_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 544.3:678.764.43

ТЕПЛОЕМКОСТЬ, ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ И СТЕКЛОВАНИЕ СОПОЛИМЕРОВ БУТИЛМЕТАКРИЛАТА С МЕТАКРИЛОВОЙ КИСЛОТОЙ

© 2022 г. В. Ф. Урьяш^{а,*}, С. В. Чупрова^а, Н. Ю. Кокурина^а, А. В. Маркин^а

^а Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского (ННГУ), 603022, Нижний Новгород, Россия

> **e-mail: su2101@rambler.ru* Поступила в редакцию 11.07.2021 г. После доработки 07.08.2021 г. Принята к публикации 09.08.2021 г.

В вакуумном адиабатическом калориметре измерена теплоемкость в области 6 (80)—330 К четырех образцов сополимера бутилметакрилата (БМА) с метакриловой кислотой (МАК), содержавших от 7.6 до 37.3 мол. % кислоты. Рассчитаны термодинамические характеристики (энтальпия, энтропия и функция Гиббса) указанных сополимеров. Построены и проанализированы изотермы термодинамических функций в изученной области температур и составов сополимера. Получено, что основной вклад в изменение функции Гиббса сополимеров вносит не энергия межмолекулярного взаимодействия (энтальпийный фактор), а упорядочение системы (энтропийный фактор). Показано, что для использования в качестве матрицы для трансдермального введения лекарственных веществ наиболее подходящим является сополимер БМА–МАК, содержащий 7.6 мол. % кислоты.

Ключевые слова: теплоемкость, термодинамические функции, бутилметакрилат, метакриловая кислота, сополимеры, состав

DOI: 10.31857/S0044453722020285

Одной из перспективных областей использования полимеров в медицине является конструирование макромолекулярных терапевтических систем и. в частности. трансдермальных (ТТС). способных обеспечить доставку лекарственных веществ (ЛВ) в определенной дозе к заданному органу-мишени в строго регламентированных временных интервалах [1–11]. Такие терапевтические системы нового поколения являются пролонгированными, не вызывают болевого шока, а ЛВ не подвергается разрушающему действию в желулочно-кишечном тракте. Необходимым условием, определяющим возможность применения полимерного материала в любой сфере медицины, является наличие v него таких свойств, как нетоксичность, стойкость по отношению к биологическим средам, а также способность выдерживать стерилизацию без существенного изменения свойств. Более того, он не должен обладать сенсибилизирующим, канцерогенным, мутагенным и тератогенным действием. Этим требованиям отвечают многие виды полимеров, в частности, акриловые сополимеры [4-6, 12, 13]. Однако требуется индивидуальный подбор материала в каждом конкретном случае. При этом, кроме наличия у материала перечисленных выше свойств,

важную роль играют физико-химические и, в частности, термодинамические характеристики, изучение которых позволяет оптимизировать состав сополимера таким образом, чтобы он как можно более полно отвечал предъявляемым требованиям и подходил для решения поставленной задачи [4, 14–16].

В связи с изложенным целью работы являлось изучение термодинамических характеристик (теплоемкости, энтальпии, энтропии и функции Гиббса) сополимеров бутилметакрилата (БМА) с метакриловой кислотой (МАК) в зависимости от температуры и состава, чтобы на основании полученных результатов выбрать состав полимерной системы, оптимально подходящей для использования в качестве матрицы для TTC.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез сополимеров БМА–МАК, содержавших от 7.6 до 37.3 мол. % МАК, осуществляли суспензионной полимеризацией по запатентованной методике [4, 17]. Сополимеры, содержавшие более ~40 мол. % МАК, авторам не удалось получить указанным способом вследствие физической неустойчивости суспензии [4, 17]. Предложенная методика позволяет проводить синтез сополимеров БМА с МАК до глубокой степени конверсии мономеров (99.5–99.8%), свободных от остаточного мономера БМА и содержащих незначительное количество воды (менее 0.5 мас. %). Благодаря этому получаемый сополимер нетоксичен. Такие сополимеры могут быть использованы в медицине для создания связующего для ТТС. Синтез проводили, путем суспензионной полимеризации мономеров в водной среде при рН 3, в присутствии инициатора – перекиси бензоила, в две стадии: 2 ч при 343 К и 2.5 ч при 353 К в присутствии стабилизатора (0.3-0.6 мас. %) сополимера метакрилата натрия (84 мас. %) с метакриловой кислотой (16 мас. %), при концентрации инициатора 1.5 мас. %. После этого сополимер промывали несколько раз дистиллированной водой и сушили. Состав сополимера определяли титрованием карбоксильных групп МАК, как рекомендуется в работе [18]. Молекулярная масса сополимеров изменялась от 88000 до 100000 в зависимости от содержания МАК. Рентгеноструктурный анализ показал, что статистические сополимеры БМА-МАК полностью аморфны. Молярную массу повторяющегося звена сополимеров (услов. моль) рассчитывали по уравнению :

$$M_{\rm conon} = X_1 M_1 + X_2 M_2, \tag{1}$$

где X_1 и X_2 — мольные доли БМА и МАК, соответственно, M_1 и M_2 — молярные массы повторяющегося звена БМА и МАК соответственно.

Мономеры БМА и МАК очищали фракционированием при пониженном давлении. По данным хроматографического анализа содержание основного компонента в отобранных фракциях мономеров составляло 99.9. Показатели преломления n_D при 293 К для БМА и МАК равнялись соответственно 1.4240 и 1.4314, что совпадало с надежными литературными данными [19].

Измерение теплоемкости (C_p°) в области 80-330 К проводили в вакуумном адиабатическом калориметре конструкции Харьковского физикотехнического института низких температур АН Украины [4, 16, 20, 21]. Температуру измеряли платиновым термометром сопротивления. Энергетический эквивалент калориметра определяли путем измерения теплоемкости калориметрической ампулы, заполненной гелием до давления 8.5 кПа. Он не превышал 40% от теплоемкости калориметра с веществом в изученном интервале температур. Для проверки методики на отсутствие систематической ошибки была определена теплоемкость эталонной бензойной кислоты марки К-1 (Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева, Санкт-Петербург). Различие полученных результатов и данных [22] составило 0.3% при T == 80-330 К. Подъем температуры в опытах по измерению теплоемкости составлял 1-3 К, поэтому поправка на кривизну функции $C_p^{\circ} = f(T)$ не вводилась. Отклонение экспериментальных данных от усредняющих кривых было в пределах 0.3%.

Для измерения C_p° в области 6—80 К использовали вакуумный адиабатический калориметр БКТ-3.07 с дискретным нагревом и автоматизированной системой поддержания адиабатичности условий измерения [23, 24]. Калориметр сконструирован и изготовлен в АОЗТ "Термис" (пос. Менделеево Московской обл.). Температуру измеряли железо-родиевым термометром сопротивления типа RIRT-2 ($R_0 \approx 100$ Ом). Абсолютная погрешность измерений температуры $\pm 5 \times 10^{-3}$ К. Энергетический эквивалент калориметра определяли путем измерения теплоемкости ампулы, заполненной гелием до давления 16 кПа. Для проверки надежности работы калориметрической установки была измерена теплоемкость эталонных образцов бензойной кислоты марки К-1 и меди марки "о.с.ч. 11-4". Отклонение полученных значений теплоемкости от паспортных данных и данных метрологических работ составляло 2% в интервале 6-20 К, не превышало 0.5% в интервале 40-80 К.

Была изучена теплоемкость четырех образцов сополимера БМА – МАК (табл. 1). Термодинамические функции веществ $H^{\circ}(T) - H^{\circ}(0)$ и $S^{\circ}(T) - S^{\circ}(0)$ рассчитывали интегрированием кривых $C_{p}^{\circ} = f(T)$ и $C_{p}^{\circ} = f(\ln T)$ соответственно, а функцию Гиббса $G^{\circ}(T) - G^{\circ}(0)$ – по уравнению Гиббса–Гельмгольца. Для расчета термодинамических функций образцов 1 и 2 (табл. 1) экстраполировали их кривые зависимости $C_{p}^{\circ} = f(T)$ от 6 к $T \rightarrow 0$ К, используя уравнение Дебая [4, 16, 25]:

$$C_p^{\circ} = nD(\Theta_D/T), \qquad (2)$$

где n = 1 и Θ_D – специально подобранные параметры (табл. 1).

Теплоемкость образцов 3 и 4 измеряли от 80 К (табл. 1), поэтому для расчета их термодинамических функций полученные зависимости $C_p^\circ = f(T)$ указанных веществ экстраполировали от 80 к $T \rightarrow$ $\rightarrow 0$ К по методу Келли–Паркса–Хаффмана [4, 16, 26]

$$C_p^\circ = C_{p,\vartheta}^\circ (A + BT), \tag{3}$$

где $C_{p,9}^{\circ}$ – измеренная в области 6–80 К теплоемкость эталонного вещества, родственного изучаемому (образец 2); *T* – температура, K.

Коэффициенты A и B в уравнении (3) подбирались таким образом, чтобы решение его совпадало с экспериментально определенными значениями C_p° вещества в интервале 80–100 К с погрешностью не хуже 0.3% (табл. 1).

Образец	1	2	3	4
Содержание МАК в сополимере БМА-МАК, мол. %	7.6	25.1	28.5	37.3
Молярная масса повторяющегося звена сополимера, г/(услов. моль)	137.90	128.12	126.21	121.25
Масса сополимера при измерении $C_p^\circ = f(T)$ в области 80–320 К, г	2.8044	3.3105	3.3137	2.4363
Масса сополимера при измерении $C_p^\circ = f(T)$ в области 6–80 К, г	0.4665	0.3750	_	—
Параметр Θ_D в (2), К	46.3	46.4	46.3	46.2
Коэффициент А в (3)	—	—	0.99222	0.96391
Коэффициент В в (3)	_	—	0.0003145	0.000454

Таблица 1. Молярная масса повторяющегося звена сополимеров БМА–МАК, массы образцов при измерении теплоемкости [4] и параметры Θ_D , *A* и *B*

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные экспериментальные результаты представлены на рис. 1 и в табл. 2-5. На рис. 1 приведены также значения теплоемкости гомополимеров ПБМА (кривая 1) и ПМАК (кривая 6). Исследования C_p° и термодинамических функций ПМАК проводились с 1967 г. [27–30]. В работах [28, 30] С_p^o ПМАК была измерена в вакуумном адиабатическом калориметре с периодическим вводом энергии в области 60-300 К с погрешностью 0.3%, а в [29] – 298–463 К в адиабатическом калориметре с непрерывным вводом энергии (скорость нагрева ~1 К/мин) с погрешностью 0.5% [31]. Однако в этих статьях не указано содержание остаточной воды в изученных образцах ПМАК. Авторы [27] измеряли $C_p^{\circ} = f(T)$ ПМАК (содержание остаточной воды 2.5 мас. %) в вакуумном адиабатическом калориметре в области 80-325 К. Содержание воды было рассчитано по термохимическим данным при определении энтальпии сгорания ПМАК. По полученным данным в [27] была рассчитана теплоемкость в области 80-325 К безводной ПМАК, исходя из предположения, что C_p° аддитивно складывается из теплоемкости полимера и воды [32]. Эти данные приведены на рис. 1 (кривая 6). Для расчета термодинамических функций ПМАК ее $C_p^\circ = f(T)$ экстраполировали от 80 к $T \rightarrow 0$ К по уравнению (3). Эталоном служила C_p° образца 2. Получили, что A = 0.548326, а B = -0.0000227.

На кривой $C_p^{\circ} = f(T)$ ПМАК в интервале 295– 306 К проявился релаксационный переход эндотермического характера, который можно классифицировать как γ -переход ($T_{\gamma} = 300.6$ К) [4, 27] (рис. 1, кривая 6). Этот переход происходит в стеклообразном полимере и связан с возникновением колебаний боковых групп в полимерной цепи [16]. В ПМАК методом ДТА было зарегистрировано еще два релаксационных перехода ($\beta u \alpha$) [4, 27]. Последний переход относится к стеклованию ПМАК (T_c), а β -переход связан с колебаниями участков макромолекул полимера меньших

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 2 2022

чем сегмент [16]. Экстраполяция зависимости T_c ПМАК от содержания воды в образце на нулевое содержание H₂O позволило определить T_c в безводной ПМАК 456 К [4, 27].

Первая работа по измерению теплоемкости ПБМА в вакуумном адиабатическом калориметре в области 93-433 К была опубликована в 1971 г. [33]. Затем исследования были продолжены Вундерлихом с сотр. [30] и Лебедевым с сотр. [34] в таком же калориметре. В последней работе измерения $C_n^\circ = f(T)$ проводились в области 8–330 К с погрешностью ~1% вблизи 10 К, 0.5% - в интервале 10-30 К и 0.2% - в области 30-330 К. Имеются также данные, полученные методом ДСК в области 240-400 К [35]. На рис. 1 приведены значения C_p° ПБМА из работы [30] (кривая 1), так как только в этой статье приведены численные значения C_p° ПБМА в области 80-450 К. В литературе приведены следующие значения Т_с ПБМА: 290 [30], 293 [34] и 312 К [35]. Значения T_с, полученные в работах [30] и [34] совпадают в пределах погрешности ее определения. Близкое значение Т_с ПБМА (295 К) было получено методом ДТА [4, 36]. Для расчета термодинамических функций ПБМА его $C_p^\circ = f(T)$ экстраполировали от 80 к $T \rightarrow 0$ К по уравнению (3). Эталоном служила C_p° образца 1. Получили следующие значения коэффициентов: *A* = 1.34178, *B* = -0.002776.

Теплоемкость сополимера с содержанием МАК 7.6 мол. % (рис. 1, кривая 2; табл. 2) монотонно возрастает в интервале 6–290 К. Далее наблюдается аномалия эндотермического характера, связанная с расстеклованием сополимера ($T_{c1} = 306$ К). В работах [4, 36] проведен ДТА ряда сополимеров БМА–МАК. У всех образцов сополимеров, содержавших от 7.6 до 37.3 мол. % МАК, проявилось два (<20 мол. % МАК) или три (>20 мол. % МАК) интервала расстеклования с температурами переходов T_{c1} , T_{c2} и T_{c3} . Таким образом, полученные результаты свидетельствуют о многофазности статистических сополимеров БМА–МАК. Принято считать, что статистиче-

Рис. 1. Температурные зависимости теплоемкости сополимеров БМА–МАК, содержащих МАК, мол. %: *1* – 0 [30]; *2* – 7.6; *3* – 25.1; *4* – 28.5; *5* – 37.3; *6* – 100 [27].

ские акриловые сополимеры имеют одну T_c . И это действительно имеет место для системы метилметакрилат (MMA)–MAK [29]. Однако для некоторых акриловых сополимеров наблюдается несколько T_c . Например, в работе [37] для сополимеров ММА–бутилакрилат и ММА–этилгексилакрилат обнаружены один или два температурных интервала расстеклования в зависимости от состава мономерной смеси. В работе [38] методом ДСК было зарегистрировано три T_c в гибридных алкидно-акриловых смолах на водной основе.

Можно предположить две причины, которые приводят к появлению нескольких T_c в сополимерах БМА-МАК [4, 36]. Во-первых, это может быть связано с распределением МАК между водной фазой и каплями эмульсии БМА в процессе синтеза сополимера. Во-вторых – с конверсионной неоднородностью по составу, которая возникает при полимеризации до глубоких конверсий [18, 39]. Поэтому при условиях, описанных в [17], идет суспензионная полимеризация, в результате которой получается сополимер БМА-МАК, на поверхности гранул которого адсорбируются молекулы сополимера БМА-МАК, сильно обогащенного МАК, полученные растворной полимеризацией. Таким образом, все получаемые гранулы сополимера БМА-МАК имеют "оболочку" из сополимера, сильно обогащенного МАК, расстеклованию которого соответствует релаксационный переход T_{c3} . Морфологию ядро—оболочка показывают, например, ММА/алкидные частицы, образующиеся в результате гибридной миниэмульсионной полимеризации [40]. Оболочка обогащена полиакрилатом, а ядро — алкидом.

Как показал ДТА [4, 36], для образцов, содержавших более 20 мол. % МАК, наблюдается еще и третий температурный интервал расстеклования со средней температурой T_{c2} , который относится к расстеклованию фракции сополимера, полученной при глубоких конверсиях, и состав которой отличается от сополимера, получаемого до степени конверсии в 90%.

Экспериментальные значения теплоемкости сополимера, содержащего 25.1 мол. % МАК, представлены кривой *3* (рис. 1) и в табл. 3. Теплоемкость этого сополимера монотонно возрастает в интервале температур 6–300 К. Более резкий подъем при 303 К объясняется начинающимся расстеклованием, средняя температура которого по данным ДТА $T_{c1} = 321$ К [4, 36]. Аналогичная картина наблюдается для образца сополимера БМА–МАК (28.5 мол. %), чья теплоемкость (рис. 1, кривая 4; табл. 4) монотонно возрастает в интервале 80–303 К. Далее также наблюдается более резкий подъем, относящийся к началу расстеклования. Как показал ДТА [4, 36], средняя **Таблица 2.** Экспериментальные значения теплоемкости (Дж/К (услов. моль)) образца сополимера БМА-МАК (7.6 мол. %). *М* = 137.90 г/(услов. моль) **Таблица 3.** Экспериментальные значения теплоемкости (Дж/К (услов. моль)) образца сополимера БМА-МАК (25.1 мол. %). *M* = 128.12 г/(услов. моль)

<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°
6.112	0.8240	46.69	38.15	185.6	144.8	7.738	1.270	51.66	38.49	186.9	130.0
6.881	1.051	49.11	40.72	189.7	147.7	8.240	1.443	54.07	40.98	191.7	132.8
7.568	1.339	51.53	42.95	194.2	150.3	8 872	1 793	56 48	42 73	196.3	135.3
8.179	1.657	53.95	45.15	198.6	153.4	0.370	2 100	50.10	12.75	200.8	139.0
8.762	2.027	56.36	47.83	201.9	155.3	9.379	2.100	50.09	44.07	200.8	138.0
9.322	2.404	58.78	49.94	206.3	158.5	9.924	2.567	61.30	46.61	205.3	140.8
9.860	2.844	61.19	51.97	210.5	160.9	10.45	2.862	63.71	48.63	209.5	143.6
10.40	3.234	63.61	54.58	214.7	163.7	10.98	3.233	66.12	50.54	217.0	147.3
10.93	3.599	66.03	56.72	218.8	166.6	11.49	3.573	68.53	52.73	221.8	150.8
11.46	4.044	68.44	58.91	222.9	169.0	12.01	3.943	70.94	54.67	226.4	154.5
11.99	4.447	70.85	61.14	226.9	171.9	12.52	4.384	73.35	56.54	230.8	157.4
12.50	4.955	73.27	63.55	230.8	174.4	13.02	4 714	75 76	58 60	235.0	159.4
13.00	5.365	75.68	65.56	234.7	177.7	13.40	5 180	78.17	60.21	230.1	161.9
13.52	5.850	78.09	67.72	238.5	180.6	13.49	5.180	70.17	60.21	239.1	101.0
14.03	6.232	79.60	69.33	242.3	183.4	13.98	5.451	/9.48	61.15	242.9	164.8
14.49	6.668	83.88	72.32	246.0	185.9	14.48	5.899	83.24	63.20	246.8	167.2
15.40	7.497	88.03	/6.53	253.9	192.3	14.98	6.292	87.03	66.94	251.0	169.7
15.73	7.797 9.215	92.35	80.97	257.7	194.7	15.80	7.007	90.89	69.63	254.7	172.3
16.25	8.313	90.38	85.99	201.7	197.5 201.3	16.56	7.519	95.15	72.51	259.4	174.8
10.70	0.011 9.348	100.3	89.90	203.8	201.3	17.60	8.495	99.79	75.52	264.1	178.9
17.27	9.885	104.9	93 39	209.7	202.9	18.66	9.448	104.2	78.76	268.6	181.4
18 29	10.43	113 5	96.32	273.7	200.2	19 72	10.53	108 5	82 48	273.0	183.6
18.80	10.13	117.8	98.91	281.7	210.7	21.17	11.55	112.6	85.02	273.0	105.0
19.32	11.47	124.7	104.1	286.1	213.6	21.17	11.55	112.0	85.05	277.2	100.0
19.83	12.02	128.8	107.1	290.3	218.4	23.34	13.14	125.6	93.58	281.5	189.6
20.33	12.60	132.9	109.7	294.5	224.3	25.55	14.87	130.1	96.22	285.8	193.5
21.57	13.73	136.9	112.4	298.4	229.2	27.79	17.05	134.4	99.16	290.1	196.5
23.76	15.59	141.0	115.8	302.3	234.2	30.51	19.39	138.6	101.9	295.2	199.8
26.01	17.63	145.1	117.9	305.9	243.2	32.44	20.85	143.0	104.6	299.5	203.7
28.27	19.74	149.1	120.5	307.2	246.5	34.82	23.15	147.7	107.6	303.6	207.7
30.33	21.59	153.1	123.4	311.2	256.6	37.22	25.37	152.2	110.5	308.1	213.3
32.21	23.65	157.1	125.9	314.9	261.6	39.62	27.70	156.6	112.9	312.2	217.5
34.60	26.27	161.9	129.6	318.8	266.7	42.02	20.62	160.0	115.5	315.5	217.5
37.01	28.55	168.9	134.1	322.5	269.9	42.03	29.03	100.9	113.3	313.3	221.4
39.42	31.06	173.1	137.3	326.1	274.4	44.44	32.13	171.9	121.9	320.8	228.5
41.85	33.14	177.3	139.8	330.5	277.1	46.85	34.00	177.0	124.4	325.6	235.5
44.27	35.59	181.5	142.7			49.25	36.55	182.0	127.2	330.7	241.9

Таблица 4. Экспериментальные значения теплоемкости (Дж/К (услов. моль)) образца сополимера БМА-МАК (28.5 мол. %); *M* = 126.21 г/(услов. моль)

Таблі	ица 5 . Эн	кспериме	нтальные	значения	теплоемко-
сти	(Дж/К	(услов.	моль))	образца	сополимера
БМА	-MAK (37.3 мол.	%); $M = 1$	21.25 г/(ус.	лов. моль)

<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°
79.77	59.54	171.1	117.3	260.4	169.6
83.70	61.42	175.3	119.9	264.6	172.7
88.02	64.75	179.4	122.1	268.9	175.3
92.71	67.78	183.6	124.8	273.2	178.8
97.26	71.30	187.7	126.5	277.6	181.6
101.3	74.20	191.9	129.3	278.3	182.4
105.2	77.11	196.0	131.9	282.3	184.8
109.0	79.07	200.2	134.2	286.1	187.4
112.8	82.14	204.3	136.1	289.8	190.4
116.6	84.44	208.5	138.5	293.4	192.7
120.6	87.58	214.1	141.5	296.9	194.4
126.9	90.97	218.8	144.0	300.4	196.9
131.2	93.65	223.5	146.7	303.7	199.6
135.5	96.72	228.1	149.0	305.2	201.9
139.6	99.13	232.6	151.9	309.8	205.8
143.7	101.5	237.1	155.6	314.3	211.2
147.7	104.4	241.6	158.8	318.7	216.9
151.7	106.7	246.0	161.4	323.1	222.6
155.7	109.1	250.4	163.9	327.3	228.8
163.3	112.4	256.2	167.2	330.8	234.2
167.2	114.9				

<i>Т</i> , К	C_p°	Т, К	C_p°	Т, К	C_p°
79.74	57.21	178.2	116.8	258.8	163.1
83.91	59.48	182.4	118.6	267.4	168.5
88.23	62.03	186.4	121.1	271.7	171.5
92.64	64.65	190.5	123.6	275.6	174.2
97.10	67.52	194.6	125.5	279.6	176.4
101.3	70.62	198.6	127.3	283.4	179.9
105.4	73.37	202.8	129.9	287.6	181.4
109.6	76.79	206.9	132.4	291.5	182.6
113.7	79.38	196.9	126.8	295.4	187.5
120.5	83.16	201.6	129.0	299.1	192.4
124.7	85.79	205.7	131.1	289.9	181.8
129.8	88.29	209.8	133.9	294.3	186.1
132.9	89.88	213.8	136.2	298.1	191.0
137.0	92.41	217.7	138.3	303.6	196.4
141.0	95.18	221.6	140.2	308.1	199.2
145.0	97.88	225.4	141.8	300.7	193.8
149.0	99.89	229.8	144.5	305.3	197.7
153.4	103.6	232.8	146.8	309.9	199.8
158.0	106.4	237.3	148.9	314.3	201.2
162.2	108.7	241.6	151.9	318.7	204.8
166.2	110.1	245.9	154.7	322.9	207.8
170.2	111.8	250.2	157.8	327.2	212.5
174.3	114.6	254.5	160.8	331.4	218.1

температура его $T_{c1} = 327$ К. На кривой теплоемсополимера с содержанием MAK кости 37.3 мол. % (рис. 1, кривая 5; табл. 5) наблюдается один физический переход со средней температурой $T_{c1} = 299.5$ К и начало следующего, средняя температура которого по данным ДТА $T_{c2} = 337$ К [4, 36].

Усредненные значения C_p° и термодинамиче-ские функции изученных сополимеров БМА— МАК в зависимости от температуры приведены в табл. 6-10. Так как расстеклование не заканчивалось при 330 К (рис. 1, кривые 2-5), термодинамические функции в температурном интервале релаксационного перехода рассчитывали непосредственно по кривым $C_p^\circ = f(T)$ изученных образцов. Анализ изотерм концентрационной зависимости C_p° сополимеров БМА–МАК (рис. 2а,

табл. 10) показал, что при температурах, при которых они находятся в стеклообразном состоянии во всей области составов, эта зависимость изобарной теплоемкости сополимеров близка к линейной и уменьшается с увеличением содержания МАК в сополимере. Отклонения от аддитивной зависимости в данном случае не велики и сопоставимы с погрешностью определения C_p° . Переход систем в высокоэластическое состояние сопровождается отрицательным отклонением от соответствующих линейных зависимостей (например, изотерма при T = 300 K, рис. 2а). Больший интерес представляют изотермы концентрационных зависимостей энтальпии (рис. 2б), энтропии (рис. 2в) и функции Гиббса нагревания (рис. 2г). Изотермы энтальпии аддитивны при всех температурах (табл. 10), поскольку стеклование является безэнтальпийным переходом [16,

<i>Т</i> , К	<i>С</i> [°] _{<i>p</i>} , Дж/К (услов. моль)	<i>H</i> °(<i>T</i>) − <i>H</i> °(0), кДж/(услов. моль)	<i>S</i> °(<i>T</i>) – <i>S</i> °(0), Дж/К (услов. моль)	$-[G^{\circ}(T) - G^{\circ}(0)],$ кДж/(услов. моль)
10	2.745	0.00940	1.363	0.00423
20	11.87	0.07960	5.709	0.03458
40	31.03	0.5053	19.82	0.2875
60	51.55	1.331	36.30	0.8470
80	69.26	2.540	53.58	1.746
100	86.48	4.105	70.96	2.991
120	101.0	5.983	88.05	4.583
140	114.6	8.139	104.6	6.505
160	128.2	10.57	120.8	8.758
180	141.4	13.26	136.7	11.35
200	154.4	16.22	152.3	14.24
220	167.3	19.44	167.6	17.43
240	181.6	22.92	182.7	20.93
260	196.7	26.71	197.9	24.74
273.15	206.1	29.36	207.8	27.40
280	209.1	30.78	213.0	28.86
298.15	229.6	34.73	226.6	32.83
300	232.8	35.16	228.1	33.27
320	268.5	40.18	244.3	38.00
330	276.6	42.92	252.7	40.47

Таблица 6. Усредненные значения теплоемкости и термодинамические функции сополимера БМА–МАК, содержавшего 7.6 мол. % МАК

Таблица 7. Усредненные значения теплоемкости и термодинамические функции сополимера БМА–МАК, содержащего 25.1 мол. % МАК

Т, К	$C_p^{\circ},$ Дж/К (услов. моль)	<i>H</i> °(<i>T</i>) − <i>H</i> °(0), кДж/(услов. моль)	<i>S</i> °(<i>T</i>) – <i>S</i> °(0), Дж/К (услов. моль)	$-[G^{\circ}(T) - G^{\circ}(0)],$ кДж/(услов. моль)
10	2.432	0.00800	1.100	0.00300
20	10.25	0.06990	4.944	0.02898
40	27.79	0.4475	17.46	0.2509
60	46.15	1.188	32.23	0.7458
80	61.32	2.272	47.71	1.545
100	76.21	3.649	63.02	2.653
120	89.98	5.312	78.14	4.065
140	102.8	7.241	92.98	5.776
160	115.3	9.421	107.5	7.779
180	126.0	11.84	121.7	10.07
200	137.7	14.47	135.6	12.65
220	150.0	17.35	149.3	15.50
240	162.9	20.48	162.9	18.62
260	175.7	23.86	176.4	22.00
273.15	184.2	26.23	185.3	24.38
280	188.7	27.51	189.9	25.66
298.15	203.2	31.06	202.2	29.23
300	204.9	31.43	203.5	29.62
320	227.3	35.74	217.4	33.83
330	241.5	38.08	224.6	36.04

<i>Т</i> , К	С _p °, Дж/ К (услов. моль)	<i>H</i> °(<i>T</i>) − <i>H</i> °(0), кДж/(услов. моль)	<i>S</i> °(<i>T</i>) − <i>S</i> °(0), Дж/К (услов. моль)	$-[G^{\circ}(T) - G^{\circ}(0)],$ кДж/(услов. моль)
10	2.405	0.00790	1.089	0.00299
20	10.11	0.06900	4.885	0.02870
40	27.22	0.4397	17.15	0.2463
60	44.92	1.162	31.56	0.7316
80	59.30	2.213	46.59	1.514
100	73.22	3.540	61.33	2.593
120	86.88	5.140	75.89	3.967
140	99.91	7.008	90.25	5.627
160	111.1	9.121	104.3	7.567
180	122.6	11.46	118.1	9.798
200	133.7	14.02	131.6	12.30
220	145.0	16.81	144.9	15.07
240	157.0	19.83	158.0	18.09
260	169.1	23.10	171.1	21.39
273.15	178.8	25.38	179.6	23.68
280	183.3	26,62	184,1	24.93
298.15	195.9	30.06	196.0	28.38
300	197.3	30.43	197.2	28.73
320	218.0	34.56	210.6	32.83
330	233.2	36.82	217.5	34.95

Таблица 8. Усредненные значения теплоемкости и термодинамические функции сополимера БМА–МАК, содержащего 28.5 мол. % МАК

Таблица 9. Усредненные значения теплоемкости и термодинамические функции сополимера БМА-МАК, содержащего 37.3 мол. % МАК

Т, К	С [°] _p , Дж/ К (услов. моль)	<i>H</i> °(<i>T</i>) − <i>H</i> °(0), кДж/(услов. моль)	<i>S</i> °(<i>T</i>) − <i>S</i> °(0), Дж/К (услов. моль)	-[G°(T) - G°(0)], кДж/(услов. моль)
10	2.333	0.00800	1.165	0.00365
20	9.787	0.06720	4.843	0.02966
40	26.28	0.4254	16.70	0.2426
60	43.23	1.121	30.59	0.7144
80	56.88	2.131	45.03	1.471
100	70.00	3.403	59.16	2.513
120	82.65	4.931	73.05	3.835
140	94.98	6.708	86.73	5.434
160	107.0	8.728	100.2	7.304
180	117.6	10.97	113.4	9.442
200	128.5	13.43	126.3	11.83
220	139.4	16.11	139.1	14.49
240	151.0	19.01	151.7	17.40
260	164.0	22.16	164.3	20.56
273.15	172.6	24.37	172.6	22.78
280	177.0	25.57	176.9	23.96
298.15	190.9	28.88	188.4	27.29
300	193.2	29.24	189.6	27.64
320	205.2	33.23	202.5	31.57
330	216.4	35.34	208.9	33.60

-	-			, a
<i>Т</i> , К	C_p°	$H^{\circ}(T) - H^{\circ}(0)$	$T\left[S^{\circ}(T) - S^{\circ}(0)\right]$	$-[G^{\circ}(T) - G^{\circ}(0)]$
		ПБМА [30]		
100	92.03	4.720	8.390	3.670
150	128.3	10.23	19.20	8.970
200	164.5	17.54	33.98	16.44
250	200.7	26.67	52.62	25.95
300	263.4	38.01	75.48	37.47
	Сопол	имер БМА–МАК (7.6 м	мол. %)	I
100	86.48	4.105	7.096	2.991
150	121.4	9.319	16.92	7.601
200	154.4	16.22	30.46	14.24
250	189.3	24.78	47.57	22.79
300	232.8	35.16	68.43	33.27
	Сополи	мер БМА–МАК (25.1	мол. %)	I
100	76.21	3.649	6.302	2.653
150	109.0	8.301	15.04	6.744
200	137.7	14.47	27.12	12.65
250	169.1	22.14	42.42	20.28
300	204.9	31.43	61.05	29.62
	Сополи	мер БМА–МАК (28.5	мол. %)	I
100	73.22	3.540	6.133	2.593
150	105.7	8.034	14.60	6.565
200	133.7	14.02	26.32	12.30
250	163.5	21.43	41.12	19.69
300	197.3	30.43	59.16	28.73
	Сополи	мер БМА–МАК (37.3	мол. %)	<u>I</u>
100	70.00	3.403	5.916	2.513
150	101.0	7.687	14.02	6.336
200	128.5	13.43	25.26	11.83
250	157.6	20.55	39.50	18.95
300	193.2	29.24	56.88	27.64
	I	ПМАК [27]		I
100	41.50	2.014	3.549	1.535
150	61.30	4.590	8.416	3.826
200	79.20	8.116	15.25	7.134
250	98.70	12.57	24.02	11.45
300	116.9	17.96	34.71	16.75

Таблица 10. Усредненные значения теплоемкости (C_p° , Дж/К (услов. моль)) и термодинамические функции гомополимеров и сополимеров БМА–МАК ($T[S^{\circ}(T) - S^{\circ}(0)]$, [$H^{\circ}(T) - H^{\circ}(0)$], [$G^{\circ}(T) - G^{\circ}(0)$], кДж/(услов. моль))

20, 41]. На изотермах энтропии сополимеров (рис. 2в, табл. 10) проявляются отрицательные отклонения от аддитивных прямых. Эти отклонения составляют от 3 до 9%, что существенно превышает погрешность расчета энтропии. При этом слагаемое $T[S^{\circ}(T) - S^{\circ}(0)]$ вносит больший вклад в величины функций Гиббса нагревания в сравнении с энтальпийным членом в уравнении Гиббса–Гельмгольца при всех указанных температурах. Поэтому соответствующие изотермы функции Гиббса также имеют отрицательное отклонение от линейных зависимостей при температурах 100–300 К (рис. 2г, табл. 10). Другими словами, для всех изученных сополимеров БМА– МАК основной вклад в изменение функции Гиббса вносит не энергия межмолекулярного

Рис. 2. Изотермы теплоемкости (а), энтальпии (б), энтропии (в) и функции Гиббса (г) сополимеров БМА – МАК при: 100 (*I*), 150 (*2*), 200 (*3*), 250 (*4*), 300 K (*5*).

взаимодействия, а упорядочение системы. Этим изученные нами сополимеры отличаются от описанных в литературе сополимеров ММА–МАК [29], в которых для теплоемкости и энтальпии наблюдается отрицательное отклонение от аддитивности. Это указывает на то, что основной вклад в функцию Гиббса системы ММА–МАК вносит увеличение межмолекулярного взаимодействия с повышением содержания МАК.

Анализ термодинамических характеристик и данных ДТА [4, 36] сополимеров БМА–МАК, содержавших от 7.6 до 37.3 мол. % кислоты, показал, что для использования в качестве матрицы для трансдермального введения β -адреноблокаторов, нитроглицерина, хлорпропамида, ацетилсалициловой кислоты и других ЛВ наиболее подходящим является сополимер БМА–МАК (7.6 мол. %), в котором проявляется два температурных интервала расстеклования ($T_{c1} = 306$ К и $T_{c3} = 419$ K). Это подтвердили исследования, проведенные в ФНЦ Трансплантологии и искусственных органов им. акад. В.И. Шумакова Минздрава России, по диффузии ЛВ из ТТС в организм больного [6–8, 42].

СПИСОК ЛИТЕРАТУРЫ

- Искусственные органы / Под ред. В.И. Шумакова. М.: Медицина, 1990. 272 с.
- Биосовместимость / Под ред. В.И. Севастьянова. М.: Изд-во ГУП "Информ. центр ВНИИгеосистем", 1999. 368 с.
- 3. Progress in Biomedical Polymers / Eds. C.G. Gebelein, R. L. Dunn. NY: Springer, 2013. 417 p.
- 4. Uryash V., Chuprova S., Kokurina N. Thermodynamics and Thermal Analysis of Plasticized Copolymers Butyl Methacrylate with Methacrylic Acid, a Binder for Transdermal Therapeutic Systems. Saarbrücken: LAP Lambert Academic Publ., 2021. 128 p.
- 5. Платэ Н.А., Васильев А.Е. // Высокомолекуляр. соединения. 1982. Т. А24. № 4. С. 675.

ТЕПЛОЕМКОСТЬ, ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ

- 6. Севастьянов В.И., Соломатина Л.А., Тихобаева А.А. и др. // Перспективные материалы. 2004. № 1. С. 46.
- 7. Севастьянов В.И., Саломатина Л.А., Яковлева Н.В. и др. // Мед. техника. 2000. № 2. С. 3.
- 8. Шумаков В.И., Саломатина Л.А., Яковлева Н.В. и *др.* // Вест. трансплантологии и искусственных органов. 1999. № 4. С. 33.
- 9. Штильман М.И. // Высокомолекуляр. соединения. 2010. Т. А52. № 9. С. 1551.
- 10. Васильев А.Е., Краснюк И.И., Равикумар С., Тохмачи В.Н. // Хим.-фарм. журн. 2001. Т. 35. № 11. С. 29.
- Biomaterials Science: An Introduction to Materials in Medicine / Eds. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. London; NY: Elsevier Acad. Press, 2004. 879 p.
- 12. Лавров Н.А., Крыжановская Т.С. // Пласт. массы. 1995. № 2. С. 42.
- 13. *Dittgen M., Durrani M., Lehmann K. //* S.T.P. pharma sci. 1997. V. 7. № 6. P. 403.
- Калоус В., Павличек З. Биофизическая химия. М: Мир, 1985. 446 с.
- Мревлишвили Г.М. Низкотемпературная калориметрия биологических макромолекул. Тбилиси: Мецниереба, 1984. 188 с.
- Урьяш В., Груздева А. Термодинамика биологически активных веществ. Saarbrücken: LAP Lambert Academic Pub., 2017. 684 с.
- Князева Т.Е., Извозчикова В.А., Урьяш В.Ф. Способ синтеза сополимера бутилметакрилата с метакриловой кислотой: Патент РФ № 2174522 // Б.И. 2001. № 28. С. 35.
- Князева Т.Е., Мясникова И.Б., Семчиков Ю.Д. // Высокомолекуляр. соединения. 1998. Т. А40. № 8. С. 1360.
- 19. Липатов Ю.С., Нестерова А.Е., Грищенко Т.М., Веселовский Р.А. Справочник по химии полимеров. Киев: Наук. думка, 1971. 543 с.
- Рабинович И.Б., Нистратов В.П., Тельной В.И., Шейман М.С. Термодинамика металлоорганических соединений. Н. Новгород: Изд-во Нижегор. гос. ун-та, 1996. 297 с.
- Лебедев Б.В., Литягов В.Я. // Термодинамика органич. соедин.: Межвуз. сб. Горький: Изд-во Горьк. гос. ун-та, 1976. Вып. 5. С. 89.
- 22. *Склянкин А.А., Стрелков П.Г.* // Журн. прикладн. механики и технич. физики. 1960. № 2. С. 100.
- Малышев В.М., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приборы и техн. эксперим. 1985. № 6. С. 195.
 - ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 2 2022

- 24. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
- Карякин Н.В. Основы химической термодинамики. Уч. пособие для вузов. М.: ИЦ "Академия", 2003. 464 с.
- 26. Kelley K.K., Parks G.S., Huffman H.M. // J. Phys. Chem. 1929. V. 33. № 11. P. 1802.
- 27. Урьяш В.Ф., Кокурина Н.Ю., Ларина В.Н., Чупрова С.В. // Высокомолекуляр. соединения. 2014. Т. А56. № 1. С. 37.
- 28. Рабинович И.Б., Лебедев Б.В., Мелентьева Т.И. // Там же. 1967. Т. А9. № 8. С. 1699.
- 29. Павлинов Л.И., Рабинович И.Б., Окладнов Н.А., Аржаков С.А. // Там же. 1967. Т. А9. № 3. С. 483.
- 30. *Gaur U., Lau Suk-fai, Wunderlich B.B., Wunderlich B. //* J. Phys. Chem. Ref. Data. 1982. V. 11. № 4. P. 1065.
- 31. Попов М.М., Гальченко Г.Л. // Журн. общ. химии. 1951. Т. 21. № 12. С. 2220.
- Термодинамические свойства индивидуальных веществ. Справочное издание / Под ред. В.П. Глушко. М.: Наука, 1978. Т. 1. Кн. 2. С. 310.
- Hoffmann R., Knappe W. // Koll.-Z. Z. Polym. 1971. V. 247. P. 763.
- 34. Лебедев Б.В., Кулагина Т.Г., Смирнова Н.Н. и др. // Журн. физ. химии. 1995. Т. 69. № 4. С. 581.
- 35. Берштейн В.А., Егоров В.М., Рыжов В.А. // Высокомолекуляр. соединения. 1986. Т. Б28. № 4. С. 268.
- Uryash V.F., Knyazeva T.E., Izvozchikova V.A., Kokurina N.Yu. Advances in Condensed Matter and Materials Research / Ed. F. Gerard. NY: Nova Sci. Pub. Inc., 2002. V. 3. P. 169–175.
- 37. *Овчинников Е.Ю., Горелов Ю.П.* // Высокомолекуляр. соединения. 1988. Т. Б30. № 9. С. 677.
- 38. Yousefi A.A., Pishvaei M., Yousefi A. // Prog. Color Colorants Coat. 2011. V. 4. № 1. P. 15.
- Семчиков Ю.Д., Жильцов С.Ф., Зайцев С.Д. Введение в химию полимеров. Учебное пособие. Н. Новгород: Изд-во "Лань", 2012. 224 с.
- 40. *Tsavalas J.G., Luo Y., Hudda L., Schork F.J.* // Polym. React. Eng. 2003. V. 11. № 3. P. 277.
- Уэструм Э., Мак-Каллаф Дж. Физика и химия твердого состояния органических соединений / Под ред. Д. Фокса, М.М. Лэйбса, А. Вайсбергера. М.: Мир, 1967. С. 9–160.
- 42. Тихобаева А.А., Саломатина Л.А., Севастьянов В.И. // Вестн. трансплантологии и искусственных органов. 2003. № 4. С. 50.