___ ХИМИЧЕСКАЯ КИНЕТИКА _____ И КАТАЛИЗ

УДК 542.8:544.14:544-16:544.47:544.344

СИНТЕЗ Zn-АЛЮМОСИЛИКАТОВ, ИХ ФИЗИКО-ХИМИЧЕСКИЕ И КАТАЛИТИЧЕСКИЕ СВОЙСТВА В ПРОЦЕССЕ АРОМАТИЗАЦИИ ПРОПАНА

© 2022 г. Л. Н. Восмерикова^{*a*,*}, А. А. Восмериков^{*a*}, В. И. Зайковский^{*b*,*c*}, А. В. Восмериков^{*a*}

^а Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения РАН, 634055, Томск, Россия

^b Федеральное государственное бюджетное учреждение науки, Федеральный исследовательский центр, Институт катализа им. Г.К. Борескова Сибирского отделения РАН, 630090, Новосибирск, Россия

^с Новосибирский национальный исследовательский государственный университет, 630090, Новосибирск, Россия

**e-mail: lkplu@ipc.tsc.ru* Поступила в редакцию 15.09.2021 г. После доработки 15.09.2021 г. Принята к публикации 21.09.2021 г.

Методом гидротермальной кристаллизации из щелочных алюмокремнегелей синтезированы Znалюмосиликаты структурного типа цеолита ZSM-5. На основании данных структурно-морфологических исследований образцов установлено, что введение цинка в цеолитную структуру приводит к образованию различных по морфологии и элементному составу частиц. По данным EDX-анализа обнаружено, что распределение элементов по объему цеолитного катализатора практически однородно, что обусловлено морфологией образующихся кристаллов. Установлено, что Zn-алюмосиликаты обладают высокой каталитической активностью в процессе превращения пропана в ароматические углеводороды. Наибольшую селективность образования ароматических соединений проявляет образец 0.81% Zn-AC, что связано с особенностями распределения и состояния Zn в цеолите и его кислотными свойствами.

Ключевые слова: цинкалюмосиликат, кристаллы, кластеры, агрегаты, морфология, активные центры, ароматизация, пропан

DOI: 10.31857/S0044453722030268

В настоящее время в России и других странах мира существует проблема утилизации попутного нефтяного газа (ПНГ), который является ценным сырьем для синтеза целого ряда химических продуктов и использования в энергетических целях. Основным методом переработки ПНГ является его разделение на фракции на крупных газоперерабатывающих заводах (ГПЗ). К сожалению, на сегодняшний день в России недостаточно развита инфраструктура для транспортировки ПНГ из мест добычи до ГПЗ. Альтернативным методом утилизации ПНГ является неокислительная конверсия легких углеводородов в присутствии каталитических систем на основе высококремнеземных цеолитов, в результате которой происходит образование ароматических соединений, широко используемых в химической и нефтехимической промышленности. Важными свойствами цеолитных катализаторов, от которых зависит эффективность каталитических процессов, являются активность и селективность по целевому продукту. Для решения проблемы селективности процессов, протекающих на цеолитах, необходимо знать, какие именно активные центры принимают участие в той или иной химической реакции, и на основании этого регулировать кислотно-основную функцию катализаторов. Основополагающим фактором каталитической активности высококремнеземных цеолитов является оптимальное соотношение числа льюисовских и бренстедовских кислотных центров, их сила и взаимное расположение в структуре цеолита типа ZSM-5, а также электронное состояние промоторов.

Для модифицирования цеолитов применяются разнообразные промоторы, но наиболее эффективными среди них являются соединения цинка, галлия и платины [1–4]. Цинксодержащие цеолиты привлекают большой интерес исследователей вследствие их сравнительной дешевизны, недефицитности, высокой активности и селективности в каталитическом превращении легких алканов в ароматические углеводороды [5–8]. Как правило, Zn-содержащие катализаторы готовят ионным обменом или пропиткой водородной формы цеолита ZSM-5 водными растворами солей цинка, а также методом твердофазного смешения. Цеолиты, модифицированные по традиционной, так называемой, пропиточной технолопозволяют улучшить характеристики гии, катализаторов, однако в целом, кардинально не улучшают эксплуатационные и экономические показатели, так как имеют ряд характерных недостатков. В связи с этим, для разработки катализатора, способного продолжительное время работать в относительно жестких условиях реакции и направлять процесс преимущественно в сторону образования целевого продукта, необходим иной подход к его приготовлению. Исследования в этой области сосредоточены на создании новых каталитических систем – элементоалюмосиликатов цеолитной структуры ZSM-5 со встроенными в кристаллическую решетку различными элементами, такими, как например Fe, In, Ga и др. [9-11]. Получение бифункциональных катализаторов на основе элементоалюмосиликатов и установление влияния вводимых в решетку цеолита элементов на механизм превращения легких углеводородов представляет большой научный интерес. Целью данной работы явилось получение Zn-содержащих цеолитов, в которые цинк вводился на стадии гидротермального синтеза, и исследование их физико-химических и каталитических свойств в процессе превращения пропана в ароматические углеводороды.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследования выступал цинкалюмосиликат (Zn-AC) структурного типа цеолита ZSM-5 (мольное отношение SiO₂/Al₂O₃ + + ZnO = 40, содержание ZnO в реакционной смеси варьировали от 0.82 до 2.16 мас. %, а Al₂O₃ – от 3.04 до 1.36 мас. %), полученный методом гидротермальной кристаллизации путем частичной замены алюминия на цинк. Источником кремния служило жидкое стекло состава: 7% Na₂O, 19% SiO₂, 74% H₂O, источниками оксидов алюминия и цинка — растворы их азотнокислых солей, а структурообразующим компонентом был выбран гексаметилендиамин (ГМДА).

Цинксодержащий цеолит готовили путем добавления к жидкому стеклу при интенсивном перемешивании последовательно водного раствора ГМДА, водного раствора азотнокислого алюминия (Al(NO₃)₃ · 9H₂O) и водного раствора азотнокислого цинка (Zn(NO₃)₂ · 6H₂O). Кислотность реакционной смеси доводили до pH = 10.8 добавлением 1 N раствора азотной кислоты.

Во всех синтезах в качестве "затравки" добавляли 1–1.5% цеолита от массы используемого в синтезе SiO₂. Кристаллизацию осуществляли в стальных автоклавах емкостью 0.25–0.35 дм³ с те-

флоновыми вкладышами в стационарном режиме при температуре 170–175°С в течение 5 суток.

После завершения кристаллизации твердую фазу отделяли от жидкой фильтрованием на воронке Бюхнера, промывали дистиллированной водой до рН промывных вод ≤9, сушили в атмосфере воздуха при 110°С в течение 12 ч и прокаливали для удаления темплата при 550°С в течение 8 ч.

Для перевода в активную H-форму полученные образцы обрабатывали 25%-ным водным раствором NH₄Cl на водяной бане при 90°C в течение 2 ч при расходе 10 г раствора на 1 г цеолита. После удаления катионов натрия цеолиты в NH₄форме сушили при 110°C в течение 12 ч и прокаливали в атмосфере воздуха при 540°C в течение 6 ч для получения H-формы цеолита.

Контроль за качеством полученных образцов осуществляли с помощью ИК-спектроскопии и рентгенофазового анализа. ИК-спектры исследуемых цеолитов снимали на ИК-Фурье-спектрометре "Nicolet 5700" в области 2000–400 см⁻¹. Рентгенофазовый анализ проводили на дифрактометре DISCOVER D8 (Bruker), используя монохромное Cu K_{α} -излучение и LynxEye-детектор. Сканирование проводили в диапазоне углов 2 θ = = 5-50 град, шаг 0.02 град, накопление в точке – 3 с.

Изучение кислотных свойств синтезированных катализаторов осуществляли на термодесорбшионной установке с программированным нагревом образца и регистрацией сигнала с детектора. Хроматографический вариант программированной термодесорбции заключается в том, что образец катализатора с предварительно адсорбированными на нем молекулами вещества-зонда (аммиак) подвергают нагреванию с определенной скоростью в токе газа-носителя (гелий). При десорбции вещество в газовой фазе проходит через ячейку катарометра, полученный при этом сигнал фиксируется и обрабатывается с использованием программного продукта на персональном компьютере. Силу кислотных центров катализаторов оценивали по температурным максимумам на термодесорбционных кривых, а их концентрацию определяли по количеству аммиака, десорбирующегося в момент фиксации десорбционных пиков, и выражали в мкмолях на 1 г катализатора.

Исследование удельной поверхности проводили на автоматическом газо-адсорбционном анализаторе "3Flex" (Місготегітіся, USA) по данным адсорбции азота при температуре минус 196°С. Для определения величины удельной поверхности (S_{ya}) использовался многоточечный (10–12 точек) метод Брунауэра–Эммета–Теллера (БЭТ) в интервале относительного давления азота P/P_0 от 0.05 до 0.30. Перед измерением удельной поверхности была проведена дегазация образцов (200°С, вакуум) в течение 2 ч. Исследова-

СИНТЕЗ Zn-АЛЮМОСИЛИКАТОВ

Катализатор	С, мас. %		Мольное с	or <i>%</i>	
	ZnO	Al ₂ O ₃	SiO ₂ /Al ₂ O ₃	SiO ₂ /ZnO	ū., 70
0.82% Zn-AC	0.82	3.04	53	160	100
1.89% Zn-AC	1.89	1.70	96	69	92
2.16% Zn-AC	2.16	1.36	120	60	86

Таблица 1. Характеристика кристаллических цинкалюмосиликатов

Обозначения: С – концентрация, α – степень кристалличности.

ния были выполнены в Центре коллективного пользования сорбционных и каталитических исследований на базе лаборатории каталитических исследований, входящего в состав Испытательного центра "Томский региональный центр коллективного пользования" Национального исследовательского Томского государственного университета.

Снимки просвечивающей электронной микроскопии высокого разрешения (ПЭМВР) получали на электронных микроскопах JEM-2010 и JEM-2200FS (JEOL Ltd.) с разрешением по решетке 0.14 и 0.1 нм соответственно. Образцы препарировали в виде суспензий в этаноле на поддерживающие Си-сетки с последующим высушиванием на воздухе. Методика проведения экспериментов изложена в работах [12–15].

Энерго-дисперсионные рентгеновские (EDX) спектры и элементные карты получали в сканирующей моде на приборе JEM-2200FS в режиме темного поля (HAADF-STEM) с использованием спектрометра JED-2300T.

Активность полученных катализаторов определяли на установке проточного типа в процессе преврашения пропана (степень чистоты 99.95 об. %) в ароматические углеводороды (АрУ). Исследования проводили при атмосферном давлении, температуре реакции 450-600°С и объемной скорости подачи исходного сырья 250 ч⁻¹. Объем загружаемого в реактор катализатора составлял 5.0 см³, а размер его гранул – 0.5–1.0 мм; их получали прессованием порошка цеолита в таблетки с последующим измельчением и отбором указанной фракции с помощью сит. Продукты реакции анализировали методом ГЖХ c использованием хроматографа "Хроматэк-Кристалл 5000.2". Для определения состава жидкой фазы использовали капиллярную колонку ВР-1 PONA (100 M \times 0.25 MM \times 0.5 MKM), а для определения состава газовой фазы – капиллярную GS-Gas-Pro (60 м × 0.32 мм) и набивную Carbosieve S-II (4 м × 2 мм) колонки. Для оценки каталитической активности образцов определяли степень превращения пропана, а также рассчитывали выход и селективность образования газообразных и жидких продуктов реакции.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Данные о составе и степени кристалличности образцов Zn-AC приведены в табл. 1. По данным ИК-спектроскопии все образцы характеризуются высокой степенью кристалличности (α), рассчитанной по описанной в работе [16] методике. Увеличение содержания цинка в Zn-AC приводит к небольшому снижению степени кристалличности цеолитного катализатора, которая для всех образцов сохраняется высокой. Это может быть обусловлено замедлением процесса кристаллизации алюмосиликатов в присутствии катионов цинка.

Дифрактограммы синтезированных цинкалюмосиликатов представлены на рис. 1. Для всех образцов дифракционные пики указывают на хорошо окристаллизованную структуру ZSM-5. Дифракционные пики кристаллического ZnO при $2\theta = 31.8$ и 36.3 град отсутствуют на всех кривых, что свидетельствует о высокой дисперсности частиц цинка в образцах. Положение основного дифракционного пика структуры ZSM-5 при 20 около 23.1 град, соответствующее расстоянию *d* 501 [17], с ростом концентрации цинка в катализаторе немного смещается в область более низких значений, что может быть обусловлено включением цинка [18].

По данным ТЕМ частицы образца 0.82% Zn-АС имеют глобулярную форму с шероховатостями поверхности и размерами около 5 мкм (рис. 2а). Эта морфология типична для частиц данного образца. Для образца с бо́льшим содержанием оксида цинка (1.89% Zn-AC) обнаружено присутствие частиц двух видов: 1 – кристаллы цеолита с размерами 1-3 мкм (преобладающая фракция) (рис. 2б): 2 - поликристаллические частицы в форме вытянутых эллипсоидов с размерами 100 × × 500 нм с расщеплением по краям на тонкие фрагменты с толщиной около 20 нм (рис. 2в, г). С помощью электронной микродифракции был определен параметр решетки $d_{001} = 1$ нм, который характерен для цеолита типа ZSM-5 [15]. Этот же цеолитный параметр определяется и для поликристаллических частиц второго вида, хотя различие по морфологии дает основание предположить, что они относятся к иной полиморфной модификации цеолита.

Рис. 1. Дифрактограммы синтезированных цинкалюмосиликатов: 1 - 0.82% Zn-AC; 2 - 1.89% Zn-AC; 3 - 2.16% Zn-AC.

Рис. 2. Снимки ТЕМ: а – морфология цеолитового агрегата образца 0.82% Zn-AC; б – кристалл цеолита и агрегаты мелких частиц образца 1.89% Zn-AC; в – агрегированные частицы в форме эллипсоидов образца 1.89% Zn-AC; г – расщепленный край эллипсоидной частицы образца 1.89% Zn-AC.

Рис. 3. НААDF-STEM-изображения с указанием участков для локального элементного анализа: а – образца 0.82% Zn-AC; б и в – образца 1.89% Zn-AC.

Снимки HAADF-STEM частиц разной морфологии с указанием участков для локального элементного анализа образцов с разной концентрацией оксида цинка показаны на рис. 3 а—в, а элементный состав для частиц разных видов приведен в табл. 2. Из этих данных следует, что в образце 0.82% Zn-AC видны лишь "следы" присутствия цинка, а для катализатора 1.89% Zn-AC в крупных кристаллах цеолита концентрация цинка больше, чем в мелких частицах цеолита эллипсовидной формы.

Несмотря на обнаруженные морфологические различия в составе цинкалюмосиликатов, внутри частиц каждой из форм распределение элементов однородно. Приведенные на рис. 4 и 5 элементные карты показывают отсутствие отдельных фаз, что свидетельствует о гомогенном характере модифицирования цеолита цинком и об изоморфном замещении ионов Si^{4+} на ионы Zn^{2+} в кристаллической решетке цеолита.

Учитывая бифункциональную природу действия исследуемых катализаторов, обусловленную участием как металлсодержащих активных нентров, так и кислотных нентров самого неолита, представляло интерес изучить кислотные свойства синтезированных образцов, результаты исследования которых представлены в табл. 3. Все исследуемые образцы имеют два типа кислотных центров, о чем свидетельствует наличие двух форм десорбшии аммиака на термодесорбшионных кривых. Образец 0.82% Zn-AC обладает наибольшей концентрацией кислотных центров обоих типов, имеющих большую силу по сравнению с другими образцами. При повышении содержания оксида цинка в цинкалюмосиликате до 1.89% происходит незначительное снижение концентрации слабых и более существенное уменьшение сильных кислотных центров. При дальнейшем повышении концентрации Zn в цинкалюмосиликате происходит значительное снижение количества кислотных центров обоих типов, что связано с ростом содержания ZnO на поверхности цеолита и увеличением степени его диффузии в каналы цеолита, где происходит взаимодействие с бренстедовскими кислотными центрами [19, 20]. Кроме того, с ростом концентрации Zn в цинкалюмосиликате наблюдается уменьшение силы кислотных центров обоих типов, о чем свидетельствует смешение низко- и высокотемпературных максимумов пиков в область более низких температур (табл. 3).

Результаты исследований текстурных характеристик Zn-содержащих цеолитных катализаторов представлены в табл. 3. Наибольшую удельную поверхность и наибольший объем пор имеет образец 0.82% Zn-AC, при этом он характеризуется наименьшим средним диаметром пор. С ростом содержания цинка в цинкалюмосиликате наблюдается снижение величины удельной поверхности и суммарного объема пор. Так, например, для катализатора 2.16% Zn-AC величина удельной по-

Таблица 2. Элементный состав выбранных участков цинкалюмосиликатов

Vuactor	Атомное отношение, %							
JACTOR	Al K	Si K	Zn K					
0.82% Zn-AC								
001	3.70	96.18	0.13					
1.89% Zn-AC								
002	2.37	94.40	3.24					
003	0.79	98.21	1.00					

верхности составляет 329 м²/г, тогда как для образца 0.82% Zn-AC она была 393 м²/г. Полученные результаты хорошо согласуются с данными электронной микроскопии, свидетельствующие о присутствии следовых количеств цинка в образце 0.82% Zn-AC и о существенно большем его содержании в катализаторе 1.89% Zn-AC.

На рис. 6 показано влияние температуры на основные показатели процесса ароматизации пропана на образце 0.82% Zn-AC. Уже при температуре реакции 450°C наблюдается значительное превращение пропана на этом катализаторе, а при 500°С и выше происходит существенное образование целевого продукта – ароматических углеводородов, состоящих преимущественно из бензола, толуола и ксилолов, в небольших количествах также образуются алкилбензолы C_{q_+} , нафталин и алкилнафталины. Побочные продукты представлены газообразными углеводородами – метаном и этаном, в незначительном количестве присутствуют водород и олефины С2-С4, а также непревращенный пропан. С ростом температуры процесса происходит увеличение степени превращения пропана и селективности образования ароматических углеводородов, которые при температуре реакции 600°С достигают соответственно 100 и 40.2%. Аналогичные зависимости показателей ароматизации пропана от температуры

Рис. 4. Снимки элементной карты распределения алюминия, кремния и цинка в образце 0.82% Zn-AC.

Рис. 5. Снимки элементной карты распределения алюминия, цинка и кремния в образце 1.89% Zn-AC.

процесса наблюдаются на других Zn-содержащих цеолитах.

В табл. 4 представлены данные по влиянию концентрации оксида цинка в цинкалюмосиликате на конверсию пропана, выход ароматических углеводородов и селективность образования продуктов реакции. Увеличение концентрации оксида цинка в катализаторе приводит к снижению его ароматизирующей активности и повышению крекирующей. Так, на образце 2.16% Zn-AC выход ароматических углеводородов при температуре реакции 600°C уменьшается на 4.7% по сравнению с их выходом на образце 0.82% Zn-AC.

На рис. 7 приведена зависимость селективности образования ароматических углеводородов на цинкалюмосиликатах от температуры процесса превращения пропана. Видно, что для всех исследуемых катализаторов характерно увеличение селективности образования ароматических углеводородов с ростом температуры процесса. Наиболее высокой ароматизирующей активностью во всем исследуемом температурном интервале характеризуется катализатор 0.82% Zn-AC по сравнению с другими катализаторами. На данном об-

Таблица 3. Кислотные и текстурные характеристики цинкалюмосиликатов

Катализатор	$T_{\text{макс}}, ^{\circ}\text{C}$		Концентрация, мкмоль/г			$S = M^2/r$	$V \alpha x^3/r$	d mu
	T_{I}	$T_{\rm II}$	CI	C_{II}	C_{Σ}	З _{уд} , м /1	<i>v</i> , cm ⁻ /1	и, нм
0.82% Zn-AC	220	450	529	294	823	393	0.19	1.8
1.89% Zn-AC	210	430	489	229	718	358	0.18	1.9
2.16% Zn-AC	170	420	392	186	578	329	0.17	2.0

Примечание. $T_{\rm I}$, $T_{\rm II}$ – температуры максимумов низко- и высокотемпературных пиков на термодесорбционных кривых; $C_{\rm I}$, $C_{\rm II}$ и C_{Σ} – концентрация слабых и сильных кислотных центров и их сумма, соответственно, $S_{\rm yg}$ – удельная поверхность, V – суммарный объем пор, d – средний диаметр пор.

Таблица 4. Основные показатели ароматизации пропана на цинкалюмосиликатах

Катализатор	T, °C	Х, %	$Y_{ApY}, \%$	$S_{\rm ApV}, \%$	$S_{ m \kappa p},$ %	$S_{ m der}, \%$	$S_{\mathrm{H}_2},\%$
0.82% Zn-AC	450	40	2.3	5.7	66.7	9.7	1.9
	500	77	22.3	28.8	59.2	7.8	2.0
	550	97	36.5	37.5	54.9	5.2	2.3
	600	100	40.2	40.2	53.4	3.0	3.3
1.89% Zn-AC	450	19	1.8	9.5	57.0	12.0	6.8
	500	39	6.5	16.7	62.3	10.0	7.1
	550	84	26.4	31.4	58.7	4.7	4.4
	600	99	38.8	39.1	54.8	1.9	4.2
2.16% Zn-AC	450	13	1.2	9.6	57.3	10.9	8.1
	500	36	4.7	13.0	67.7	8.7	7.1
	550	83	19.1	23.1	67.2	4.4	5.0
	600	99	35.5	35.7	58.3	1.8	4.3

Примечание. X – конверсия пропана; Y_{ApV} – выход ароматических углеводородов; S_{ApY} , S_{Kp} и S_{der} – селективность образования продуктов ароматизации, крекинга и дегидрирования; S_{H_2} – селективность образования водорода.

Рис. 6. Зависимости конверсии пропана, выхода и селективности образования ароматических углеводородов на катализаторе 0.82% Zn-AC от температуры процесса.

Рис. 7. Зависимости селективности образования ароматических углеводородов на цинкалюмосиликатах от температуры процесса превращения пропана.

Рис. 8. Образец 1.89% Zn-AC после катализа: а – морфология кристаллов цеолита; б – "шапочки", экранирующие активные центры на поверхности кристаллов цеолита (одна из них отмечена стрелкой).

разце с ростом температуры процесса от 450 до 500°С наблюдается резкое повышение ароматизирующей активности катализатора. При дальнейшем повышении температуры происходит плавное увеличение селективности образования ароматических углеводородов. Для образцов с более высоким содержанием оксида цинка характерно практически линейное увеличение селективности образования ароматических углеводородов с ростом температуры процесса.

После обработки пропаном морфология и структура частиц Zn-AC не претерпевают изменений (рис. 8а). Можно лишь отметить образование небольшого количества шероховатостей на поверхности кристаллов цеолита (1-го вида) в виде "шапочек" на контрастных центрах (рис. 8б). Можно предположить, что проведение реакции разложения пропана приводит к блокировке углеродом активных центров, расположенных в каналах и на внешней поверхности цеолита. Образование углеродных отложений будет способствовать постепенной дезактивации катализатора и необходимости проведения его окислительной регенерации.

Таким образом, на основании структурноморфологического исследования Zn-алюмосиликатов установлено, что введение в состав цеолита цинка на стадии его гидротермального синтеза приводит к появлению частиц Zn-AC с различиями по морфологии и элементному составу. При этом данные рентгеновского микроанализа свидетельствуют о практически однородном распределении Zn²⁺ в объемной структуре каждой из морфологических форм цеолита. Благодаря такому состоянию цинка в катализаторе, а также кислотным свойствам цеолита. обеспечивается высокая активность и селективность цинкалюмосиликатов в процессе превращения пропана в ароматические углеводороды. Наиболее эффективным катализатором данного процесса является цеолит 0.82% Zn-AC, селективность образования ароматических углеводородов на нем при 600°С достигает 40.2% при 100% конверсии пропана.

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Xiao H., Zhang J., Wang X. et al. // Catalysis Science & Technology. 2015. V. 5. P. 4081.
- 2. Su X., Zan W., Bai X. et al. // Ibid. 2017. V. 7. P. 1943.
- Wan H., Pallavi C. // J. Anal. Appl. Pyrolysis. 2016. V. 121. P. 369.
- Vosmerikova L.N., Vosmerikov A.A., Zaikovskii V.I., Vosmerikov A.V. // AIP Conference Proceedings. 2051, 020326 (2018), https://doi.org/10.1063/1.5083569
- Erofeev V.I, Khasanov V.V., Dzhalilova S.N. et al. // Catalysts. 2019. V. 9. P. 421.
- Gabrienko A.A., Arzumanov S.S., Freude D., Stepanov A.G. // J. Phys. Chem. C. 2010. V. 114. P. 1268.
- Frash M.V., van Santen R.A. // Phys. Chem. Chem. Phys. 2000. V. 2(5). P.1085. . https://doi.org/10.1039/A909426A
- Almutairi S.M.T., Mezari B., Magusin P.C.M.M. et al. // ACS Catalysis. 2012. V. 2. P. 71. . https://doi.org/10.1021/cs200441e
- 9. Величкина Л.М., Коробицына Л.Л., Улзий Б. и др. // Нефтехимия. 2013. Т. 53. № 2. С. 138.

- Vosmerikova L.N., Volynkina A.N., Vosmerikov A.V. // IOP Conference Series: Earth and Environmental Science. 2015. V. 27. 012045. https://doi.org/10.1088/1755-1315/27/1/012045.
- Коробицына Л.Л., Капокова Л.Г., Величкина Л.М., и др. // Нефтепереработка и нефтехимия. 2010. № 2. С. 17.
- Синдо Д., Оикава Т. Аналитическая просвечивающая электронная микроскопия. М.: Техносфера, 2006. 256 с.
- Фульц Б., Хови Дж. Просвечивающая электронная микроскопия и дифрактометрия материалов. Шпрингер, 2007. 748 с.
- 14. *Reimer L., Kohl H.* Transmission Electron Microscopy: Physics of Image Formation. Springer. 2008. 651 c.
- 15. The International Centre for Diffraction Data, Database PCPDFWIN. 1997. JCPDS-ICDD.
- Shukla D.B., Pandya V.P. // J. Cech. Biotechnol. 1989.
 V. 44. P. 147.
- van Koningsveld H., Jansen J.C., van Bekkum H. // Zeolites 1990. 10. P.235.
- Moulder J.F., Stickle W.F., Sobol P.E. et al. X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie Minnesota 1992.
- Busca G. // Microporous Mesoporous Mat. 2017. V. 254. P. 3.
- Kolyagin Yu.G., Ordomsky V.V., Khimyak Y.Z. et al. // J. Catalysis. 2006. V. 238. P. 122.