ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 544.72;546.02;547.3

АДСОРБЦИОННО-ДЕСОРБЦИОННОЕ ВЗАИМОДЕЙСТВИЕ АМИНОКИСЛОТ С ПОВЕРХНОСТЬЮ ГИДРОКСИЛАПАТИТА

© 2022 г. О. А. Голованова^{а,*}

^а Омский государственный университет им. Ф.М. Достоевского, Омск, Россия *e-mail: golovanoa2000@mail.ru

> Поступила в редакцию 28.05.2021 г. После доработки 09.09.2021 г. Принята к публикации 14.09.2021 г.

В работе исследованы процессы биогенной кристаллизации (адсорбции и десорбции) аминокислот на поверхности гидроксилапатита. Установлено влияние pH раствора и строения аминокислот на значение максимальной адсорбции и десорбции ряда аминокислот. Выявлены ряды адсорбции и десорбции аминокислот на поверхности гидроксилапатита. Предложен механизм взаимодействия аминокислот с поверхностью гидроксилапатита, который определяется зарядом поверхности твердой фазы и строением аминокислоты и имеет электростатический характер. Установлено, что десорбция с поверхности гидроксилапатита достигает предельного значения при pH, вблизи изоэлектрической точки аминокислот.

Ключевые слова: гидроксилапатит, адсорбция, десорбция, аминокислота, механизм взаимодействия, заряд поверхности

DOI: 10.31857/S004445372203013X

Известно, что взаимодействие минеральной и органической составляющих имеет большое значение в процессах биогенной кристаллизации, как при формировании костного и зубного матрикса млекопитающих, так и при формировании патогенных образований [1–5]. На сегодняшний день проблема возникновения патогенных органоминеральных агрегатов (ОМА) в организме человека сохраняет свою актуальность во всем мире в связи с неуклонным ростом числа заболеваемости, который ежегодно составляет 0.5–5.5% [2–5].

На настоящий момент существует гипотеза, согласно которой основным в процессе биогенной кристаллизации в организме человека является адсорбционное взаимодействие аминокислот (АК), как свободных, так и связанных в молекулы белков с неорганическими компонентами биожидкостей [6–9].

Для организма человека характерна сложная и многоуровневая организация составляющих компонентов, а обмен ионов кальция и взаимодействие его с аминокислотами, как с органическими лигандами, осуществляется практически во всех тканях и жидкостях организма человека [4, 5]. Фосфаты кальция, являются составляющими физиогенных и патогенных минеральных образований организма человека и поэтому актуальным, является исследование их адсорбционно-десорбционного взаимодействия с природными аминокислотами [5, 10–13].

Из числа биосовместимых фосфатов кальция наибольший интерес представляют гидроксилапатит (ГА) [13, 14]. Известно, что он является основной минеральной составляющей костной ткани, зубной эмали и дентина. Гидроксилапатит играет важнейшую роль во многих физиологических процессах, происходящих в организме человека [12– 15]. Жидкости, ткани, живые клетки, скелет и зубы имеют в своем составе ионы кальция, также он играет важную роль для ферментативной системы, так как является "пусковым" устройством для передачи импульса к нервам для сужения мышц.

Аминокислоты участвуют в обменных процессах организма человека [2–5, 16–18]. Ионы кальция(II) и аминокислоты проявляют различные функции в биологических системах.

Данный факт обуславливает интерес изучения и возможность их применения в биомедицинских целях для создания материалов на основе ГА и аминокислот, синтезированных с учетом адсорбционных процессов [19, 20].

Для изучения равновесных процессов в данной работе внимание уделяется адсорбции и десорбции аминокислот с поверхности ГА. В связи с этим целью исследования является установление закономерностей адсорбции-десорбции ами-

pK Брутто-Обозначение Аминокислота pI формула α-COOH α -NH₂ пр. ион. группы Глицин C₂H₅NO₂ 2.35 9.78 6.20 Gly C₃H₇NO₂ 2.35 9.78 Аланин Ala 6.11 $C_4H_7NO_4$ 1.99 9.90 (β-COOH-) 3.90 2.98 Аспарагиновая кислота Asp Аргинин $C_6H_{15}N_4O_2$ 1.82 8.99 (E-NH₂) 12.48 10.76 Arg Глутаминовая кислота Glu C₅H₉NO₄ 2.10 9.47 (y-COOH-) 4.07 3.09 Pro C₅H₉NO₂ 1 95 (y-NH-) 10.64 6.30 Пролин

Таблица 1. Характеристика аминокислот

Обозначения: рК – константы диссоциации, рІ – изоэлектрическая точка аминокислоты.

нокислот на неорганической составляющей костной и зубной ткани — гидроксилапатите.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез гидроксилапатита

Проводился путем осаждения при температуре 22–25°С из водного раствора методом кристаллизации по следующей реакции:

$$\frac{10Ca(NO_3)_2 + 6(NH_4)_2HPO_4 + 8NH_4OH}{(1)} \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 20NH_4NO_3 + 6H_2O.$$

Осадок получали при смешении двух разбавленных растворов гидрофосфата аммония $(NH_4)_2HPO_4$ и нитрата кальция $Ca(NO_3)_2 \cdot H_2O$ в соотношении 1.67 : 1, а также водного раствора аммиака NH_4OH [16]. После смешивания растворов pH данной системы корректировали до значения pH 12.00 ± 0.05, используя растворы NaOH (20%) и/или HNO₃ (1 : 1). Все реактивы, используемые в работе марки "х.ч.".

Определение знака заряда частиц золей твердых фаз осуществляли методом капиллярного анализа [16].

Метод прямой потенциометрии использовали для определения значения pH раствора, погрешность измерения ±0.01 ед. pH, а с использованием ионоселективного электрода измеряли концентрации ионов кальция в ходе эксперимента. Определение фосфат-ионов проводили по методу молибденовой сини. ГОСТ 18309-72. Погрешность определений находится в пределах 2–4 отн. %.

Рентгенофазовый анализ (РФА), проводили для исследования фазового состава синтезированных твердых фаз. Были получены дифрактограммы с помощью "метода порошка" на рентгеновском приборе ДРОН-3. Идентификация фаз проводилась при помощи международной картотеки ASTM и таблиц. Чувствительность метода для проводимых измерений РФА составляет не более 3%.

 ве синтезированных образцов. ИК-спектры получались на спектрофотометре ФСМ 2201. Математическую обработку данных проводили при помощи программ Static2 и Statistica 10 из пакета StatSoft. Чувствительность метода для проводимых измерений методом ИК-спектроскопии составляет не более 5%.
 Адсорбционный эксперимент

Навеску твердой фазы (ГА) массой 0.5 г помещали в колбу и заливали раствором аминокислоты (табл. 1).

Метод ИК-спектроскопии использован для

получения дополнительной информации о соста-

Известно, что соединения α -аминокислот с кальцием отличаются широким спектром биологического и фармакологического действия. Благодаря этому такие соединения находят применение как лекарственные препараты. Например, глицинат кальция может применяться в качестве препарата, который направляет и переносит кальций в костную ткань. Выбор аминокислот для экспериментов сделан на основе анализа литературы [2–5, 8–12].

В опыте варьировали концентрацию аминокислоты: 2, 4, 6, 8, 10, 15, 20, 25, 30 ммоль/л и pH раствора $5.00-8.00 \pm 0.05$ (кроме 6.50) с шагом 0.50. Встряхивали колбы в течение получаса, после оставляли на 2 суток. По прохождении указанного промежутка времени содержимое колб фильтровали и определяли содержание аминокислот в фильтрате при помощи метода перевода их в медные растворимые соли с их дальнейшим фотометрическим определением ($\lambda = 670$ нм), измеряли pH раствора после адсорбции и на аналитических весах определяли массы осадков. Определение неизвестной концентрации аминокислоты проводили с помощью градуировочного графика.

Для определения уравнения описывающего адсорбцию, проводится обработка экспериментальных данных с позиции теории Ленгмюра и Фрейндлиха и по алгоритму, приведенному в [16]. 80

20, град

Рис. 1. Дифрактограмма синтезированного ГА.

40

60

20

Десорбционный эксперимент. Навеску ГА с адсорбированной аминокислотой массой 0.5 г помещают в колбу и заливают водным раствором. Варьируется рН 5.00–9.00 ± 0.05 с шагом 1.00. Встряхивают колбу в течение 30 мин, после чего оставляют на 7 дней. По истечении указанного времени содержимое колб фильтруют, отделяя твердую фазу, а определение концентрации аминокислот проводили фотометрическим методом. Для измерения рН использовали метод прямой потенциометрии, погрешность измерения ±0.01 ед. рН.

Термический анализ проводили на синхронном термическом анализаторе STA-449C "NETZSCH". Термохимические превращения исследуемых образцов кальций фосфатных материалов изучались и сопоставлялись между собой с использованием специализированной термической программы Proteus. Массу навесок варьировали от 15 до 70 мг в зависимости от величин регистрируемых сигналов измерения потери массы и теплового эффекта. Погрешность метода менее 5°C.

Математическую обработку всех данных осуществляли с использованием статистических программ Static2 и Statistica.10 из статистического пакета StatSoft.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Методами РФА и ИК-спектроскопии установлено, что осадки, полученные после 48 ч кристаллизации, представлены фазой гидроксилапатита (рис. 1), принадлежащей гексагональной сингонии (20 соответствует 31.8, 32.9, 39.9). Рассчитанный по формуле Дебая—Шеррера [21] размер кристаллитов равен D = 13 нм, что согласуется с данными [2, 14].

Анализ надосадочной жидкости и расчет Са/Р-коэффициента показал, что его значение для синтезированного гидроксилапатита равно 1.67, что соответствует стехиометрическому значению ГА [3, 22].

и ОН- соответственно.

Для подтверждения процессов адсорбции аминокислот приведены результаты РФА (табл. 2) и ИК-спектроскопии (рис. 3). Установлено, что осадки полученные, после 48 ч адсорбции АК представлены фазой гидроксилапатит. Рассчитаны параметры кристаллической решетки и определены области когерентного рассеяния для всех образцов (табл. 2).

На ИК-спектре образца после адсорбционного эксперимента глицина на поверхности гидроксилапатита (рис. 3) идентифицируется полоса колебаний при 1650 см⁻¹ как суммарная, отражающая колебания связей С=О, N–H, О–H в молекулах аминокислоты и ОН-ионов в составе гидроксилапатита. Так же зафиксировано появление специфических полос поглощения связанных с колебаниями связей N–H и C–N, которые

Рис. 2. ИК-спектр синтезированного ГА.

%

0

N⁰	Адсорбция АК на ГА	<i>С</i> , мМ	pН	<i>a</i> , Å	<i>c</i> , Å	$D_{002}, Å$
1	Глицина	30	7.5	9.425 ± 0.002	6.892 ± 0.002	202
2	Аланина	30	6.0	9.424 ± 0.002	6.890 ± 0.002	196
3	Аргинина	30	5.0	9.425 ± 0.002	6.892 ± 0.002	204
4	Аспарагиновой кислоты	30	8.0	9.426 ± 0.002	6.890 ± 0.002	206
5	Глутаминовой кислоты	30	5.0	9.424 ± 0.002	6.891 ± 0.002	200
6	Серина	30	7.5	9.422 ± 0.002	6.892 ± 0.002	203

Таблица 2. Фазовый состав и рассчитанные структурные характеристики ГА-АК

Примечание. Фазовый состав: Hydroxylapatite (00-055-0592) гексагональная решетка, пр. гр. P63/m(176), a = 9.419 Å, c = 6.883 Å.

проявляются в областях 3500-3300, 1650-1500, 1360-1000 см⁻¹, что подтверждает возможность адсорбции аминокислот на гидроксилапатите.

Далее были обработаны экспериментальные данные по адсорбции АК на ГА, а полученные результаты представлены в виде изотерм адсорбции [16, 23]. Осуществлена обработка данных по моделям Ленгмюра и Фрейндлиха, и были получены линейные изотермы адсорбции. Выявлено, адсорбция аминокислот на гидроксилапатите описывается моделью Ленгмюра (табл. 3).

В соответствии с литературными данными и результатами, полученными в ходе выполнения данного исследования, получено, что взаимодействия при адсорбции аминокислот с поверхностью гидроксилапатита носят электростатический характер [2, 3, 16, 24–26].

С помощью эксперимента установлено, что поверхность гидроксилапатита имеет положительный заряд в водных растворах (табл. 4). Получено, что для аминокислот имеющих вид отрицательно заряженных цвиттер-ионов адсорбция приводит к перезарядке поверхности гидроксилапатита. В случае взаимодействия ГА с алани-

Рис. 3. ИК-спектр образца гидроксилапатита после адсорбции глицина с концентрацией 2 ммоль/л.

ном, пролином и глицином при pH раствора, выше и ниже изоэлектрической точки AK заряд поверхности адсорбата не меняется.

Установлено, что глицин, аспарагиновая и глутаминовая кислоты находятся в виде отрицательно заряженных ионов, аланин и пролин в виде нейтральных цвитер-ионов, а аргинин в виде положительно заряженной формы.

Таким образом, адсорбция аминокислот на гидроксилапатите протекает за счет электростатического взаимодействия заряженных и сильно полярных группировок аминокислот (-СОО-, -NH₃⁺, -СООН) с активными центрами поверхности кристаллического вещества. Известно, что отрицательно заряженная группа аминокислоты (-СОО-) обладает более сильным взаимодействием, чем полярная группа (-СО-ОН) [4, 27]. Изменение количества адсорбированной аминокислоты при изменении pH раствора объясняется тем, что группы аминокислоты входящие во взаимодействия при адсорбции, могут менять свою форму.

Изучение процесса десорбции аминокислот с поверхности гидроксилапатита

Исследован процесс десорбции аминокислот с поверхности гидроксилапатита, который был изучен при pH максимальной адсорбции аминокислот (табл. 5) при pH 6.50, 7.50, 8.50 ± 0.05. Доли десорбировавшихся с поверхности адсорбента аминокислот представлены в виде диаграммы (рис. 4).

Получено, что десорбция аминокислот с поверхности гидроксилапатита достигает максимального значения при pH, которые находятся ближе к изоэлектрической точке аминокислот. Например, изоэлектрическая точка аргинина равна 10.8, а максимальное значение десорбции при pH 8 достигает предела.

Сравнение десорбционных процессов было изучено при pH 7.50 в связи с его близостью к pH плазмы крови (pH 7.4). Установлено, что значение десорбции AK с поверхности ГА возрастает в

ГОЛОВАНОВА

AK	Г моль/кг	рН	ŀ	R ²	nI	Заряд АК	
	max, money m	PTTmax	Ленгмюра	Фрейндлиха	p1		
Глицин	0.450	7.50	0.960	0.957	6.20	-1	
Аланин	0.200	6.00	0.957	0.898	6.11	0	
Аспарагиновая кислота	0.300	8.00	0.969	0.830	2.98	-1	
Глутаминовая кислота	0.300	5.00	0.969	0.830	3.09	-1	
Аргинин	0.200	5.00-6.00	0.957	0.846	10.8	+1	
Пролин	0.350	6.00	0.965	0.895	6.30	0	

Таблица 3. Модели Ленгмюра и Фрейндлиха, для максимальной адсорбции АК на гидроксилапатите

Таблица 4. 🕻	Знак заряда гидроксилапат	тита в присутствии ам	минокислот одинаковой 1	концентрации
--------------	---------------------------	-----------------------	-------------------------	--------------

Вещество	pН	Заряд	$u \times 10^4$, см	ξ-потен- циал, мВ	Ионные формы
ГА	5.00	+	2.6	+7.3	C_2 ⁺
	6.50	+	2.8	+7.4	
	8.00	+	2.7	+7.4	— PO ₄
ГА-Глицин	5.00	+	0.8	+10.3	+NH ₃ -CH ₂ -COOH
	6.50	+	0.88	+11.8	+NH ₃ -CH ₂ -COO ⁻
	8.00	+	0.91	+10.3	NH ₂ -CH ₂ -COO ⁻
ГА-Аланин	5.00	+	0.34	+9.3	+NH ₃ -CH(CH ₃)-COOH
	6.50	+	0.38	+12.4	+NH ₃ -CH(CH ₃)-COO ⁻
	8.00	+	3.5	+9.4	NH ₃ -CH(CH ₃)-COO ⁻
ГА-Аспарагино-	5.00	_	1.0	-17.3	$^{-}OOC-CH_2-CH(NH_3^+)-COO^{-}$
вая кислота	6.50	_	0.9	-17.2	
	8.00	_	1.2	-17.1	
ГА-Глутамино-	5.00	_	2.0	-16.3	$^{-}OOC-(CH_2)_2-CH(NH_3^+)-COO^{-}$
вая кислота	6.50	_	2.1	-16.5	
	8.00	—	2.0	-16.6	
ГА-Аргинин	5.00	+	0.52	+7.3	$H_2N^+=C(NH_2)NH(CH_2)_3CH(NH_3^+)-COO^-$
	6.50	+	0.54	+7.2	
	8.00	+	0.57	+7.1	
ГА-Пролин	5.00	+	3.2	+18.9	$\begin{array}{c} HO \\ O = C \\ HC \\ HC \\ H_2 C \\ CH_2 \end{array} \\ \begin{array}{c} +H_2 \\ H_2 C \\ H_2 \end{array} \\ \begin{array}{c} +H_2 \\ CH_2 \\ H_2 C \\ H_2 \end{array} \\ \begin{array}{c} +H_2 \\ CH_2 \\ H_2 \\ H_2 C \\ H_2 \end{array} \\ \begin{array}{c} +H_2 \\ H_2 \\$
	6.50	+	3.2	+18.7	$ \begin{array}{c} $
	8.00	+	3.3	+18.6	$ \begin{array}{c} $

Обозначения: *и* – электрофоретическая подвижность.

Рис. 4. Зависимость доли десорбировавшихся аминокислот в растворе от рН раствора.

следующем ряду: глутаминовая кислота < аспарагиновая кислота < аланин < пролин < аргинин = = глицин.

При сравнении приведенных данных с полученном рядом адсорбции AK на поверхности гидрокислапатита (аланин = аргинин < пролин = глутаминовая кислота < аспарагиновая кислота < < глицин) видно, что данные ряды отличаются по ряду AK.

Результаты термогравиметрического анализа поверхности гидроксилапатита после адсорбции аминокислот

Для подтверждения процессов адсорбции был проведен термогравиметрический анализ образцов (рис. 5 и табл. 6). Выявлено, что в присутствии адсорбированных аминокислот происходит увеличение убыли массы образцов после адсорбции по сравнению с чистым гидроксилапатитом при нагревании до 330–525°С, а также уширение пика на ДТА-кривой в области 180– 250°С. Это связано с деструкцией АК в этой области температур, а также с удалением структурной воды из ГА. При температуре выше 525°C происходит разложение гидроксилапатита с выделением присутствующего в структуре CO₂.

Основные этапы изменения термического преобразования образцов и соответствующие им фазовые переходы можно представить следующим образом: І этап ($T - 25 - 75^{\circ}$ C) – удаление химически не связанной воды

$$[\operatorname{Ca}_{10}(\operatorname{PO}_4)_6(\operatorname{OH})_2 \cdot \operatorname{H}_2\operatorname{O}] \cdot \operatorname{H}_2\operatorname{O}(\operatorname{TB.}) \rightarrow \\ \rightarrow [\operatorname{Ca}_{10}(\operatorname{PO}_4)_6(\operatorname{OH})_2 \cdot \operatorname{H}_2\operatorname{O}](\operatorname{TB.}) + \operatorname{H}_2\operatorname{O}(\operatorname{\Gamma}) + Q;$$

II этап (*T* = 75–525°C) – удаление слабосвязанной (адсорбированной) воды из состава осадка и адсорбированной аминокислоты

$$Ca_{10}(PO_4)_6(OH)_2 \cdot H_2O(TB.) \rightarrow$$

→
$$Ca_{10}(PO_4)_6(OH)_2(TB.) + H_2O(\Gamma) + Q;$$

III этап ($T > 525^{\circ}$ C) — выделением присутствующего в структуре гидроксилапатита CO₂.

Таким образом, полученные экспериментальные данные могут быть использованы для количественной характеристики факторов при физиологической и патологической кристаллизации,

Таб	лица 5.	Концентрации	аминокислот в	растворе (С	С _р , моль/.	'л)) после десорбц	ии при р	азном р	эE
-----	---------	--------------	---------------	-------------	-------------------------	-----	-----------------	----------	---------	----

Аминокислота	pH 5.00	pH 6.00	pH 7.00	pH 7.50	pH 8.00
Глицин	0.004	0.005	0.009	0.009	0.006
Аланин	0.003	0.004	0.003	0.003	0.003
Аспарагиновая кислота	0.006	0.004	0.004	0.004	0.004
Глутаминовая кислота	0.006	0.004	0.004	0.003	0.002
Аргинин	0.001	0.003	0.003	0.004	0.004
Пролин	0.005	0.005	0.005	0.005	0.005

ГОЛОВАНОВА

Рис. 5. Термический анализ образцов гидроксилапатита до и после адсорбции аминокислот: а – гидроксилапатит чистый, б – глицин, в – аланин, г – аргинин, д – аспарагиновая кислота, е – глутаминовая кислота, ж – серин.

Аминокислота	25–525°C	>525°C	Δm
Гидроксилапатит	7.26	2.08	9.34
ГА + Глицин	8.12	2.02	10.14
ГА + Аланин	8.01	1.84	9.85
ГА + Аргинин	8.39	2.00	10.39
ГА + Аспарагиновая	8.68	2.08	10.76
кислота			
ГА + Глутаминовая	7.62	2.35	9.97
кислота			
ГА + Серин	9.12	2.13	11.25

Таблица 6. Изменение массы (%) образцов до и после адсорбции аминокислот в процессе термогравиметрического анализа

Обозначения: Δm — общая убыль массы.

происходящих в живых тканях. Установленные структурные характеристики процессов адсорбции и десорбции АК с поверхностью ГА могут служить опорным теоретическим материалом при создании медицинских препаратов, направленных на точечную доставку ионов кальция и АК в организм человека.

Кроме того, поведение различных функциональных материалов на основе фосфатов кальция с аминокислотами и другими молекулами представляют интерес в области аффинажной сепарации, использовании в качестве биосенсоров и др.

Таким образом, осуществлен синтез гидроксилапатита, состав твердой фазы подтвержден методами РФА и ИК-спектроскопии. Методом электрофореза определен знак зарядов поверхности ГА, который имеет положительные значения. Исследован процесс адсорбции аминокислот на гидроксилапатите и показано, что она описывается моделью Ленгмюра и имеет электростатический характер. С помощью ИК-спектроскопии и термогравиметрическим методом доказан факт адсорбции АК на поверхности гидроксилапатита. Установлен факт десорбции аминокислот с поверхности гидроксилапатита и показано, что десорбция достигает максимального значения при рН близком к изоэлектрической точке аминокислоты.

СПИСОК ЛИТЕРАТУРЫ

- Silva david G.A., Coutinho O.P., Ducheyne P., Reis R.L. // J. Regen. Med. 2007. V. 1. P. 97.
- Gerk S.A., Golovanova O.A., Odazhiu V.N. // Inorganic Materials. 2018. V. 54. P. 305.

- Golovanova O.A., Gerk S.A. // Inorganic Materials. 2020. V. 56. P. 543.
- Golovanova O.A., Tomashevsky I.A. // Russ. J. Physical Chemistry. 2019. V. 93. P. 7.
- Chikanova E.S., Golovanova O.A. // Crystallography Reports. 2019. V. 64. P. 152.
- Fleming D.E., Bronswijk W., Ryall R.L. // Clinical protein Science. 2001. V. 101. P. 159.
- Hsu Y.H., Turner I.G., Miles A.W. // Sci. Mater. Med. 2007. V. 18. P. 2319.
- 8. *Zhu X. D., Fan H. S., Xiao Y. M. et al.* // Acta Biomater. 2009. V. 5. P. 1311.
- Segvich S.J., Smith H.C., Kohn D.H. // Biomaterials. 2009. V. 30. P. 1287.
- Zhu X.D., Zhang H.J., Fan H.S. et al. // Acta Biomater. 2009. V. 6. P. 1536.
- Rimola A., Corno M., Zicovich-Wilson C., Ugliengo P. // Am. Chem. Soc. 2008. V. 130. P. 16181.
- 12. *Rimola A., Corno M., Zicovich-Wilson C.M., Ugliengo P. //* Phys. Chem. Chem. Phys. 2009. V. 11. P. 9005.
- Лемешева С.А., Голованова О.А., Туренков С.В. // Химия в интересах устойчивого развития. 2009. Т. 3. С. 327.
- 14. Захаров Н.А., Ежова Ж.А., Коваль Е.М., Кузнецов *Н.Т.* // Журн. неорган. химии. 2017. Т. 62. № 4. С. 1.
- 15. *Golovanova O.A.* // Engineering Materials. 2018. V. 781. P. 211.
- Golovanova O.A., Golovchenko K.K. // Russ. J. of Physical Chemistry. 2019. V. 93. P. 2275.
- 17. Koukaras E.N., Zdetsis A. // J. Phys. Chem. letters. 2011. № 2. P. 272.
- Chekman I.S., Gorchakova N.A., Sirova H.O. et al. // Biotechnologia Acta. 2014. V. 7. № 6. P. 83.
- Rhilassi A.El., Mourabet M., Bennani-Ziatni M. et al. // J. Saudi Chemical Society. 2016. V. 20. P. 632.
- Siddique J.A., Naqvi S. // J. Chem. Eng. Data. 2010. V. 55. P. 2930.
- 21. *Егоров-Тисменко Ю.К.* Кристаллография и кристаллохимия: учебник. М.: КДУ, 2005. 592 с.
- 22. Солоненко А.П., Голованова О.А. // Журн. неорган. химии. 2014. Т. 59. С. 12.
- 23. *Малышева Ж.Н., Новаков И.А.* Теоретическое и практическое руководство по дисциплине "Поверхностные явления и дисперсные системы". ВолгГТУ. 2008. 344 с.
- 24. Elangovan S., Margolis H.C., Oppenheim F.G., Beniash E. // Langmuir 2007. V. 23, acoustic P. 11 200.
- 25. Van Der Veen M., Norde W., Stuart M.C. // Collolid anselme Surf. B Biointerf. 2004. V. 35. P. 33.
- 26. Almora-Barrios N., Austen K.F., de Leeuw N.H. // Langmuir 2009. V. 25. P. 5018.
- 27. Chie Kojima, Kenji Watanabe // J. Drug Deliv. 2012. P. 932461.