные исследования в трехком-

понентной взаимной системе Na^+ , $Ba^{2+}||I^-$, SO_4^{2-} и элементах ее огранения осложнены тем, что расплав йодида бария в условиях эксперимента получить невозможно, поскольку на воздухе при нагревании выше 170°С он разлагается по реакции:

$$2BaI_2 + O_2 \rightarrow 2BaO + 2I_2. \tag{2}$$

Для уточнения координат двойной эвтектики в работе экспериментально исследована двухкомпонентная система — NaI Na₂SO₄ (рис. 2) методом ДТА. Выявили температуру плавления двойного эвтектического сплава e_2 639°С и его состав — 50 экв. % NaI + 50 экв. % Na₂SO₄. Термоаналитическая кривая эвтектического состава приведена на рис. 3.

Рис. 3. Термоаналитическая кривая эвтектического сплава е₂.

Экспериментально исследована квазибинарная система NaI-BaSO₄ (рис. 4). Выявлены характеристики эвтектического сплава e_5 — температура плавления 652°C, состав 5% экв. BaSO₄ и 95% экв. NaI. Термоаналитеческая кривая данного состава показана на рис. 5.

Проекция фазового комплекса трехкомпонентной взаимной системы Na⁺, Ba²⁺||I⁻, SO₄²⁻ на квадрат составов приведена на рис. 6. Для экспериментального изучения стабильного треуголь-

Рис. 4. Фрагмент *Т-х-*диаграммы квазидвойной системы NaI–BaSO₄.

Рис. 5. Термоаналитическая кривая эвтектического сплава е₃.

ника NaI–Na₂SO₄–BaSO₄ в поле кристаллизации сульфата бария был выбран политермический разрез e_5A (e_5 [95%NaI + 5%BaSO₄], A [45%NaI + + 5%BaSO₄ + 50% Ba₂SO₄]). *T*–*x*-диаграмма разреза приведена на рис. 7. Определена температура плавления тройного эвтектического сплава E_1 625°C и соотношение компонентов NaI и Na₂SO₄. Исследованием политермического разреза BaSO₄ $\rightarrow \overline{E}_1 \rightarrow E_1$ выявлен состав тройной эвтектики: 50% экв. NaI + 47% экв. Na₂SO₄ + 3% экв. BaSO₄. Термоаналитическая кривая тройного эвтектического сплава приведена на рис. 8.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В ряду трехкомпонентных взаимных систем Na⁺, Ba²⁺||Hal⁻, SO₄²⁻ (Hal – F⁻, Cl⁻, Br⁻, I⁻) (рис. 1): у двух изученных систем данного ряда – Na⁺, Ba²⁺||Cl⁻, SO₄²⁻ и Na⁺, Ba²⁺||Br⁻, SO₄²⁻ - cxoжее строение. Стабильная диагональ разбивает квадрат составов на два стабильных треугольника, в каждом из которых образуется тройная эвтектика. Первая система ряда Na⁺, Ba²⁺ $\|F^-$, SO₄²⁻ не изучена, но, очевидно, отличается по своему строению. На двойной стороне квадрата составов $NaF-Na_2SO_4$ имеется соединение конгрузнтного плавления Na₃FSO₄, стабильная секущая BaSO₄-Na₃FSO₄ участвует в разбиении системы на симплексы. Древо фаз системы состоит из трех стабильных треугольников NaF-BaF₂-BaSO₄, NaF-Na₃FSO₄-BaSO₄ и Na₃FSO₄-Na₂SO₄-BaSO₄, paзделенных стабильными секущими NaF-BaSO4 и

Рис. 6. Проекция фазового комплекса трехкомпонентной взаимной системы Na^+ , $Ba^{2+} \| I^-$, SO_4^{2-} на квадрат составов.

BaSO₄—Na₃FSO₄. В каждом стабильном треугольнике прогнозируется образование тройной эвтектики. Изученная трехкомпонентная взаимная си-

Рис. 7. T—x-диаграмма разреза e_5A .

стема Na⁺, Ba²⁺||I⁻, SO₄²⁻ имеет топологию ликвидуса, сходную с системами Na⁺, Ba²⁺||Cl⁻, SO₄²⁻ и Na⁺, Ba²⁺||Br⁻, SO₄²⁻. Стабильная диагональ – квазибинарная система NaI–BaSO₄ – разбивает квадрат составов на два стабильных треугольника NaI–BaI₂–BaSO₄ и NaI–Na₂SO₄–BaSO₄, в каждом из которых образуются тройные эвтектики. Разбиение на симплексы, проведенное термодинамическим методом, также показывает, что стабильными продуктами реакции обмена, протекающей в тройной взаимной системе Na⁺, Ba²⁺||I⁻, SO₄²⁻, будут соли NaI и BaSO₄.

С целью подтверждения древа фаз методом ДТА была изучена квазибинарная система Nal— BaSO₄, установлено, что система является эвтектической. Следовательно, она является стабильной диагональю трехкомпонентной взаимной системы Na⁺, Ba²⁺||I⁻, SO₄²⁻ и разбиение выполнено верно. Ликвидус квазидвойной системы Nal—BaSO₄ представлен двумя ветвями кристаллизации йодида натрия и сульфата бария (α - и β -фазы). Ветви первичной кристаллизации и эвтектической прямой сходятся в двойной эвтектике e_5 , для которой существует фазовое равновесие: Ж \leq NaI + α -BaSO₄.

Рассмотрим *T-х*-диаграмму политермического разреза e_5A , приведенную на рис. 7. Ликвидус системы представлен на разрезе плавной кривой, которая отвечает кристаллизации из расплава сульфата бария. Линия вторичной кристаллизации представлена двумя ветвями. Ветвь $e_5\overline{E}_1$ соответствует совместной кристаллизации сульфата бария и йодида натрия. Ветвь $A\overline{E}_1$ соответствует совместной кристаллизации сульфата бария и ОТР на основе сульфата натрия. Ветви вторичной кристаллизации сходятся в точке \overline{E}_1 (направление на эвтектику). Линия третичной кристаллизации представлена в виде эвтектической прямой. Эвтектическому составу соответствует фазовое равновесие: $Ж \hookrightarrow \alpha$ -BaSO₄ + NaI + α .

Экспериментальное исследование стабильного треугольника NaI-BaI₂-BaSO₄ не проводилось, поскольку йодид бария разлагается при нагревании.

Ликвидус трехкомпонентной взаимной системы Na⁺, Ba²⁺||I⁻, SO₄²⁻ представлен четырьмя полями кристаллизации – йодида натрия, йодида бария, сульфата бария и ОТР на основе сульфата натрия. Наибольшее поле кристаллизации принадлежит сульфату бария – наиболее тугоплавкому компоненту. Фазовые равновесия для всех элементов диаграммы приведены в табл. 2.

Таким образом, проанализирован ряд трехкомпонентных взаимных систем Na⁺, Ba²⁺ ||Hal⁻,

Рис. 8. Термоаналитическая кривая эвтектического сплава E₁.

 SO_4^{2-} (Hal — F⁻, Cl⁻, Br⁻, I⁻). Для неизученных тройных взаимных систем приведен прогноз топологии ликвидуса. Проведено разбиение на симплексы трехкомпонентной взаимной системы Na⁺,Ba²⁺||I⁻,SO₄²⁻ термодинамическим методом. Построено древо фаз системы, которое имеет линейное строение и состоит из двух стабильных треугольников NaI–BaI₂–BaSO₄ и NaI– Na₂SO₄–BaSO₄, разделенных квазибинарной секущей NaBr–BaSO₄. Методом ДТА проведено

Таблица 2. Фазовые равновесия в стабильном треугольнике $NaI-Na_2SO_4-BaSO_4$ трехкомпонентной взаимной системы Na^+ , $Ba^{2+}||I^-$, SO_4^{2-}

, II , T				
Элементы диаграммы	Фазовое равновесие			
Поля				
$NaIe_3E_1e_2$	₩ ⇄ NaI			
$Na_2SO_4e_1E_1e_2$	$K \rightleftharpoons \gamma$			
$BaSO_4e_1E_1e_3$	$X \rightleftharpoons \alpha$ -BaSO ₄			
Линии				
e_1E_1	$K \rightleftharpoons \gamma + \alpha - BaSO_4$			
e_2E_1	Ж≓ NaI +γ			
e_3E_1	Ж≓ NaI +α-BaSO₄			
Точки				
E_1	$X \rightleftharpoons NaI + \gamma + \alpha - BaSO_4$			

экспериментальное исследование квазидвойной системы NaBr–BaSO₄. Выявлены координаты эвтектического сплава e_5 : температура плавления 652°C, состав 5% экв. BaSO₄ + 95% экв. NaI. Методом ДТА исследован стабильный треугольник NaI–Na₂SO₄–BaSO₄ трехкомпонентной взаим-

ной системы Na⁺, Ba²⁺ $\|$ I⁻, SO₄²⁻. Выявлены координаты тройного эвтектического сплавова: E₁ – 625°C; состав: 50% экв. NaI + 47% экв. Na₂SO₄ + 3% экв. BaSO₄.

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках проектной части государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сунцов Ю.К., Харченко Г.Ю., Алферова С.И. // Журн. физ. химии. 2019. Т. 93. № 3. С. 471. https://doi.org/10.1134/S0036024419030208
- 2. Белова Е.В., Финкельштейн Д.И., Максимов А.И. и др. // Там же. 2019. Т. 93. № 11. С. 1638. https://doi.org/10.1134/S0036024419110050
- 3. Кескинов В.А., Семенов К.Н., Гольцов Т.С. и др. // Там же. 2019. Т. 93. № 12. С. 1907. https://doi.org/10.1134/S0036024419120124
- 4. Косяков В.И., Шестаков В.А., Грачев Е.В. // Там же. 2019. Т. 93. № 11. С. 1652. https://doi.org/10.1134/S0036024419110153
- 5. Саутина Н.В., Галяметдинов Ю.Г. // Там же. 2019. Т. 93. № 5. С. 694. https://doi.org/10.1134/S003602441905025X
- 6. Шамитов А.А., Гаркушин И.К., Колядо А.В. // Там же. 2020. Т. 94. № 3. С. 431. https://doi.org/10.1134/S0036024420030267
- 7. Елохов А.М., Лукманова Л.М., Кудряшова О.С. // Там же. 2019. Т. 93. № 3. С. 358. https://doi.org/10.1134/S0036024419030051

- 8. *Кочкаров Ж.А., Сокурова З.А., Кочкаров З.Ж.* // Журн. неорган. химии. 2018. Т. 63. № 7. С. 903. https://doi.org/10.1134/S0036023618070094
- Каблов Е.Н., Доронин О.Н., Артеменко Н.И. и др. // Там же. 2020. Т. 65. № 6. С. 846. https://doi.org/10.1134/S0036023620060078
- 10. *Губанова Т.В., Афанасьева А.Д., Бузгон Е.А. и др. //* Там же. 2018. Т. 63. № 2. С. 257. https://doi.org/10.1134/S0036023618020067
- 11. Гаркушин И.К., Рагрина М.С., Сухаренко М.А. // Там же. 2018. Т. 63. № 1. С. 94. https://doi.org/10.1134/S0036023618010084
- Сырова В.И., Гаркушин И.К., Фролов Е.И. и др. // Журн. физ. химии. 2020. Т. 94. № 6. С. 850. https://doi.org/10.1134/S0036024420060278
- Кириленко И.А., Демина Л.И. // Журн. неорган. химии. 2018. Т. 63. № 10. С. 1349. https://doi.org/10.1134/S0036023618100108
- 14. Воскресенская Н.К., Евсеева Н.Н., Беруль С.И., Верещитина И.П. Справочник по плавкости систем из безводных неорганических солей. Т. 2. М.-Л.: АН СССР, 1961. 585 с.
- Бергман А.Г., Бухалова Г.А. // Изв. Сектора физ.хим. анализа. 1952. Т. 21. С. 228.
- Термические константы веществ. Вып. Х, ч. 1. Таблицы принятых значений: Li, Na / Под ред. В.П. Глушко. М., 1981. 297 с.
- Термические константы веществ. Вып. IX. Таблицы принятых значений: Ве, Mg, Ca, Sr, Ba, Ra. / Под ред. В.П. Глушко. М., 1979. 574 с.
- Диаграммы плавкости солевых систем. Ч. І / Под ред. В.И. Посыпайко, Е.А. Алексеевой М.: Металлургия, 1977. 416 с.
- Сырова В.И. Фазовые равновесия в системах из галогенидов, карбонатов и сульфатов некоторых s1 элементов. Дис...канд. хим. наук. Самара: СамГТУ, 2019. 134с.
- Нянковская Р.Н. // Журн. неорган. химии. 1956. Т. 1. Вып. 4. С. 783.
- Мощенский Ю.В. // Приборы и техника эксперимента. 2003. № 6. С. 143.