СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.174.454;4.15:544.174.3;544.162.5

КОЛЕБАТЕЛЬНЫЕ САТЕЛЛИТЫ *v* = 7–9 И ПСЕВДОВРАЩЕНИЕ В 2-МЕТИЛ-1,3-ДИОКСОЛАНЕ

© 2022 г. М. Г. Файзуллин^{а,*}, Р. В. Галеев^а

^а Уфимский федеральный исследовательский центр РАН, Институт физики молекул и кристаллов, Уфа, Россия

*e-mail: fayzullinmg@yandex.ru Поступила в редакцию 17.09.2021 г. После доработки 17.09.2021 г. Принята к публикации 25.09.2021 г.

Методом микроволновой спектроскопии проведено исследование вращательного спектра молекулы 2-метил-1,3-диоксолана в состояниях v = 7-9 заторможенного псевдовращения. Определены вращательные постоянные молекулы в этих состояниях. На основе полученных данных и определенных ранее для состояний v = 0-6 сделана попытка уточнить форму потенциальной кривой заторможенного псевдовращения молекулы.

Ключевые слова: 2-метил-1,3-диоксолан, псевдовращение, колебательные сателлиты, микроволновый спектр

DOI: 10.31857/S0044453722030116

В работе [1] проведено исследование микроволнового спектра 2-метил-1,3-диоксолана в состояниях v = 0-6 заторможенного псевдовращения, была предпринята попытка определить одномерную потенциальную функции псевдовращения молекулы. Для этой цели использовались шесть экспериментально определенных частот переходов между псевдовращательными энергетическими уровнями v = 0-6. Этих данных оказалось недостаточно для однозначного определения потенциальной функции псевдоврашения. В настоящей работе в продолжение исследований [1] получены новые экспериментальные сведения для состояний v = 7-9 молекулы. Потенциальная функция псевдовращения определена по вращательным постоянным состояний v == 0 - 9 и частотам переходов между уровнями v = = 0-6 методом наименьших квадратов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Идентификация колебательных сателлитов v = 7-9 проведена методом радиочастотногомикроволнового двойного резонанса. Результаты приведены в табл. 1. Все обнаруженные переходы относены к наиболее интенсивной для 2-метил-1,3-диоксолана спектральной ветви ^{*а*}*R*(0, 1). Сателлиты выше v = 9 слишком слабые и не идентифицированы.

На основании данных табл. 1 определены вращательные постоянные A, B, C молекулы в возбужденных состояниях псевдовращения v = 7-9. Стандартное отклонение подгонки вращательных постоянных составило 0.11 МГц для v = 7 и 9, и 0.14 МГц для v = 8. Найденные значения *A*, *B*, *C* представлены в табл. 2. Как видно, вращательная постоянная *A* определяется с меньшей точностью, нежели *B* и *C*. Это обусловлено наличием лишь однотипных переходов спектральной ветви *aR*(0, 1). Другие спектральные ветви в рассматриваемых возбужденных состояниях обнаружить не удалось.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 2 представлены экспериментальные данные, полученные ранее в [1] и в настоящей работе. Потенциальную функцию заторможенного псевдовращения молекулы искали в виде [2] (ϕ – угол псевдовращения):

$$V(\phi) = \sum_{m=1}^{\infty} \frac{V_m}{2} [1 - \cos(m\phi)].$$
 (1)

Рассмотрено восемь возможных комбинаций слагаемых с V_1 , V_2 , V_3 , V_4 в потенциале (1): 1, 12, 13, 14, 123, 124, 134, 1234. Во всех комбинациях обязательно присутствует V_1 . Это связано как с ранее полученными экспериментальными данными (см. [1] и ссылки в ней), так и с результатами квантово-химических расчетов. Коэффициенты V_m находились путем подгонки методом наименьших квадратов к данным табл. 2. В отличие от [1] использовались не только псевдовращательные переходы, но и вращательные постоянные v = 0-9.

Переуол	v = 7		V =	= 8	V = 9	
Переход	f	Δf	f	Δf	f	Δf
$4(3, 2) \leftarrow 3(3, 1)$	24 587.81	-0.11	24725.53	0.12	_	—
$4(3, 1) \leftarrow 3(3, 0)$	24682.11	-0.13	24821.91	0.11	—	—
$5(3,3) \leftarrow 4(3,2)$	30780.64	0.10	30951.64	-0.12	31085.62	0.06
$5(3, 2) \leftarrow 4(3, 1)$	31096.59	0.08	31274.42	0.13	31415.14	-0.03
$6(4, 3) \leftarrow 5(4, 2)$	36987.84*	-0.80	37196.07	-0.08	37 359.10	0.13
$6(4, 2) \leftarrow 5(4, 1)$	37038.00*	-0.63	37248.21*	0.30	37412.62	-0.10
$6(3, 4) \leftarrow 5(3, 3)$	36948.21*	0.41	37 150.93*	-0.61	37 310.04	-0.07
$6(3, 3) \leftarrow 5(3, 2)$	37723.33*	0.68	37940.48	-0.08	38114.25	0.02
$6(1, 6) \leftarrow 5(1, 5)$	33083.41	-0.03	33294.47	-0.01	—	—
$6(0, 6) \leftarrow 5(0, 5)$	33376.24	-0.03	_	_	_	—
$7(1,7) \leftarrow 6(1,6)$	38367.65	-0.03	—	—	—	—
$7(0,7) \leftarrow 6(0,6)$	38523.71	0.08	—	—	—	—

Таблица 1. Набор идентифицированных в спектре вращательных переходов с частотой f для возбужденных состояний v = 7-9 псевдовращения (Δf – разность между экспериментальной и вычисленной частотами)

* - переходы, не участвующие в подгонке методом наименьших квадратов.

Таблица 2. Вращательные постоянные для состояний v = 0-9 и частоты псевдовращательных переходов [1] (в скобках – экспериментальная погрешность в единицах двух последних значащих цифр)

Постоян-	Экспери-	L (1)	L⁄(124)	L⁄(134)	Постоян-	Экспери-	L (1)	L⁄(124)	L⁄(134)
ная	мент		V V V		ная	мент	V	V	V
A(v=0)	7039.881(12)	7039.801	7039.880	7039.907	B(v=6)	3466.380(16)	3465.740	3465.814	3465.871
B(v=0)	3423.9649(59)	3424.126	3423.982	3423.963	C(v=6)	2597.8121(91)	2597.333	2597.283	2597.489
C(v=0)	2531.6307(39)	2531.954	2531.641	2531.589	A(v=7)	6811.52(70)	6810.243	6802.477	6804.097
A(v=1)	7016.243(11)	7016.701	7016.227	7016.223	B(v=7)	3474.800(27)	3476.656	3476.596	3476.612
B(v = 1)	3429.6180(57)	3429.016	3429.614	3429.607	C(v=7)	2608.799(17)	2610.948	2611.045	2611.216
C(v = 1)	2544.6017(37)	2543.290	2544.599	2544.568	A(v=8)	6762.74(94)	6763.304	6749.223	6754.249
A(v=2)	6994.483(10)	6993.390	6994.479	6994.382	B(v=8)	3489.927(39)	3488.585	3488.968	3488.913
B(v=2)	3433.9026(52)	3434.514	3433.847	3433.910	C(v = 8)	2627.603(25)	2625.889	2626.244	2625.836
C(v = 2)	2550.6917(34)	2552.352	2550.658	2550.854	A(v=9)	6699.3(40)	6699.197	6699.320	6699.604
A(v=3)	6962.863(12)	6964.199	6963.014	6963.200	B(v=9)	3500.60(27)	3500.923	3500.600	3500.711
B(v=3)	3440.6558(62)	3440.710	3440.702	3440.643	C(v=9)	2643.42(30)	2643.853	2643.421	2644.029
C(v = 3)	2562.1294(41)	2561.775	2562.126	2561.961	0 - 1	27.6 ± 16.8	38.0	17.4	18.6
A(v = 4)	6929.734(15)	6929.105	6929.377	6929.338	0 - 2	50.3 ± 22.9	75.5	55.1	55.3
B(v = 4)	3447.8386(75)	3447.832	3447.996	3447.967	1 - 2	40.6 ± 18.2	37.5	37.8	36.7
C(v = 4)	2572.7219(49)	2572.494	2572.945	2572.831	1 - 3	102.4 ± 12.6	74.5	78.5	76.4
A(v=5)	6891.272(21)	6890.625	6891.621	6891.412	2 - 3	41.5 ± 5.0	37.0	40.7	39.7
B(v=5)	3456.540(10)	3456.124	3456.348	3456.372	$3 - 4^{*}$	51.6*	36.5	44.9	43.1
C(v = 5)	2584.9479(69)	2584.470	2584.668	2584.711	$4 - 5^{*}$	14.8*	35.9	47.5	45.1
A(v=6)	6849.610(27)	6851.081	6849.575	6849.703	5 - 6	32.8 ± 5.7	35.4	50.0	46.4

* – переходы, не участвующие в подгонке.

Поскольку подгоняемые данные имеют разную размерность, в качестве стандартного отклонения подгонки была взята безразмерная величина

$$\sqrt{\sum_{i=1}^{N} (y_i^{\text{obs}} - y_i^{\text{calc}}(V_m))^2 / \sigma_i^2 / (N - M)}.$$

Здесь y_i^{obs} , y_i^{calc} – соответственно экспериментальное и вычисленное значения вращательной постоянной или псевдовращательного перехода, σ_i — экспериментальная погрешность, (N - M) — число степеней свободы (от 32 до 35).

m = 1. Потенциал (1) принимает вид $V^{(1)} = (V_1/2)[1 - \cos(\varphi)]$. Коэффициент $V_1 = -760.2 \pm \pm 11.4 \text{ см}^{-1}$. Стандартное отклонение подгонки составляет 6.7. В работе [1] мы получили $V_1 = -882.0 \pm 127.9$. Таким образом, учет вращатель-

Рис. 1. Экспериментальные и расчетные потенциальные функции псевдовращения 2-метил-1,3-диоксолана.

ных постоянных в подгонке привел к понижению барьера псевдовращения на 120 см⁻¹.

m = 1, 2. Потенциал $V^{(12)} = (V_1/2)[1 - \cos(\varphi)] + (V_2/2)[1 - \cos(2\varphi)].$ Коэффициенты $V_1 = -1663.3 \pm 72.0$ и $V_2 = -494.8 \pm 20.1$ см⁻¹. Стандартное отклонение 33.5. Как и в случае с m = 1 учет вращательных постоянных понизил барьер псевдовращения на ~450 см⁻¹.

m = 1, 3. Потенциал $V^{(13)}$. Коэффициенты $V_1 = -1159.7 \pm 114.7$ и $V_3 = 181.4 \pm 15.9$ см⁻¹. Стандартное отклонение 33.2.

m = 1, 4. Потенциал $V^{(14)}$. Коэффициенты $V_1 = -1069.0 \pm 104.0$ и $V_4 = -111.6 \pm 9.1$ см⁻¹. Стандартное отклонение 32.7.

m = 1, 2, 3. Потенциал $V^{(123)}$. Учет вращательных постоянных практически ничего не изменил по сравнению с [1]: $V_1 = -742.0 \pm 20.9$, $V_2 = 980.8 \pm 34.8$, $V_3 = 562.3 \pm 18.6$ см⁻¹. Стандартное отклонение 109.2.

m = 1, 2, 4. Потенциал V^{124} . Коэффициенты $V_1 = -358.1 \pm 17.8, V_2 = 379.7 \pm 8.6, V_4 = -172.5 \pm \pm 3.0 \text{ см}^{-1}$. Стандартное отклонение 30.5.

m = 1, 3, 4. Потенциал $V^{(134)}$. Коэффициенты $V_1 = -588.0 \pm 24.9, V_3 = -234.1 \pm 7.7, V_4 = -220.4 \pm \pm 7.0$ см⁻¹. Стандартное отклонение 26.3.

m = 1, 2, 3, 4. Потенциал $V^{1234)}$. Коэффициенты $V_1 = -605.9 \pm 18.5, V_2 = 52.7 \pm 18.4, V_3 = -178.9 \pm 13.9, V_4 = -205.0 \pm 10.5$ см⁻¹. Стандартное от-клонение 33.5.

Вращательные постоянные и псевдовращательные переходы, рассчитанные из этих потенциалов, приведены в табл. 2. Чтобы не загромождать статью, отражены лишь данные для потенциалов $V^{(1)}$, $V^{(124)}$, $V^{(134)}$ (рис. 1), обладающих наименьшими стандартными отклонениями подгонки. Как видно из табл. 2, вращательные постоянные состояний v = 7 и 8 описываются хуже, чем вращательные постоянные других состояний. Это может быть связано как с недостатками используемых моделей потенциалов, так и с относительно невысокой точностью полученных экспериментальных данных.

Проведены квантово-химические расчеты [3] методами MP2 и B3PW91 с базисными наборами Попла и Даннинга. Потенциальные функции псевдовращения получены по методике, описанной в [1]. Принципиальных отличий в потенциальных функциях для различных сочетаний метод/базис не наблюдалось. Высота барьера вблизи $\phi = 0^{\circ}$ колеблется примерно в диапазоне 600— 800 см^{-1} , высота барьера на $\phi = 180^{\circ}$ – в пределах 0-40 см⁻¹. Для потенциальных кривых, полученных методом MP2, конформер $\phi = 0^{\circ}$ соответствует локальному минимуму, который на 3-7 см⁻¹ ниже барьера. Для MP2/cc-pVDZ и B3PW91/augсс-pVDZ потенциальные функции получены также путем IRC-сканирования (рис. 1). Среднее отклонение вращательных постоянных от экспериментальных значений для этих двух методов меньше, чем для других.

Зависимость вращательных постоянных от номера псевдовращательного уровня показана на рис. 2. Как видно, экспериментальная и расчет-

Рис. 2. Зависимости вращательных постоянных от номера псевдовращательного уровня.

ные зависимости довольно близки. Это может свидетельствовать о схожем характере поведения "реальной" и квантово-химических потенциальных кривых в области ниже уровня v = 9 (~300– 350 см⁻¹). Делать вывод о том, как ведет себя потенциальная кривая выше этого уровня затруднительно в связи с тем, что производные вращательных постоянных по V_m на несколько порядков меньше тех же производных от частот псевдовращательных переходов. Таким образом, вращательные постоянные несут меньше информации, чем псевдовращательные переходы, которые экспериментально определены только в области ниже 200 см⁻¹.

ЗАКЛЮЧЕНИЕ

Потенциал $V^{(1)}$ в средней и верхней области энергий качественно и количественно близок к квантово-химическим кривым. Его недостаток – узкое основание и отсутствие барьера на $\varphi = 180^{\circ}$. Потенциалы $V^{(124)}$ и $V^{(134)}$ практически совпадают ниже 300 см⁻¹ и обладают барьерами на 180° соответственно в 17.1 и 15.6 см⁻¹. Наличие такого барьера может объяснить поведение вращательных постоянных для v = 0 и 1 [1] (рис. 2); $V^{(124)}$ и $V^{(134)}$ лучше описывают частоты псевдовращательных переходов, чем $V^{(1)}$: так квадратный корень из суммы квадратов отклонений частот соответственно, 502, 493 и 780 см⁻¹. Таким образом, в области ниже 300 см⁻¹ эти потенциалы предпочтительнее $V^{(1)}$. Зато в области выше 300 см⁻¹ у $V^{(124)}$ и *V*⁽¹³⁴⁾ появляются области локальных минимумов (рис. 1). Именно в этих областях располагаются состояния v = 8 и 9. Расстояние между v = 8 и v == 9 составляет 3.2 см⁻¹ для $V^{(124)}$ и 0.02 см⁻¹ для *V*⁽¹³⁴⁾. У нас нет данных по дипольным моментам различных псевдовращательных состояний, поэтому можем только предположить, что дипольные моменты состояний v = 8 и v = 9 мало отличаются друг от друга. Тогда интенсивности двух этих сателлитов будут практически одинаковыми, чего не наблюдалось в эксперименте. Исходя из этого, считаем, что $V^{(124)}$ и $V^{(134)}$ не могут правильно описать поведение молекулы в области выше 300 см⁻¹. Похожая ситуация и с оставшимися пятью потенциалами. Таким образом, мы приходим к тому же заключению, что и в [1]: имеющихся данных не достаточно для однозначного восстановления вида потенциальной функции заторможенного псевдовращения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Файзуллин М.Г., Галеев Р.В., Мамлеев А.Х.* // Журн. физ. химии. 2018. Т. 92. № 4. С. 409.
- Lewis, J.D., Malloy T.B., Chao T.H. et al. // J. Mol. Struct. 1972. V. 12. P. 427.
- 3. *Granovsky Alex A*. Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html