УДК 541.49

ТЕРМОДИНАМИКА РЕАКЦИЙ КОМПЛЕКСООБРАЗОВАНИЯ ИОНОВ Nd³⁺, Eu³⁺, Gd³⁺ И Yb³⁺ С ГЛИЦИЛ-ГЛИЦИЛ-ГЛИЦИНОМ В ВОДНОМ РАСТВОРЕ В ИНТЕРВАЛЕ рН 1.8–7.6

© 2022 г. А. И. Лыткин^а, О. Н. Крутова^{а,*}, В. В. Черников^а, П. Д. Крутов^а, Ю. В. Мохова^а

^а Ивановский государственный химико-технологический университет, 153000, Иваново, Россия

*e-mail: kdvkonkpd@yandex.ru Поступила в редакцию 13.10.2021 г. После доработки 13.10.2021 г. Принята к публикации 14.10.2021 г.

Калориметрическим методом определены энтальпии комплексообразования триглицина (HL[±]) с ионами неодима(III), европия(III), гадолиния(III) и иттербия(III) при температуре 298.15 К и значении ионной силы 0.1, фоновый электролит KNO₃. Рассчитаны термодинамические характеристики реакций образования комплексов трипептида с ионами Nd³⁺, Eu³⁺, Gd³⁺ и Yb³⁺состава LnL²⁺ при различных мольных соотношениях [металл]: [лиганд]в интервале pH 1.8–7.6. На основе анализа полученных энтальпий комплексообразования подтверждена известная из литературы предпочтительная координация центрального иона лантаноидов через карбоксильный атом кислорода триглицина.

Ключевые слова: калориметрия, пептиды, энтальпии комплексообразования, растворы, лантаноиды **DOI:** 10.31857/S0044453722040215

Физико-химическое изучение процессов комплексообразования биологически активных лигандов, в частности пептидов с ионами редкоземельных металлов представляет несомненный интерес, прежде всего для понимания и разработки новых комплексов на основе этих ионов [1]. В фармацевтической химии большое количество подобных координационных соединений продемонстрировало биологическую активность. Одним из преимуществ уникальных электронных структур, представленных переходными металлами, является универсальность и способность регулировать свойства данных молекул [2-4]. Всплеск интереса в области координационной химии лантаноидов поддерживается благодаря использованию реагентов на основе лантаноидов для различных целей, например, для обнаружение химических/ферментативных превращений с помощью оптических зондов [5], а также в подготовке и изучении новых материалов на их основе [1]. Если сравнивать редкоземельные элементы, к примеру с переходными металлами то благодаря их нетоксичности они весьма перспективны для создания материалов, предназначенных для использования в медицине и фармакологии, и для зеленой химии.

В качестве объекта исследования нами выбран триглицин, так как наша работа является продолжением исследования по изучению процессов комплексообразования различных биолигандов с лантаноидами [6, 7].

В литературе имеются данные по константам образования комплексов ионов Nd^{3+} , Eu^{3+} , Gd^{3+} и Yb³⁺ с триглицином [8], константы устойчивости комплексов Nd, Eu, Gd, Ho и Yb с некоторыми ди- и трипептидами определены методом потенциометрического титрования. Исследования проводились в термостатируемой стеклянной ячейке при $T = 25 \pm 0.1$ °C и значении ионной силы раствора 0.1 со стеклянным электродом типа GA-50. Опыты были проведены при соотношениях [металл]: [лиганд] равном 2:1 и 4:1. Авторы получили значения констант для комплексов состава MeL. Результаты были сопоставлены с теоретическими значениями, полученными в результате расчетов электростатического взаимодействия между ионами трехвалентного лантаноида и различными центрами заряда лигандов, важно было определить, какие именно донорские группы лиганда участвуют в формировании связи.

В литературе отсутствуют данные посвященные определению энтальпий образования комплексов для данных систем в водном растворе.

Целью настоящей работы является прямое калориметрическое определение энтальпий процессов комплексообразования Nd³⁺, Eu³⁺, Gd³⁺ и Yb³⁺ с глицил-глицил-глицином при температуре 298.15 К и значениях ионной силы раствора 0.1 (на фоне нитрата калия) при различных мольных соотношениях [металл] : [лиганд]. Расчет термодинамических характеристик изучаемых процессов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали кристаллический препарат тригдицина фирмы "Sigma" (США) чистоты ≥99% без дополнительной очистки. Бескарбонатные растворы КОН, и раствор HNO₃ готовили по обычной методике [9] из реактивов марки "х.ч."; концентрации растворов устанавливали обычными титриметрическими методами. Растворы нитратов Nd³⁺, Eu³⁺, Gd³⁺ и Yb³⁺ готовили из перекристаллизованных препаратов марки "х.ч". Концентрацию определяли комплексонометрическим методом. Для поддержания заданного значения ионной силы использовали перекристаллизованный нитрат калия марки "х.ч".

Измерения проводили в калориметре с изотермической оболочкой, оснащенной реакционным сосудом 60 см³, и электрической калибровкой при $T = (293.15 - 308.15) \pm 0.01$ К и $P = 100.5 \pm$ ± 0.7 кПа и автоматической записью кривой температура-время [10]. Относительная погрешность измерений по теплотам растворения стандартного вещества -0.1-0.3%. Работа установки проверялась по интегральным энтальпиям растворения в воде кристаллического хлорида калия и считалась пригодной для измерения, если определенная в ней величина $\Delta_{sol}H_{298.15}$ (KCl ∞ H₂O) отличалась от стандартной не более чем на 0.3%. В качестве стандартной использовались наиболее надежная в настоящее время величина $\Delta_{\text{sol}} H_{298\,15}$ (КСl ∞ H₂O) = 17.234 ± 0.018 кДж/моль, соответствующая стандарту SRM 1655NBS [11]. Тепловое значение калориметра для воды составляло 87 ± 12 Дж/К [12]. Навески взвешивали на весах ВЛР-200 с точностью 2 × 10⁻⁴ г. Величины рН контролировали с помощью прибора "Мультитест" ИПЛ-311. Совпадение расчетных и экспериментальных значений рН свидетельствовало о правильности выбора концентрационных условий проведения калориметрического эксперимента. Доверительный интервал среднего значения Δ_{sol} Н вычисляли с вероятностью 0.95. Наиболее вероятное значение находили как среднее арифметическое из двух калибровок.

Расчет энтальпий образования комплексов Nd^{3+} , Eu^{3+} , Gd^{3+} и Yb^{3+} с триглицином выполняли по программе "HEAT", алгоритм которой описан в работе [13].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В изучаемых нами системах возможен учет протекания следующих реакций:

$$Ln^{3+} + L^{-} = LnL^{2+}, (1)$$

$$Ln^{3+} + H_2O = LnOH^{2+} + H^+,$$
 (2)

$$L^{-} + H^{+} = HL^{\pm}, \qquad (3)$$

$$L^{-} + 2H^{+} = H_2 L^{+},$$
 (4)

$$H^{+} + OH^{-} = H_2O.$$
 (5)

Для того чтобы подобрать необходимые условия проведения калориметрического опыта был проведен предварительный расчет равновесных составов в выбранных системах по программе "KEV" [14] с учетом всех протекающих процессов (1)–(5). На основании результатов расчета строились зависимости равновесной концентрации частиц в растворе от pH, при различных соотношениях [металл]: [лиганд]. Измерялся суммарный тепловой эффект.

В калориметрический стакан помещали раствор нитрата Ln(III) (с концентрацией 0.004 моль/л раствора) объемом 42.63 мл с заданным значением ионной силы. В ампуле находился раствор КРер (исходной концентрации 0.4325 моль/кг раствора). Были также измерены теплоты разведения КРер в растворах фонового электролита. Экспериментальные данные по суммарным тепловым эффектам для системы триглицин-неодим(III) представлены в табл. 1.

На основании полученного массива данных, рассчитывали теплоты реакций комплексообразования, удовлетворяющие минимуму функции:

$$F = \sum_{i=1}^{n} (\Delta_{\rm r} H_i^{{}_{\rm 3KC\Pi}} - \Delta_{\rm r} H_i^{{}_{\rm pac4}}) \omega_i^2 \to {\rm min.} \qquad (6)$$

Здесь $\Delta_{\rm r} H_i^{\rm эксп}$ — экспериментально измеренные энтальпии; $\Delta_{\rm r} H_i^{\rm pacq}$ — энтальпии, рассчитанные по уравнению:

$$\Delta_{\rm r} H_i^{\rm pacu} = (\Delta[{\rm HL}^{\pm}]\Delta_{\rm r} H_3 + \Delta[{\rm LnL}^{2+}]\Delta_{\rm r} H_1 + + \Delta[{\rm LnOH}^{2+}]\Delta_{\rm r} H_2 + \Delta[{\rm OH}^{-}]\Delta_{\rm r} H_w),$$
(7)

где Δ [LnL²⁺], Δ [LnOH²⁺] и Δ [HL[±]] – разность конечных и начальных равновесных концентраций соответствующих частиц; $\Delta_r H_3$, $\Delta_r H_1$, $\Delta_r H_2$ – энтальпии (кДж/моль) процессов (1)–(3); *n* – число опытов; ω_i – весовой множитель, определяемый по соотношению:

$$\sigma_i = A/\sigma_i^2, \tag{8}$$

где A – произвольное число, позволяющее выбрать удобное для расчета значение ω_i ; σ_i^2 – дисперсия.

<i>т</i> КРер, г	$c_{\rm H}^0 imes 10^{-5},$ моль/л	$c_{ m Pep}^{0} imes 10^{-3},$ моль/л	$c_{\rm Ln}^0 imes 10^{-3},$ моль/л	$-\Delta_{\rm dil}H^*$	—Δ _{mix} <i>H</i> , кДж/моль			
Eu(NO ₃) ₃								
0.1003	1.4670	1.1325		2.89 ± 0.25	39.00 ± 0.25			
0.1015	1.4227	1.0721	4.7651		39.42 ± 0.27			
0.1059	1.4456	1.0934			39.66 ± 0.27			
0.2022	2.6421	2.0856		3.22 ± 0.25	40.05 ± 0.25			
0.2035	2.6583	2.1281	4.7675		40.22 ± 0.28			
0.2056	2.7252	2.1877			40.35 ± 0.25			
0.3013	3.7137	3.1325		3.49 ± 0.26	40.45 ± 0.25			
0.3104	3.8592	3.2478	4.7862		41.12 ± 0.27			
0.3785	3.9384	3.2992			41.36 ± 0.23			
0.4023	6.7691	4.2583		3.88 ± 0.28	42.11 ± 0.25			
0.4189	6.8239	4.2985	4.7877		42.41 ± 0.25			
0.4796	6.9215	4.3923			42.26 ± 0.27			
	1	Nd(N	NO ₃) ₃					
0.1011	1.4420	1.1125		2.89 ± 0.25	46.20 ± 0.25			
0.1010	1.4337	1.1121	4.7892		46.33 ± 0.26			
0.1012	1.4486	1.1133			46.29 ± 0.27			
0.2031	2.7421	2.1556		3.22 ± 0.25	48.15 ± 0.25			
0.2033	2.7588	2.1741	4.8023		48.23 ± 0.25			
0.2040	2.7651	2.1843			48.45 ± 0.25			
0.3012	3.7237	3.1222		3.49 ± 0.26	49.12 ± 0.25			
0.3235	3.8997	3.1988	4.8123		49.22 ± 0.27			
0.3589	3.9984	3.3392			49.33 ± 0.25			
0.4000	6.7891	4.2883		3.88 ± 0.28	50.15 ± 0.26			
0.4596	6.8849	4.3583	4.8133		50.81 ± 0.25			
0.4998	6.9815	4.4423			50.96 ± 0.28			
	1	Gd(N	NO ₃) ₃					
0.1045	1.3970	1.1025		2.89 ± 0.25	25.01 ± 0.26			
0.1044	1.3927	1.1121	4.7761		25.41 ± 0.27			
0.1042	1.3924	1.1154			25.66 ± 0.28			
0.2000	2.5821	2.1246		3.22 ± 0.25	25.99 ± 0.25			
0.2005	2.5883	2.1277	4.7735		25.89 ± 0.27			
0.2006	2.2852	2.1257			25.88 ± 0.26			
0.3023	3.6637	3.1525		3.49 ± 0.26	26.15 ± 0.25			
0.3325	3.6782	3.1518	4.7862		26.10 ± 0.25			
0.3395	3.6799	3.1992			26.36 ± 0.24			
0.4011	6.7771	4.2583		3.88 ± 0.28	27.11 ± 0.25			
0.4489	6.8439	4.3988	4.7825		27.81 ± 0.27			
0.4996	6.9625	4.4923			27.99 ± 0.27			

Таблица 1. Тепловые эффекты взаимодействия $Ln(NO_3)_3$ с растворами КРер при 298 К, I = 0.1

<i>т</i> КРер, г	$c_{\rm H}^0 imes 10^{-5},$ моль/л	$c_{\text{Pep}}^{0} \times 10^{-3},$ моль/л	$c_{ m Ln}^0 imes 10^{-3},$ моль/л	$-\Delta_{\rm dil}H^*$	—Δ _{mix} <i>H</i> , кДж/моль			
Yb(NO ₃) ₃								
0.1023	1.4563	1.0822		2.89 ± 0.25	29.22 ± 0.26			
0.1022	1.4527	1.0828	4.7621		29.12 ± 0.27			
0.1020	1.4526	1.0937			29.16 ± 0.26			
0.2036	2.6621	2.1056		3.22 ± 0.25	29.33 ± 0.25			
0.2033	2.6683	2.1081	4.7633		29.22 ± 0.27			
0.2035	2.6752	2.1177			29.34 ± 0.28			
0.3000	3.7237	3.2125		3.49 ± 0.26	29.47 ± 0.27			
0.3022	3.8000	3.2173	4.7762		30.02 ± 0.25			
0.3042	3.8017	3.2252			30.06 ± 0.28			
0.4056	6.7991	4.2683		3.88 ± 0.28	30.11 ± 0.26			
0.4155	6.8134	4.2785	4.7827		30.58 ± 0.25			
0.4145	6.8015	4.2723			30.76 ± 0.28			

Таблица 1. Окончание

* Средние величины из трех-четырех опытов

Таблица 2. Термодинамические характеристики образования комплексов Nd^{3+} , Eu^{3+} , Gd^{3+} и Yb³⁺ с триглицином при I = 0.1 (нитрат калия) и T = 298.15 К

Процесс	lgβ	$-\Delta_{ m r}G$, кДж/моль	$-\Delta_{ m r} H$, кДж/моль	$\Delta_{\rm r}S$, Дж/(моль К)
$Nd^{3+} + L^{-} = NdL^{2+}$	2.15 ± 0.05	12.27 ± 0.56	3.66 ± 0.33	28.9 ± 2.3
$Eu^{3+} + L^{-} = EuL^{2+}$	2.55 ± 0.05	14.55 ± 0.56	3.04 ± 0.33	38.6 ± 2.3
$Gd^{3+} + L^{-} = GdL^{2+}$	2.20 ± 0.05	12.56 ± 0.56	2.75 ± 0.33	32.9 ± 2.3
$Yb^{3+} + L^{-} = YbL^{2+}$	2.50 ± 0.05	14.27 ± 0.56	2.90 ± 0.33	38.1 ± 2.3

Расчет энтальпий реакций образования выполняли по программе "HEAT" [13]. Гидролиз ионов Nd³⁺, Eu³⁺, Gd³⁺ и Yb³⁺ и энтальпии процесса (2) учитывали по данным работ [15], энтальпии и константы процессов кислотно-основного взаимодействия в растворах трипептида – по данным представленным авторами [16], термодина-

Рис. 1. Зависимость логарифмов константы равновесия реакций от числа *f*-электронов в ряду лантаноидов.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 4 2022

мические параметры диссоциации воды были взяты из работы [17].

Термодинамические характеристики процессов комплексообразования Nd^{3+} , Eu^{3+} , Gd^{3+} и Yb^{3+} с триглицином в водном растворе были найдены при совместном использовании результатов термохимических измерений и данных по константам комплексообразования (табл. 2).

По расчетным данным представленным авторами работы [8] соединение ионов лантанида с пептидами основано на предпочтительной координации центрального иона через карбоксильный кислород. По величинам $\Delta_r H_{LnPep^{2+}}$ представленным в табл. 2 можно подтвердить, что в случае образования этих комплексов аминогруппа действительно не вносит заметного вклада в энтальпию процесса комплексообразования и координация идет именно по карбоксильной группе без участия атома азота. На рис. 1 и 2 представлены графические зависимости термодинамических функций от числа *f*-электронов для триглицина.

Рис. 2. Зависимость изменения энтальпии реакций от числа *f*-электронов в ряду лантаноидов.

Мы можем видеть характерное для комплексов лантаноидов увеличение $\lg K$, $\Delta_r H$, $\Delta_r S$ по ряду лантаноидов с задержкой роста у Gd (тетрад-эффект). Ранее подобные закономерности наблюдались в системе содержащей этилендиамин-N,N-диянтарную кислоту в качестве лиганда (комплексон с множеством функциональных групп), а так же и для более простых молекул аминокислот (глицина, L-аспарагина) [6, 18].

Работа выполнена в НИИ Термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках государственного задания (базовая часть) проект № FZZW-2020-0009. Исследование проводилось с использованием ресурсов Центра совместного использования научного оборудования ISUCT (при поддержке Министерства науки и высшего образования России, грант № (075-15-2021-671).

СПИСОК ЛИТЕРАТУРЫ

 Kremera C., Torresa J., Dom'inguezb S., Medero A. // Coordination Chemistry Reviews. 2005. V. 249. P. 567.

- Aragón-Muriel A., Camprubí-Robles M., González-Rey E. et al. // Polyhedron 2014. V. 80. P. 117.
- Váquiro-Reyes I.Y., Aragón-Muriel A., Polo-Cerón D. // Rev. Colomb. Ciencias Químico-Farmacéuticas. 2019. V. 48. P. 557.
- Aragón-Muriel A., Upegui Y., Muñoz J.A. et al. // Malaria and Trypanosomiasis. Av. Quim. 2016. V. 11. P. 53.
- 5. Matthew S., Tremblay, Qing Zhu et al. // Organic Letters. 2006. V. 8. № 13. P. 2723.
- 6. Лыткин А.И., Черников В.В., Крутова О.Н., Смирнова Д.К // Журн. общ. химии. 2018. Т. 88. Вып. 5. С. 811.
- 7. Лыткин А.И., Черников В.В., Крутова О.Н., Скворцов И.А. // Журн. физ. химии. 2017. Т. 91. № 6. С. 986.
- 8. *Feige P., Mocker D., Dreyer R. et al.* // J. Inorg. nucl. Chem. 1973. V. 35. № 9. P. 3269.
- Коростелев П.П. Приготовление растворов для химико-аналитических работ, М.: Изд-во АН СССР, 1962. С. 398.
- Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. // J. Thermal Analysis and Calorimetry. 2017. V. 130 (1). P. 457.
- 11. *Kilday M.V.* // J. Reseach N.B.S. 1980. V. 85. № 6. P. 467.
- 12. *Скуратов С.М., Колесов В.П., Воробьев А.Ф.* Термохимия Ч. 1. М.: Изд-во МГУ, 1964. 300 с.
- Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высш. школа, 1993. С. 81.
- Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200.
- Назаренко В.А., Антонович В.П., Невская Е.М. Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1978. С. 46.
- 16. Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. неорган. химии. 2017. Т. 62. № 2. С. 249.
- 17. *Васильев В.П., Шеханова Л.Д.* // Там же. 1974. Т. 19. № 11. С. 2969.
- 18. Лыткин А.И., Чернявская Н.В., Чернов А.С. и др. // Там же. 2016. Т. 61. № 12. С. 1683.