УДК 536.6:544.355-122

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ЭНТАЛЬПИЙНЫХ ПАРАМЕТРОВ ВЗАИМОДЕЙСТВИЯ МЕЖДУ МОЛЕКУЛАМИ МОЧЕВИНЫ И ТЕТРАМЕТИЛМОЧЕВИНЫ В ФОРМАМИДЕ, ЭТИЛЕНГЛИКОЛЕ И ВОДЕ ПРИ 298.15 К

© 2022 г. Д. В. Батов^{а,*}, Е. В. Иванов^а

^а Институт химии растворов им. Г.А. Крестова РАН, Иваново, Россия *e-mail: bat21dv@yandex.ru

Поступила в редакцию 13.10.2021 г. После доработки 13.10.2021 г. Принята к публикации 14.10.2021 г.

С целью изучения проявлений сольвофильных и сольвофобных эффектов в растворителях с пространственной сеткой водородных связей измерены энтальпии разведения растворов мочевины (M) в формамиде (ФА) и этиленгликоле (ЭГ), а также тетраметилмочевины (ТММ) в ФА при 298.15 К. Из полученных калориметрическим методом результатов вычислены энтальпийные гомотактические коэффициенты парных (h_{22}) и тройных (h_{222}) взаимодействий между сольватированными молекулами растворенного вещества (М или ТММ). Проведено сравнение рассчитанных величин с литературными данными для растворов М и ТММ в воде (H_2O) и ТММ в ЭГ. Установлено, что, в отличие от эффектов 2–2-взаимодействия в системах (ЭГ + М) и (H_2O + М), параметр h_{22} для М в ФА имеет положительный знак и весьма незначителен по абсолютной величине (~160 Дж кг моль⁻²). На основании этого сделан вывод о наличии комплементарности в ассоциированных посредством H-связей структурах растворителя (*in bulk*) и образующегося в нем сольватокомплекса М – ФА. Характер распределения значений h_{22} для ТММ в ряду сольватирующих сред ФА (~587) < ЭГ (~649) « « H_2O (~2346 Дж кг моль⁻²) свидетельствует о существенно возрастающей роли сольвофобных эффектов в водном растворе.

Ключевые слова: растворы мочевины и тетраметилмочевины, энтальпийные параметры взаимодействия

DOI: 10.31857/S0044453722040069

Известно, что, используя термодинамический подход как "инструмент" исследования раствора, не представляется возможным извлечь полноценную информацию об энергетических аспектах взаимодействия непосредственно на молекулярном уровне. В то же время важный шаг в этом направлении позволяет сделать анализ некоторых характеристик, таких как молярные энтальпии смешения (H^{E}) и разбавления ($\Delta_{dil}H^{S}$). В свою очередь, эти величины служат экспериментальной основой для оценки (в рамках модельных приближений) энтальпийных параметров парного (h_{22}) , тройного (h_{222}) или более высокого порядка взаимодействий между молекулами одного и того же (2) или нескольких растворенных веществ (2, 3, ...) [1-7]. В случае бинарного раствора эти параметры определяются как гомотактические [2, 4].

Результаты проведенных нами ранее исследований [3, 6–9] наглядно продемонстрировали обоснованность применения процедуры расчета *h*₂₂ для выявления специфических особенностей межмолекулярных взаимодействий в ассоциированных посредством Н-связей растворах мочевины (М) и ее N-метилзамещенных производных. Особый интерес в этом смысле вызывает сравнение эффектов 2-2-взаимодействия в воде и сольватирующих средах органической природы с пространственной сеткой водородных связей. Для образования подобного рода ("водоподобной") сетки молекула растворителя формально должна обладать, как минимум, двумя протонодонорными и двумя протоноакцепторными центрами [7, 10-12]. Таким условиям отвечает довольно узкий круг органических растворителей, среди которых достаточно большое внимание уделяется этиленгликолю (ЭГ) и формамиду (ФА) как сольватирующим средам с довольно выраженными проявлениями не только сольвофильных. но и сольвофобных эффектов [6, 7, 13-18].

Для идентификации указанных эффектов в наших работах [3, 6–9, 16–18] в качестве раство-

Свойство	ЭГ	ФА	ТММ	М
Брутто-формула	C ₂ H ₆ O ₂	CH ₃ NO	C ₅ H ₁₂ N ₂ O	CH ₄ N ₂ O
Молярная масса, г моль ⁻¹	62.0684	45.0410	116.1632	60.0556
Регистр. № CAS	107-21-1	75-12-7	632-22-4	57-13-6
Название по ИЮПАК	этан—1,2-диол	формамид	1,1,3,3-тетраме- тил-мочевина	мочевина
Источник происхождения	Sigma-Aldrich Co.	Sigma-Aldrich Co.	Sigma-Aldrich Co.	Merck KGaA
Исходная степень чистоты, мол. доли	≥0.998	≥0.995	≥0.995	≥0.995
Метод очистки от примесей	вакуум-перегонка при ~335 К	вакуум-перегонка при ~353 К	вакуум-перегонка при ~313 К	перекристаллиза- ция из этанола
Степень чистоты перед опытами, мол. доли	>0.999	>0.999	>0.999	≥0.9995
Метод анализа чистоты	ВЭЖС	ВЭЖС	ВЭЖС	ВЭЖС
Содержание воды (по Фишеру), мас. %	0.007	0.010	0.010	0.005

Таблица 1. Характеристики исследованных соединений

ренных в ЭГ и ФА веществ использовались М и тетраметилмочевина (ТММ), молекулы которых обладают "типичными" гидрофильными и гидрофобными свойствами, соответственно, в водной среде. Вместе с тем, кроме результатов термохимического исследования водных растворов М и ТММ [2, 3, 7–9], данные по h_{22} (h_{222}) на сегодняшний день имеются фактически только для системы ЭГ + ТММ [6, 7].

Исходя из этого, мы посчитали необходимым восполнить указанный пробел и провести дополнительные экспериментальные исследования систем $\Im \Gamma$ + M и ΦA + M (TMM) методом калориметрии разведения растворов с целью получения соответствующих значений h_{22} (h_{222}) при T = 298.15 K.

Важным представлялось также изучение вопроса о наличии физически обоснованных корреляционных соотношений между величинами h_{22} и имеющимися в литературе данными по объемным параметрам парного 2—2-взаимодействия (v_{22}) для сравниваемых жидких бинарных систем.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В табл. 1 представлены данные о показателях качества использованных в калориметрических опытах образцов растворителей и кристаллической М.

Все приведенные в табл. 1 жидкофазные соединения (ЭГ, ФА и ТММ) непосредственно перед дистилляцией (под вакуумом) осушали 0.4-нм молекулярными ситами. Предварительно очищенный образец М помещали в вакуумированный шкаф на 48 ч при T = 310 К. Подготовленные для экспериментов химпрепараты хранили в светонепроницаемом сухом боксе или эксикаторе над P_2O_5 .

Энтальпийные эффекты разведения растворов $\Delta_{dil} H^{S}$ измеряли при 298.15 К и атмосферном давлении с помощью автоматического изопериболического калориметра ампульного типа, снабженного титановым сосудом объемом 30 см³. После каждого опыта проводили электрическую калибровку калориметра. Температурная чувствительность прибора составляла 10^{-5} К, а нестабильность поддержания температуры в термостатирующей оболочке не превышала 10^{-3} К. Процедуры калибровки прибора и проведения экспериментальных опытов подробно описаны в работах [3, 5, 19].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные (с погрешностью не более 5%) данные по $\Delta_{dil}H^S$ для всех исследованных нами систем приведены в табл. 2, где где $m_{i,2}$ и $m_{f,2}$ – соответственно начальная и конечная моляльности раствора, определенные с погрешностью, не превышающей 1 × 10⁻⁴ моль на 1 кг растворителя.

Для вычисления значений h_{22} и h_{222} из данных табл. 2 использовали известное МНК-полиномиальное разложение, основанное на формализме теории Макмиллана—Майера [1–5, 20]:

$$\Delta_{\rm dil} H^{\rm S}(m_{i,2} \to m_{f,2}) = h_{22} m_{f,2} (m_{f,2} - m_{i,2}) + + h_{222} m_{f,2} (m_{f,2}^2 - m_{i,2}^2) + \dots$$
(1)

Выбор степени полинома (1) обосновывался критерием значимости его коэффициентов по отно-

	$\Im \Gamma + M$			$\Phi A + M$			$\Phi A + TMM$	
$m_{i,2}$	$m_{f,2}$	$\Delta_{\rm dil}H^{\rm S}$	$m_{i,2}$	$m_{f,2}$	$\Delta_{\rm dil}H^{\rm S}$	$m_{i,2}$	$m_{f,2}$	$\Delta_{\rm dil}H^{\rm S}$
0.9800	0.0207	-4.0	0.9988	0.0166	-1.7	1.0020	0.0122	-5.6
0.9800	0.0186	-4.4	0.9988	0.0123	-1.2	1.0020	0.0134	-6.1
0.9800	0.0175	-5.1	0.9988	0.0138	-1.4	1.0020	0.0237	-11.1
0.9800	0.0106	-3.0	1.6055	0.0226	-2.5	1.2976	0.0121	-6.6
0.9800	0.0192	-4.1	1.6055	0.0247	-2.6	1.2976	0.0165	-8.7
1.3108	0.0228	-18.9	1.2989	0.0183	-2.1	1.5950	0.0167	-9.7
1.3108	0.0260	-20.6	1.2989	0.0198	-2.2	1.5950	0.0285	-15.8
1.5950	0.0137	-21.2						
1.5950	0.0246	-39.4						
1.5950	0.0327	-56.9						

Таблица 2. Значения энтальпийных эффектов разведения растворов мочевины и тетраметилмочевины в этиленгликоле и формамиде ($\Delta_{dil}H^S$, Дж кг⁻¹) при T = 298.15 К и p = 0.1 МПа

шению к их 95%-му доверительному интервалу. Кроме того, теоретические нулевые значения $\Delta_{dil}H^{S}$, представляющие собой "базовый" уровень теплоты (при растворении чистого растворителя в нем самом), также включали в процедуру аппроксимации.

Результаты расчетов по уравнению (1) с использованием данных табл. 2 суммированы в табл. 3. В табл. 3 включены также имеющиеся в литературе данные по гомотактическим коэффициентам межмолекулярного 2–2-взаимодействия для соответствующих водных растворов, а также для системы ЭГ + ТММ.

В табл. 4 содержатся полученные к настоящему времени сведения о тепловых эффектах растворения как М, так и ТММ в рассматриваемых нами жидких средах. Анализируя данные табл. 4, можно согласиться с мнением авторов работы [17] о том, что в термохимическом смысле ФА представляется более "водоподобным" растворителем, чем ЭГ. Этот вывод подтверждается и характером распределения парциальных молярных теплоемкостей М и ТММ (C_p° , Дж моль⁻¹ K⁻¹) [17, 23]: 86 (H₂O) < 160 (ФА) < 199 (ЭГ) и 268 (ЭГ) < 291 (ФА) < 463 (H₂O).

Вместе с тем, результаты исследования объемных эффектов растворения и взаимодействия М и ТММ в ФА, ЭГ и водной среде [16, 18] указывают на правомерность сделанного в [17] вывода только в отношении ТММ. Так, имеет место факт заметного возрастания (в несколько раз) положительных значений h_{22} для ТММ в водной среде при их относительной сопоставимости в ЭГ и ФА (см. табл. 3). При этом во всех случаях $h_{22} \gg 0$, что указывает на доминирование эффекта отталкивания взаимодействующих молекул ТММ, заметно возрастающего при переходе к водным растворам. Такое поведение, свойственное гидрофобным частицам среднего размера [7, 24–26], вероятнее всего, обусловлено усилением клатратообразования около метильных групп при перекрывании гидратных (сольватных) ко-сфер молекул ТММ, что в целом способствует разобщению последних [8].

Очевидно, что при анализе эффектов взаимодействия в рассматриваемых растворах, наряду с энергетическим фактором, следует принимать во внимание и особенности структурной упаковки, обусловленные взаимным расположением молекул во вновь сформированных "сольватокомплексах" (конфигурационный фактор). Последнее обстоятельство, по-видимому, оказывает более заметное влияние на процесс образования

Таблица 3. Численные значения энтальпийных коэффициентов парного (h_{22}) и тройного (h_{222}) взаимодействий между сольватированными молекулами мочевины или тетраметилмочевины в воде и сравниваемых органических средах при T = 298.15 К. В скобках приведены стандартные погрешности

Система	h_{22} , Дж кг моль $^{-2}$	h_{222} , Дж кг 2 моль $^{-3}$
$\Phi A + M$	161(5), ~55 [21]*	-57(4)
$\Phi A + TMM$	587(19)	-87(11)
$\Theta \Gamma + M$	-1003(75)	1247(65)
$\Theta \Gamma + TMM$	649(17) [6, 7]	-178(13) [6, 7]
$H_2O + M$	-352(24) [7],	25(13) [7]
	-330(10) [9], -351(3) [22]	
$H_2O + TMM$	2346(163) [7], 2063(35) [3], 2060(50) [9]	-240(84) [7], -122(6) [3]

* Рассчитано нами на основе данных по $\Delta_{dil}H^{S}(m_{i,2} \rightarrow m_{f,2})$ [21] с применением уравнения (1).

Соединение	H ₂ O	ЭГ	ФА
М	15.33 (0.03) [23]	5.38 (0.02) [17]	9.54 (0.04) [17]
TMM	-24.43 (0.02) [23]	-3.37 (0.02) [17]	-9.18 (0.04) [17]

Таблица 4. Стандартные энтальпийные эффекты растворения ($\Delta_{sol}H_2^\circ$, кДж моль⁻¹), мочевины или тетраметилмочевины в воде, этиленгликоле и формамиде при T = 298.15 К. В скобках приведены стандартные погрешности

агрегатов с участием гидрофильных молекул М в среде органического растворителя.

Диполярные молекулы М могут ассоциироваться либо в антипараллельной (бок о бок), либо в параллельной (голова к хвосту) модели [27]. Какая схема "будет выбрана" мочевиной может зависеть от растворителя. Данные по водному раствору М [28] предполагают модель цепочки "голова к хвосту" с энтальпией ассоциации – 7 кДж/моль. На это указывают величины осмотических коэффициентов и кажущиеся молярные энтальпии водных растворов М.

Большая отрицательная величина h_{22} М в ЭГ по аналогии с водным раствором может указывать также на цепную модель ассоциатов М в ЭГ. Отрицательные значения h_{22} определяются в основном доминированием энергии М – М-взаимодействия над энергией десольватации молекул М. В данном случае величину и порядок изменения h_{22} можно связать со следующими явлениями. Очевидно, что Н-связи, образованные между молекулами М и гидроксильными группами воды или ЭГ, близки по энергии. Размещение цепочки "голова к хвосту" в структуре растворителя энергетически выгодно. Как следствие энергия десольватации молекул М при перекрывании сольватных сфер будет небольшой. Гидратация М (см. табл. 4) слабее, чем сольватация в ЭГ. Поэтому величина h_{22} (М в H_2O) менее отрицательна, чем *h*₂₂ (М в ЭГ).

Весьма необычный факт наличия небольшой положительной величины h₂₂ для М в ФА (см. табл. 3) подразумевает существование отличительных особенностей в характере молекулярных M - M-корреляций. Величина h_{22} в данном случае формально определяется доминированием энергии десольватации молекул М над энергией М – М-взаимодействия. Однозначный вывод о конфигурации (параллельная или антипараллельная) агрегатов М в формамиде сделать сложно. Результаты изучения раствора М в N, N-диметилформамиде (ДМФ) [27] более соответствуют антипараллельной конфигурации М – М. Но обобщить это на все растворы М в амидах можно с большой осторожностью, учитывая что для М в ДМФ $h_{22} < 0$ [27].

Учитывая сходство строения молекул М и ФА, можно сделать вывод о наличии комплементарности в ассоциированных посредством H-связей структурных матрицах растворителя (in bulk) и образующегося в нем сольватокомплекса М – ФА. В пользу этого свидетельствует то, что энтальпийные эффекты разведения растворов М в ФА весьма незначительны и слабо зависят от концентрации растворенного соединения (см. табл. 2). Как следствие, полученные нами и имеющиеся в литературе численные значения h_{22} для рассматриваемой системы тоже крайне невелики (см. табл. 3). Кроме того, объемный эффект растворения М в ФА близок к нулю [18, 28]. Такая ситуация "реализуется" в случае гидрофильных структуроупорядочивающих растворенных веществ [2, 25, 26, 29], т.е. когда $g_{22} < 0$ и $Ts_{22} > h_{22} >$ > 0 (здесь g_{22} и s_{22} – гиббсова и энтропийная составляющие энергии взаимодействия). К сожалению, в отсутствие данных по g_{22} и s_{22} мы можем сделать лишь формальное отнесение системы $\Phi A + M \kappa$ данной группе.

Изложенные выше обстоятельства предполагают наличие физически обоснованной корреляции между h_{22} и объемными параметрами парного 2—2-взаимодействия (v_{22}) между сольватированными молекулами М или ТММ в растворителях рассматриваемого здесь ряда. Результаты построения таких корреляционных зависимостей по данным табл. 3 (h_{22}) и заимствованным из работ [7, 16, 18, 27] значениям v_{22} изображены на рис. 1.

Результаты линейной аппроксимации представленных на рис. 1 данных (коэффициент корреляции ~0.93) подтверждают правомерность предположения о существовании взаимосвязи между термодинамическими (энергетическими h_{22} и структурно-упаковочными v_{22}) параметрами парного взаимодействия между сольватированными молекулами М в жидких средах с пространственно-координированной сеткой H-связей. Аналогичный вывод можно сделать и в отношении растворов ТММ в воде, ЭГ и ФА, с той лишь разницей, что в данном случае мы имеем дело фактически с простейшим ("двухцентровым") корреляционным соотношением между h_{22} и v_{22} .

В заключение, обращаясь снова к данным табл. 3, констатируем, что совокупность полученных нами и имеющихся в литературе значений h_{222} не привела нас к каким-либо логичным умозаключениям относительно "природы" межмолекулярных взаимодействий в сравниваемых здесь растворах М и ТММ. Что касается основных

Рис. 1. Корреляционные соотношения между энтальпийными (h_{22}) и объемными (v_{22}) коэффициентами парного 2–2-взаимодействия в растворах мочевины (а) и тетраметилмочевины (б) при 298.15 К.

результатов обсуждения величин h_{22} из табл. 3, то, прежде всего, напрашивается вывод о важности учета конфигурационного фактора, связанного с взаимным расположением молекул в структурной упаковке образующегося раствора, при интерпретации эффектов межмолекулярного 2—2взаимодействия в растворителях с пространственной сеткой водородных связей.

Авторы выражают признательность А.В. Кустову за оказанное консультативное содействие при интерпретации полученных экспериментальных и расчетных результатов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 18-03-00016-а).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 4 2022

Подготовленные для опытов химпрепараты были протестированы на оборудовании "Верхневолжского регионального центра физико-химических исследований" (Институт химии растворов им. Г.А. Крестова РАН).

СПИСОК ЛИТЕРАТУРЫ

- Franks F., Pedley M., Reid D.S. // J. Chem. Soc., Faraday Trans. 1. 1976. V. 72. P. 359. https://doi.org/10.1039/F19767200359
- Barone G., Cacace P., Castronuovo G., Elia V. // J. Chem. Soc., Faraday Trans. 1. 1981. V. 77. P. 1569. https://doi.org/10.1039/F19817701569
- 3. *Ivanov E.V., Batov D.V.* // Thermochim. Acta. 2011. V. 523. P. 253.
- https://doi.org/10.1016/j.tca.2011.05.019
- Ivanov E.V., Batov D.V. // J. Chem. Thermodyn. 2016.
 V. 102. P. 9. https://doi.org/10.1016/j.jct.2016.06.020
- Ivanov E.V., Batov D.V. // J. Chem. Thermodyn. 2019.
 V. 128. P. 159. https://doi.org/10.1016/j.jct.2018.08.022
- Ivanov E.V., Kustov A.V., Batov D.V. et al. // J. Mol. Liq. 2020. V. 317. № 113994. https://doi.org/10.1016/j.molliq.2020.113994
- Kustov A.V., Ivanov E.V. // Advances in Thermodynamics Descent / Ed. by 1.4 Ceth. New York New Sei
- ics Research / Ed. by J.A. Cobb. New York: Nova Science Publ., Inc., 2021. P. 75–130.
- Абросимов В.К., Иванов Е.В., Батов Д.В. // Журн. физ. химии. 2006. Т. 80. № 11. С. 2016
- 9. Абросимов В.К., Иванов Е.В., Батов Д.Д. // Докл. АН. 2006. Т. 407. № 6. С. 785.
- 10. Родникова М.Н., Чумаевский Н.А. // Журн. структур. химии. 2006. Т. 47. № 7. С. S154.
- Родникова М.Н. // Структурная самоорганизация в растворах и на границе раздела фаз / Под ред. А.Ю. Цивадзе. М.: Изд-во ЛКИ. 2008. С. 151–198.
- Rodnikova M.N., Agayan G.M., Balabaev N.K. // J. Mol. Liq. 2019. V. 283. P. 374. https://doi.org/10.1016/j.molliq.2019.03.090
- Kustov A.V., Smirnova N.L. // J. Phys. Chem. B. 2011.
 V. 115. № 49. P. 14551. https://doi.org/10.1021/jp205331y
- Sedov I.A., Stolov M.A., Solomonov B.N. // J. Chem. Thermodyn. 2013. V. 64. P. 120. https://doi.org/10.1016/j.jct.2013.05.006
- Stolov M.A., Zaitseva K.V., Varfolomeev M.A., Acree W.E. // Thermochim. Acta. 2017. V. 648. P. 91. https://doi.org/10.1016/j.tca.2016.12.015
- Ivanov E.V., Kustov A.V., Lebedeva E.Yu. // J. Chem. Thermodyn. 2019. V. 135. P. 336. https://doi.org/10.1016/j.jct.2019.04.009
- Kustov A.V., Smirnova N.L., Antonova O.A. // J. Chem. Thermodyn. 2019. V. 130. P. 114. https://doi.org/10.1016/j.jct.2018.09.033
- Ivanov E.V., Kustov A.V., Lebedeva E.Yu. // J. Chem. Eng. Data. 2019. V. 64. № 12. P. 5886. https://doi.org/10.1021/acs.jced.9b00794
- 19. Кустов А.В., Батов Д.В., Усачева Т.Р. Калориметрия растворов неэлектролитов: теоретические ос-

новы, эксперимент, анализ данных / Под ред. В.А. Шарнина. М.: Красанд, 2016. С. 33–53.

- McMillan W.G., Mayer J.E. // J. Chem. Phys. 1945.
 V. 13. № 4. P. 276. https://doi.org/10.1063/1.1668700
- Hamilton D., Stokes R.H. // J. Sol. Chem. 1972. V. 1. № 3. P. 223.
- https://doi.org/10.1007/BF00645103 22. *Franks F., Pedley M.D.* // J. Chem. Soc., Faraday Trans.
- 1. 1981. V. 77. P. 1341. https://doi.org/10.1039/F19817701341
- 23. *Kustov A.V., Smirnova N.L.* // J. Chem. Eng. Data. 2010. V. 55. № 9. P. 3055. https://doi.org/10.1021/je9010689
- 24. *Blokzijl W., Engberts J.B.F.N.* // Angew. Chem., Int. Ed. 1993. V. 32. № 11. P. 1545. https://doi.org/10.1002/anie.199315451

- 25. *Кесслер Ю.М., Зайцев А.Л.* Сольвофобные эффекты. Теория, эксперимент, практика. Л.: Химия, 1989. 312 с.
- 26. *Кустов А.В.* Гидрофобные эффекты: структурные, термодинамические, прикладные аспекты. Достижения последних лет. М.: Красанд. 2013. 224 с.
- 27. Hamilton D., Stokes R.H. // J. Sol. Chem. 1972. V. 1.
 № 3. P. 213. https://doi.org/10.1007/BF00645102
- 28. *Stokes R.H.* // Australian J. Chem. 1967. V. 20. P. 2087. https://doi.org/10.1071/CH9672087
- 29. Wüzburger S., Sartorio R., Guarino G., Nisi M. // J. Chem. Soc., Faraday Trans. 1. 1988. V. 84. P. 2279. https://doi.org/10.1039/F19888402279