———— К 90-ЛЕТИЮ Г.А. КРЕСТОВА ——

УДК 544.344.016.2

ЭНТАЛЬПИИ СУБЛИМАЦИИ И СОЛЬВАТАЦИИ ДИПЕПТИДОВ АЛАНИНОВОГО РЯДА

© 2022 г. Е. Ю. Тюнина^{а,*}, В. П. Баранников^а, В. В. Дунаева^b, А. В. Краснов^b

^а Институт химии растворов им. Г.А. Крестова РАН, Иваново 153045 Россия ^b Ивановский государственный химико-технологический университет, Иваново 153000 Россия

> *e-mail: tey@isc-ras.ru Поступила в редакцию 20.10.2021 г. После доработки 20.10.2021 г. Принята к публикации 25.10.2021 г.

Исследованы процессы сублимации дипептидов, DL-аланил-DL-норвалин и L-аланил-L-триптофан, эффузионным методом Кнудсена с масс-спектрометрическим контролем состава пара. Обсуждена фрагментация молекул под действием электронной ионизации. Значения молярной энтальпии сублимации изученных соединений получены с помощью уравнения Клаузиуса–Клапейрона. Методом дифференциальной сканирующей калориметрии измерены удельные изобарные теплоемкости кристаллических дипептидов DL-аланил-DL-норвалин и L-аланил-L-триптофан. Определены стандартные молярные энтальпии сублимации при T = 298.15 К. Используя значения молярной энтальпии сублимации и энтальпии растворения веществ в воде, определены стандартные молярные энтальпии дипептидов аланинового ряда при T = 298.15 К. Обсуждаются корреляции полученных энтальпийных параметров с обычно используемыми физико-химическими характеристиками дипептидов.

Ключевые слова: энтальпия сублимации, теплоемкость, эффузионный метод Кнудсена, ДСК-калориметрия, энтальпия сольватации, DL-аланил-DL-норвалин, L-аланил-L-триптофан **DOI:** 10.31857/S0044453722040331

Важность термодинамического исследования пептидов связана с поведением этих соединений в водных растворах и их использованием в качестве модельных систем для понимания различных типов взаимодействий между более сложными биологическими молекулами (белками) в водных смесях. С практической точки зрения. некоторые кристаллические пептиды могут использоваться в качестве основы для биоматериалов, лекарств и биомиметиков [1-3]. За последние десятилетия наблюдается динамичный рост развития нанотехнологий с целью создания новых материалов с уникальными свойствами [3-5]. Не только неорганические атомы, но и биологические молекулы (аминокислоты, пептиды, белки и пр.) могут служить компонентами нанокомпозитов. Полученные системы находят применение в качестве биосенсоров, оптических фильтров, носителей лекарственных средств и биологически активных веществ [3, 6-8].

Энтальпия сублимации является важной экспериментальной характеристикой, которая часто используется для определения энтальпии образования в газовой фазе, изучения полиморфизма, прогнозирования молекулярной упаковки аминокислот и пептидов, а также для улучшения алгоритмов расчета энергии решетки белков [9–14]. Энтальпии сублимации важны для понимания сольватационного поведения белков, которое оказывает влияние на их конформационную стабильность в растворах [15, 16]. Однако экспериментальное измерение энтальпий сублимации пептидов представляет собой нетривиальную задачу вследствие низкой термостабильности этих веществ [16–18]. Поэтому термохимия пептидов мало изучена по сравнению с другими классами азотосодержащих органических соединений.

В представленной работе применен эффузионный метод Кнудсена с масс-спектрометрическим контролем состава пара, эффективность которого показана ранее при изучении процесса сублимации некоторых аминокислот и пептидов [19, 20]. Отметим, что впервые метод электронной ионизации (ЭИ) был применен авторами работ [21, 22]. В настоящее время наиболее популярными методами ионизации стали ESI (ионизация электрораспылением), химическая ионизация, CID (диссоциация, индуцированная столкновениями) и MALDI (матричная лазерная десорбция/ионизация) [23–25]. Однако только метод

			-	
Химическое соединение	М	CAS No.	Происхождение	Чистота
DL-alanyl-DL-norvaline	188.23	2325-18-0	Acros Organics, USA	массовая доля >0.99
$H_3C \xrightarrow{NH_2}{N} H \xrightarrow{O} OH OH OH OH OH OH$				
L-alanyl-L-tryptophan	275.30	16305-75-2	Fluka, Swetzerland	массовая доля ≥0.99
H ₂ N N OH				(TLC)

Таблица 1. Молекулярная структура исследуемых дипептидов, их происхождение и степень чистоты

Обозначения: M – молекулярная масса, (г моль⁻¹), CAS No. – регистрационный номер в Chemical Abstract Service.

ЭИ может быть использован для исследования термодинамики сублимации аминокислот и пептидов на основе температурной зависимости ионных токов. Наряду с энтальпией сублимации, теплоемкость кристаллических веществ является важным параметром, знание которого необходимо для расчета термодинамических параметров. Можно сказать, что оба эти свойства напрямую связаны с энергией межмолекулярной когезии в кристаллической структуре, дают представление об энергии и структуре твердой фазы различных веществ [26, 27]. Таким образом, получение новых данных об энтальпии сублимации и теплоемкости модельных соединений белков до сих пор является актуальной задачей. Несмотря на важность пептидов, надежные экспериментальные термохимические исследования все еще редки, хотя и существуют исследовательские группы, занимающиеся этой проблемой [9, 19, 20, 28-32].

Авторы продолжают развивать то направление исследований аминокислот и пептидов в твердой фазе и растворах, основы которого были заложены в работах Г.А. Крестова [15, 19, 31, 33-37]. Здесь представлены новые результаты определения теплоемкости кристаллических дипептидов DL-аланил-DL-норвалина (DL-Ala-DL-Nvl) и L-аланил-L-триптофана (L-Ala-L-Trp) и изучения процессов их сублимации, а также проведено сравнение с данными, полученными ранее для глицил-L-аланина (Gly-L-Ala), DL-аланил-глицина (DL-Ala-Gly), L-аланил-L-аланина (L-Ala-L-Ala), DL-аланил-DL-аланина (DL-Ala-DL-Ala) и DL-аланил-DL-валина (DL-Ala-DL-Val). На основе использования значений энтальпий сублимации и энтальпий растворения дипептидов аланинового ряда определены энтальпии их сольватации (гидратации) в водных растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дипептиды, DL-аланил-DL-норвалин (DL-Ala-DL-Nvl) and L-аланил-L-триптофан (L-Ala-L-Trp) (производства Fluka/Acros organics) сушили в вакуумном шкафу при 320–350 К в течение 8 ч непосредственно перед использованием. Их молекулярная структура, молярная масса, чистота и происхождение представлены в табл. 1.

Экспериментальные исследования сублимации выполнены эффузионным методом Кнудсена с масс-спектрометрическим контролем состава пара. Для этих целей использовали магнитный масс-спектрометр МИ 1201 (900; r = 200 мм) ("СЭЛМИ", Сумы, Украина), адаптированный для эффузионных экспериментов. Детальное описание процедуры и метода исследования приведено в работах [19, 37, 38]. Образец примерно 50-100 мг помещали в эффузионную ячейку из молибдена (отношение "площади испарительной поверхности к площади эффузионного отверстия" составляло около 1000). Температура эффузионной ячейки измерялась вольфрам-рениевой термопарой WRe-5/20. Точность поддержания температуры составляла ±0.5 К. Ионизация нейтральных частиц, эффундирующих из ячейки Кнудсена в ионизирующую область, происходила за счет электронного удара с энергией ионизирующих электронов 50 эВ. Все эксперименты проводились в условиях вакуума (при давлении до 10⁻⁵-10⁻⁶ Па). Ионный ток измерялся ионным умножителем, совмещенным с электрометром. Усиленный сигнал через аналого-цифровой преобразователь записывали на ПК. Типы ионов, наблюдаемые при фрагментации пептидов, были идентифицированы и обозначены как отношение их массы к заряду (m/z).

В масс-спектрометрах с ячейкой Кнудсена давление пара (*p*) пропорционально величине ионных токов (IT), т.е. произведению интенсивности иона (І) на температуру (Г) [39]. Наклон зависимости значений ln(IT) от обратной температуры (1/T) определяет энтальпию сублимации согласно второму закону термодинамики. Следует отметить, что второй закон не требует преобразования интенсивности ионов в абсолютное давление [40]. Как показано ранее [20, 35, 41], тестирование оборудования было проведено с использованием простейшей аминокислоты глицина (Gly) и бензойной кислоты, рекомендуемого в качестве основного стандарта для измерения энтальпии сублимации органических соединений [42, 43]. Доказано, что температурные зависимости ln(IT)от 1/T бензойной кислоты и Gly носят линейный характер (коэффициент корреляции $r_{\rm corr} > 0.9998$) [20, 35, 41]. Полученные для них значения энтальпий сублимации хорошо согласуются с литературными данными [29, 35, 44].

Удельную теплоемкость пептидов при постоянном давлении ($c_{\rm p}$) в зависимости от температуры измеряли с помощью дифференциального сканирующего калориметра теплового потока DSC 204 F1 Phoenix (NETZSCH, Германия) с высокочувствительным µ-сенсором в сочетании с программным обеспечением Proteus для Windows, используя стандартный эталон α -Al₂O₃ для проверки калибровки прибора [45]. Предварительно высушенный образец (3.12) × 10⁻⁶ кг помещали в алюминиевый тигель и измеряли тепловой поток по сравнению с пустым эталонным алюминиевым тиглем как функцию температуры. Образец нагревали со скоростью 10 К/мин в атмосфере аргона и охлаждали газообразным азотом в интервале температур от (288.64 до 333.64) К. Процедура и техника эксперимента подробно описаны ранее [37, 38, 43, 45]. Калибровка прибора была выполнена на основе использования значений температур плавления шести эталонных веществ высокой степени чистоты: циклогексана (99.96%), ртути (99.99%), бифенила (99.5%), индия (99.999%), олова (99.999%) и висмута (99.9995%) [43, 45]. Точность измерения температуры составляла 0.1 К. Ранее [37] была показана надежность работы калориметра путем измерения теплоемкости рекомендуемого стандартного вещества — кристаллической бензойной кислоты C_6H_5COOH при различных температурах [43, 45]. Относительная стандартная погрешность $u_r(c_p)$ составила ±0.6% для бензойной кислоты в твердом состоянии [37, 38]. В случае кристаллических дипептидов относительная комбинированная стандартная погрешность измерения удельной теплоемкости, учитывающая различные возможные источники ошибок, составила $\pm 1\%$ в пределах изученного диапазона температур.

Рис. 1. Температурные зависимости экспериментальных изобарных молярных теплоемкостей кристаллических дипептидов: L-аланил-L-триптофана (*1*) и DL-аланил-DL-норвалина (*2*).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теплоемкость кристаллических дипептидов

Измерения удельной теплоемкости кристаллических дипептидов проводили в диапазоне (288.64-333.64) К. Молекулярные массы, используемые для преобразования удельных теплоемкостей в их молярные аналоги, были рассчитаны с учетом атомных масс, рекомендованных IUPAC [46]. Полученные значения стандартной изобарной молярной теплоемкости ($C_{p,m}^{\circ}(cr)$) в исследованном диапазоне температур представлены в графической форме на рис. 1. Значения $C_{p,m}^{\circ}$ (сг) для L-Ala-L-Trp и DL-Ala-DL-Nvl в твердой фазе увеличиваются с повышением температуры и не проявляют каких-либо особенностей, что свидетельствует об отсутствии фазовых переходов в исследованном диапазоне температур. Экспериментальные значения молярной теплоемкости ($C_{p,m}^{\circ}(cr)$) исследованных дипептидов представлены в табл. 2 и были использованы для оценки стандартной молярной энтальпии сублимации кристаллических дипептидов при T = = 298.15 K.

Фрагментация дипептидов

Ранее были рассмотрены масс-спектры некоторых пептидов и их производных [24, 47, 48]. Сравнение имеющихся масс-спектральных данных [18, 21, 49, 50] показывает, что фрагментации аминокислот и дипептидов имеют схожий характер. В условиях электронной ионизации молекул пики молекулярных ионов имеют низкую интенсивность, так как карбоксильная группа легко отделяется от молекулы [51]. Боковые цепи ами-

Таблица 2. Экспериментальные значения молярной теплоемкости L-Ala-L-Trp и DL-Ala-DL-Nvl в твердой фазе, $C_{p,m}^{\circ}(cr)$, при различных температурах и стандартном давлении $(p^0 = 0.1 \text{M} \Pi a)^a$

T ^a , K	$C_{p,\mathrm{m}}^{\circ}(\mathrm{cr})_{\mathrm{exp}}^{\mathrm{b}},$ Дж моль $^{-1}$ К $^{-1}$	$C_{p,\mathrm{m}}^{\circ}(\mathrm{cr})_{\mathrm{exp}}^{\mathrm{b}},$ Дж моль $^{-1}$ К $^{-1}$
	L-Ala-L-Trp	DL-Ala-DL-Nvl
288.64	275.11	267.51
293.64	280.07	272.53
298.15	284.43	276.74
298.64	284.91	277.01
303.64	289.74	280.17
308.64	294.65	285.25
313.64	299.82	291.13
318.64	304.81	295.06
323.64	309.88	300.09
328.64	314.93	303.09
333.64	320.14	306.92

^а Стандартные погрешности: $u(p) = \pm 0.04$ МПа и $u(T) = \pm 0.1$ К.

^b Комбинированная стандартная погрешность: $u_c(C_{p,m}^\circ(cr)) = 0.01C_{p,m}^\circ(cr)$.

нокислотных остатков (CH-R) отщепляются одновременно с образованием ионов, возникающих в результате расщепления связей CH–CO, CO–NH, NH–CH вдоль пептидного остова, что представляет собой обычную фрагментацию молекул пептидов [50]. Масс-спектры электронной ионизации, полученные для DL-Ala-DL-Nvl и L-Ala-L-Trp и представленные в табл. 3, отсутствуют в базе данных NIST [21, 31, 49, 50]. Наблюдается образование четырех доминирующих ионов (m/z: 45, 72, 99, 128) в масс-спектре DL-Ala-DL-Nvl, лва из которых аналогичны ломинирующим пикам в ЭИ масс-спектрах аминокислот: Ala (m/z)45) и Nvl (*m/z* 72) [49]. Для L-Ala-L-Trp наиболее интенсивным ионным фрагментом является ион с массой m/z 130, что характерно для боковой цепи аминокислотного остатка дипептида и присутствует в масс-спектрах Тгр [49]. Следует отметить, что некоторые пептиды при нагревании (во время испарения) проявляют склонность к циклизации с образованием дикетопиперазина [18, 21, 31]. В случае DL-Ala-DL-Nvl был зарегистрирован ион с массой m/z 170, который может быть классифицирован как ион циклической формы, имеюший очень низкую интенсивность (<1%). Сублимация L-Ala-L-Trp не сопровождается циклизацией-дегидратацией в исследованном диапазоне температур.

Энтальпия сублимации и энтальпия сольватации

Сублимация дипептидов изучена в интервалах температур 446.15-491.15 К и 458.15-485.15 К для DL-Ala-DL-Nvl и L-Ala-L-Trp, соответственно. Относительные интенсивности ионов в массспектрах дипептидов (табл. 3) соответствуют усредненным значениям из двух независимых экспериментов для каждого соединения. Установлено, что ионные фрагменты имеют температурные коэффициенты сублимации, идентичные родительскому иону (М⁺). Интенсивность ионов измерялась как при повышении, так и при понижении температуры, при этом гистерезиса не наблюдалось, что может свидетельствовать об установлении термодинамического равновесия в эффузионной ячейке. Поскольку измерения

Таблица 3. Масс-спектры электронной ионизации дипептидов ($U_{\text{ioniz}} = 50$ B)

m/z	Ions	$I_{\rm rel},\%$	m/z	Ions	$I_{\rm rel},\%$	
DL-alanyl-DL-norvaline ($T = 477$ K)			L-alanyl-L-tryptophan ($T = 465$ K)			
29	$[NH_2CH]^+$	4	29	$[NH_2CH]^+$	3	
45	[COOH] ⁺	59	45	[COOH] ⁺	4	
57	[NH ₂ CHCO] ⁺	29	57	[NH ₂ CHCO] ⁺	2	
72	[NH ₂ CH(CH ₃)CO] ⁺	100	72	$[NH_2CH(CH_3)CO]^+$	1	
87	[NH ₂ CH(CH ₃)CONH] ⁺	6	77	$[C_6H_5]^+$	1	
99	[NHCH(CH ₂ CH ₂ CH ₃)CO] ⁺	35	87	$[NH_2CH(CH_3)CONH]^+$	1	
116	$[M-[NH_2CH(CH_3)CO]]^+$	5	105	$[C_{7}H_{7}N]^{+}$	2	
128	[NH ₂ CH(CH ₃)CONHCHCO] ⁺	52	130	$[C_9H_8N]^+$	100	
144	$[M-[NH_2CH(CH_3)]]^+$	9	188	[C ₉ H ₈ NCHCOOH] ⁺	4	
170	M_c^+	<1	259	$[M-[NH_2]]^+$	10	
188	M^+	7	275	M^+	4	

Обозначения: T – температура эксперимента, при которой регистрируют масс-спектры, m/z – отношение массы ионного фрагмента (m) к его заряду (z), I_{rel} – относительная интенсивность ионов.

Рис. 2. Зависимости логарифма ионных токов $\ln(1T)$ от обратной температуры (1/T) для DL-alanyl-DLnorvaline (ионы m/z: 72 (\Box), 99 (\bigcirc), 128 (\triangle)).

проводили в узком интервале температур, относительные интенсивности ионных токов имеют практически постоянные значения. Таким образом, сублимация дипептидов рассматривается как равновесный процесс, и влиянием температуры на дальнейшую фрагментацию молекул можно пренебречь. Если молекулярный ион имеет несколько ионных фрагментов, обычно выбирают наиболее интенсивные из них, для которых определяют ионные токи (IT), а затем вычисляют энтальпии сублимации с использованием второго закона термодинамики.

Сублимация L-Ala-L-Trp и DL-Ala-DLNvl происходила без разложения в исследованных диапазонах температур. Значения энтальпии сублимации ($\Delta_{sub} H^{\circ}_{m}(T)$) при средней температуре в экспериментальном диапазоне температур были получены с использованием линеаризованной формы уравнения Клаузиуса–Клапейрона [39]:

$$\ln p = -\Delta_{\rm sub} H_{\rm m}^{\circ}(T) / RT + C, \qquad (1)$$

где p — давление пара, T — температура, R — газовая постоянная (R = 8.314472 Дж K⁻¹ моль⁻¹), C — константа; p пропорционально IT, т.е. измеренной интенсивности иона (I), умноженной на температуру (T), или кратко "ионному току" (IT). Таким образом, уравнение (1) может быть записано в виде:

$$\ln(IT) = -B/T + C', \qquad (2)$$

где $B = \Delta_{sub} H_m^{\circ}(T)/R$, C – постоянный коэфициент. На рис. 2 и 3 приведены полученные экспериментальные зависимости $\ln(IT) = f(1/T)$, которые носят линейный характер ($r_{corr} > 0.998$), при этом угол наклона B (2) пропорционален величине энтальпии сублимации дипептида.

Рис. 3. Зависимости логарифма ионных токов $\ln(1T)$ от обратной температуры (1/T) для L-alanyl-L-tryptophan (ионы m/z: 130 (\Box), 275 (\bigcirc)).

Для определения энтальпии сублимации выбраны наблюдаемые температурные зависимости ионных токов с массой (72, 99 и 128) m/z для DL-Ala-DL-Nvl и (130 и 275) m/z для L-Ala-L-Trp. Обработка данных методом наименьших квадратов позволила получить значения энтальпии сублимации при средней температуре экспериментов ($T_{\rm m}$), представленные в табл. 4. Указанные погрешности для значений $\Delta_{\rm sub}H_{\rm m}^{\circ}(T)$ включают двойное стандартное отклонение наклона B, а также погрешности, отражающие ошибки калибровки и измерения температуры.

Стандартная молярная энтальпия сублимации $\Delta_{sub}H_m^{\circ}(298.15 \text{ K})$ при ($p^{\circ} = 0.1 \text{ МПа}$; T = 298.15 K) может быть определена из экспериментально измеренных значений $\Delta_{sub}H_m^{\circ}(T)$ с помощью уравнения, предложенного в работах Чикоса и Акри [59, 60]:

$$\Delta_{\rm sub} H^{\circ}_{\rm m}(298.15 \text{ K}) = \Delta_{\rm sub} H^{\circ}_{\rm m}(T) + [0.75 + 0.15C^{\circ}_{\it n,m}(\text{cr})][T - 298.15]/1000,$$
(3)

где $C_{p,m}^{\circ}(cr)$ — стандартная молярная теплоемкость соединения в твердой фазе при T = 298.15 К. В табл. 4 приведены значения стандартной молярной энтальпии сублимации, полученные для изученных веществ, а также и для других алифатических дипептидов. При этом для каждого пептида указаны и погрешности величин $\Delta_{sub} H_m^{\circ}(298.15$ К). Следует подчеркнуть, что значения энтальпий сублимации для DL-Ala-DL-Nvl и L-Ala-L-Trp отсутствуют в литературе.

С ростом алифатической боковой цепи молекул дипептидов и введением гетероциклического кольца (в случае L-Ala-L-Trp) наблюдается увели-

ТЮНИНА и др.

Таблица 4. Значения молярной теплоемкости твердой фазы при T = 298.15 K, $C_{\rho,m}^{\circ}(cr)$ (298.15 K), стандартной молярной энтальпии сублимации, $\Delta_{sub}H_m^{\circ}(T_m)$, при средней температуре эксперимента, T_m , и при T = 298.15 K, $\Delta_{sub}H_m^{\circ}(298.15$ K), молярной энтальпии растворения, $\Delta_{sol}H_m^{\circ}$, и молярной энтальпии сольватации, $\Delta_{solv}H_m^{\circ}$, в воде и объемы Ванн дер Вальса, V_w , для некоторых дипептидов

Пептиды	С [°] _{<i>p</i>,m} (сг) (298.15 K), Дж моль ⁻¹ K ⁻¹	$\Delta_{ m sub} H^{\circ}_{ m m}(T_{ m m}),$ кДж моль $^{-1}$	<i>T</i> _m , K	Δ _{sub} H [°] _m (298.15 K), кДж моль ^{−1}	$\Delta_{ m sol} H^\infty_{ m m},$ кДж моль $^{-1}$	$-\Delta_{ m solv}H_{ m m}^{\infty},$ кДж моль $^{-1}$	$V_{\rm w}^{\rm c}$, Å ³
Gly-L-Ala	168 [31]	107 ± 8 [19]	432.15	109 ± 9	0.61 [54]	108.4	120.5
DL-Ala-Gly	172 [31]	—	_	103.7 ± 5 [53]	1.30 [55]	102.4	121.9
L-Ala-L-Ala	195 [31]	113 ± 7 [19]	451.15	118 ± 8	-11.01 [56]	129.0	137.3
DL-Ala-DL-Ala	189 [31]	_	—	116 ± 8 [12]	-7.59 [57]	123.5	137.4
DL-Ala-DL-Val	240 [31]	156 ± 4 [19]	436.15	160 ± 5	-5.68 [55]	165.6	165.4
DL-Ala-DL-Nvl	276 ± 0.6	177 ± 3	477.15	184.5 ± 3.6	3.03 [55]	180.9	168.7
L-Ala-L-Trp	284 ± 0.8	173 ± 4	466.15	180.7 ± 4.1	11.06 [58]	168.9	233.5

Примечание. Для $\Delta_{sub}H_m^{\circ}(T_m)$ ошибка экспериментального определения средней величины равна двум стандартным отклонениям; величина V_w рассчитана по данным [52].

 $T_{\rm m}$ – средняя температура экспериментов ($T_{\rm m}$ = $\langle T \rangle).$

чение молярной энтальпии сублимации в ряду DL-Ala-Gly, Gly-L-Ala, Dl-Ala-DL-Ala, L-Ala-L-Ala, DL-Ala-DL-Val, L-Ala-L-Trp, и DL-Ala-DL-Nvl. Величина энтальпии сублимации отражает силы межмолекулярных взаимодействий, существующие в твердом состоянии, а также может характеризовать стабильность кристаллической структуры соединений. Важные вклады в кристаллическую упаковку исследованных дипептидов вносят Ван-дер-Ваальсовы, дисперсионные и

Рис. 4. Зависимости молярной энтальпии сублимации ($\Delta_{sub}H_m^\circ$) от молярной теплоемкости кристаллических дипептидов ($C_{p,m}^\circ$ (cr)): Gly-L-Ala (1), DL-Ala-Gly (2), DL-Ala-DL-Ala (3), L-Ala-L-Ala (4), DL-Ala-Dl-Val (5), DL-Ala-DL-Nvl (6) и L-Ala-L-Trp (7).

электростатические взаимодействия, а также образование водородных связей [13, 61–63].

Анализ данных, приведенных в табл. 4, показал, что значения $\Delta_{sub} H_m^{\circ}$ возрастают симбатно со значениями $C_{p,m}^{\circ}$ (сг) (рис. 4). В результате получено простое линейное соотношение для стандартных молярных энтальпий сублимации:

$$\Delta_{\rm sub} H_{\rm m}^{\circ} = (-15.56 \pm 6.7) +$$

$$+ (0.7084 \pm 0.045) C_{p,\rm m}^{\circ}(\rm cr)$$
(4)

с коэффициентом корреляции $r_{\rm corr} = 0.991$ и стандартным отклонением SD = 5.2. Средняя относительная ошибка определения энтальпии сублимации по уравнению (4) составила 3.2%, что сопоставимо с уровнем погрешности (от 6 до 12%) оценки свойств на основе использования корреляционного подхода [28].

Важно отметить, что пептиды существуют в цвиттер-ионной форме в кристаллах и в водном растворе; в газовой фазе пептиды находятся в нейтральной молекулярной форме [17, 64]. В водных растворах имеет место соольватация (гидра-

тация) как заряженных концевых групп (NH₃⁺, COO⁻) в основной цепи, так и различных боковых цепей молекул, что находит отражение в различии величин энтальпий сольватации, наблюдаемых в ряду дипептидов. Молярные энтальпии сольватации при бесконечном разбавлении (i.d.)

 $(\Delta_{solv}H_m^{\infty})$ пептидов в воде определены по разности между их стандартными молярными энтальпия-

Рис. 5. Корреляция молярной энтальпии сольватации

 $(\Delta_{solv} H_m^{\infty})$ дипептидов в водном растворе с показателем гидрофобности (lg *P*) для DL-Ala-Gly (*1*), Gly-L-Ala (*2*), DL-Ala-DL-Ala (*3*), L-Ala-L-Ala (*4*), DL-Ala-Dl-Val (*5*), L-Ala-L-Trp (*6*) и DL-Ala-DL-Nvl (*7*).

ми растворения при i.d. $(\Delta_{sol}H_m^{\circ\circ})$ и стандартными молярными энтальпиями сублимации $(\Delta_{sub}H_m^{\circ})$:

$$\Delta_{\rm solv} H_{\rm m}^{\infty} = \Delta_{\rm sol} H_{\rm m}^{\infty} - \Delta_{\rm sub} H_{\rm m}^{\circ}.$$
 (5)

Полученные значения молярной энтальпии сольватации дипептидов в воде приведены в табл. 4. Значения $\Delta_{\rm solv} H_{\rm m}^{\infty}$ отрицательны для всех указанных растворенных веществ. Экзотермичность сольватации возрастает в ряду липептидов: Gly-L-Ala, DL-Ala-Gly, DL-Ala-DL-Ala, L-Ala-L-Ala, DL-Ala-DL-Val, L-Ala-L-Trp, и DL-Ala-DL-Nvl, т.е. с увеличением размера их молекуд ($V_{\rm w}$), кроме L-Ala-L-Trp. Способность растворенных веществ участвовать во взаимодействиях с окружающей средой обусловлена не только формой и размером (молекулярным объемом или длиной боковой цепи), но и природой боковых цепей молекул, т.е. присутствием (или отсутствием) дополнительных полярных, гидрофильных и гидрофобных групп или стерических препятствий для Нсвязывания в жидкой среде. В отличие от алифатических дипептидов, молекула L-Ala-L-Trp содержит гетероциклическое индольное кольцо в боковой цепи. Гидрофобность пептида зависит от составляющих его аминокислот. Согласно некоторым исследованиям [65, 66], триптофан содержит наиболее гидрофобную боковую цепь в ряду аминокислот. Таким образом, более высокое зна-

чение $\Delta_{solv} H_m^{\infty}$, полученное для дипептида L-Ala-L-Trp, можно объяснить более гидрофобным характером его молекулы по сравнению с молекулой DL-Ala-DL-Nvl. В работе Палекара [66] показано использование коэффициентов распределения $(\lg P)$ для олигопептидов в качестве индекса их гидрофобности. В случае исследуемого нами аланинового ряда дипептидов, полученные значения энтальпий их сольватации коррелируют (рис. 5) с индексом гидрофобности (lg P), рассчитанным с использованием подхода Палекара [66].

Таким образом, в данном исследовании мы применили эффузионный метод Кнудсена с масс-спектрометрическим контролем состава паров для нахождения энтальпии сублимации дипептидов, DL-аланил-DL-норвалина и L-аланил-L-триптофана. Получены масс-спектры электронной ионизации DL-Ala-DL-Nvl и L-Ala-L-Trp. Методом ДСК измерены изобарные теплоемкости кристаллических DL-Ala-DL-Nvl и L-Ala-L-Trp в интервале температур (288–333) К. Впервые получены молярные энтальпии сублимации DL-Ala-DL-Nvl и L-Ala-L-Trp в температурных интервалах (446-491) К и (458-485) К, соответственно. Стандартные молярные энтальпии сублимации соединений при T = 298.15 К определены. Предложена линейная корреляция для оценки энтальпии сублимации дипептидов аланинового ряда.

Определены молярные энтальпии сольватации ($\Delta_{solv}H_m^{\infty}$) растворенных веществ при T == 298.15 К на основе использования полученных стандартных молярных энтальпий сублимации и имеющихся в литературе стандартных молярных энтальпий растворения ($\Delta_{sol}H_m^{\infty}$) дипептидов в воде. Показано, что более отрицательные значения $\Delta_{solv}H_m^{\infty}$ для водных растворов, содержащих DL-Ala-DL-Nvl и L-Ala-L-Trp, по сравнению с растворами других дипептидов, по-видимому, означают, что взаимодействия между цвиттер-ионными формами растворенных веществ и молекулами воды усиливаются с увеличением размера молекул дипептида и гидрофобности их боковых цепей.

Авторы выражают огромную благодарность профессору Г.В. Гиричеву за обсуждение массспектрометрических данных и особенностей сублимации пептидов.

Измерения теплоемкости выполнены на оборудовании центра коллективного пользования "Верхневолжский региональный центр физикохимических исследований" (http://www.isc-ras.ru/ ru/struktura/ckp) в рамках проекта № 01201260481 ИХР РАН.

СПИСОК ЛИТЕРАТУРЫ

- Boldyreva E.V. Models, Mysteries, and Magic of Molecules. Berlin: Springer Verlag, 2007. P. 169–194.
- Ketabi S., Rahmani L. // Mater. Sci. Eng. 2017. V. 73C. P. 173.

- 3. *Кобаяси Н.* Введение в нанотехнологию. М.: Бином, Лаборатория знаний, 2005. 134 с.
- 4. Агафонов А.В., Иванов К.В., Давыдова О.И. и др. // Журн. неорган. химии. 2011. Т. 56. № 7. С. 1087. [Russ. J. Inorg. Chem. 2011. V. 56. Р. 1025.]
- Li L., Ma R., Ebina Y.N. et al. // Chem. Mater. 2005. V. 17. P. 4386.
- Ding L., Stilwell J., Zhang T. et al. // Nano Lett. 2005. V. 5. P. 2448.
- Yevdokimov Yu.M., Sytchev V.V. // Russ. Chem. Rev. 2008. V. 77. P. 193.
- Adler-Abramovich L., Reches M., Sedman V.L. et al. // Langmuir. 2006. V. 22. P. 1313.
- 9. Naef R., Acree Jr., W.E. // Molecules. 2017. V. 22. P. 1059.
- Riffet V., Bouchoux G. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 6097.
- 11. Blokhina S., Sharapova A., Ol'khovich M. et al. // J. Chem. Thermodynamics. 2017. V. 105. P. 37.
- Dorofeeva O.V., Ryzhova O.N. // J. Phys. Chem. A. 2014. V. 118. P. 3490.
- 13. *Kitaigorodskii A.I.* Molecular crystals and molecules. New York: Academic Press, 1973.
- No K.T., Kwon O.Y., Kim S.Y. et al. // J. Phys. Chem. 1995. V. 99. P. 13019.
- Tyunina E.Yu., Badelin V.G. // Biophisics. 2005. V. 50. P. 835.
- Chilikian T.V. // J. Phys. Chem. B. 2001. V. 105. P. 12566.
- 17. *Якубке Х.-Д., Ешкайт Х.* Аминокислоты, пептиды, белки. М.: Мир, 1985. 456 с.
- De Kruif C.G., Voogd J., Offringa J.C.A. // J. Chem. Thermodynamics. 1979. V. 11. P. 651.
- Баделин В.Г., Тюнина Е.Ю., Краснов А.В. и др. // Журн. физ. химии. 2012. Т. 86. № 3. С. 528. [Russ. J. Phys. Chem. A. 2012. V. 86. P. 457.]
- 20. Баделин В.Г., Тюнина Е.Ю., Гиричев Г.В. и др. // Журн. структ. химии. 2007. Т. 48. № 4. С. 698. [Russ. J. Struct. Chem. 2007. V. 48. Р. 647.]
- Svec H.J., Junk G.A. // J. Am. Chem. Soc. 1964. V. 86. P. 2278.
- 22. Junk G., Svec H. // J. Am. Chem. Soc. 1963. V. 85. P. 839.
- 23. Banoub J.H., Newton R.P., Esmans E. et al. // Chem. Rev. 2005. V. 105. P. 1869.
- Song T., Hao Q., Law Ch.-H. et al. // J. Am. Soc. Mass Spectrom. 2012. V. 23. P. 264.
- 25. Demeure K., Gabilica V., De Pauw E.A. // J. Am. Soc. Mass Spectrum. 2010. V. 21. P. 1906.
- Viegra-Eusebio M.T., Rojas A. // J. Chem. Eng. Data. 2011. V. 56. P. 5008.
- 27. Knyazev A.V., Letyanina I.A., Plesovskikh A.S. et al. // Thermochimica Acta. 2014. V. 575. P. 12.
- Арнаутова Е.А., Захарова М.В., Пивина Т.С. и др. // Изв. АН. Сер. хим. 1996. Т. 45. № 12. С. 2723.
- Acree Jr. W.E., Chickos J.S. // J. Phys. Chem. Ref. Data. 2010. V. 39. P. 1.

- 30. Сагадеев Е.В., Гимадеев А.А., Барабанов В.П. // Журн. физ. химии. 2010. Т. 84. № 2. С. 260. [Russ. J. Phys. Chem. A. 2010. V. 84. Р. 209.]
- Badelin V.G., Kulikov O.V., Vatagin V.S. et al. // Thermochimica Acta. 1990. V. 169. P. 81.
- 32. *Chickos J.S.* // Thermochimica Acta. 1998. V. 313. P. 19.
- Тюнина Е.Ю., Крутова О.Н., Лыткин А.И. // Изв. Вузов. Хим. хим. технол. 2021. Т. 64. С. 12.
- 34. *Tyunina E.Yu., Badelin V.G., Mezhevoi I.N.* // J. Mol. Liq. 2019. V. 278. P. 505.
- 35. Tyunina V.V., Krasnov A.V., Badelin V.G. et al. // J. Chem. Thermodynamics. 2016. V. 98. P. 62.
- Kulikov O.V., Badelin V.G., Krestov G.A. et al. // J. Solution Chem. 1993. V. 22. P. 59.
- 37. Tyunina V.V., Krasnov A.V., Tyunina E.Yu. et al. // J. Chem. Thermodynamics. 2019. V. 135. P. 287.
- Tyunina E. Yu., Mezhevoi I.N., Dunaeva V.V. // J. Chem. Thermodynamics. 2020. V. 150. P. 106206.
- Пентин Ю.А., Вилков Л.В. Физические методы исследования для химии. М.: Мир, 2006. 683 с.
- Copland E.H., Jacobson N.S. // Electrochem. Soc. Interface. 2001. V. 10. P. 28.
- 41. Tyunina V.V., Krasnov A.V., Tyunina E.Yu. et al. // J. Chem. Thermodynamics. 2014. V. 74. P. 221.
- Ribeiro da Silva M.A.V., Monte M.J.S., Santos L.M.N.B.F. // J. Chem. Thermodynamics. 2006. V. 38. P. 778.
- 43. Sabban R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93.
- 44. Svec H.J., Clyde D.D. // J. Chem. Eng. Data. 1965. V. 10. P. 151.
- 45. Della Gatta G., Richardson M.J., Sarge S.M. et al. // Pure Appl. Chem. 2006. V. 78. P. 1455.
- 46. Wieser M.E. // Pure Appl. Chem. 2011. V. 382. P. 17.
- 47. Biemann K., Cone C., Webster B.R. et al. // J. Am. Chem. Soc. 1966. V. 88. P. 5598.
- Biemann K., Gapp F., Seibl J. // J. Am. Chem. Soc. 1959. V. 81. P. 2274.
- 49. NIST Standard Reference Database. Number 69; http://webbook.nist.gov/chemistry
- Вульфсон Н.С., Заикин В.Г., Микая А.И. Масс-спектрометрия органических соединений. М.: Химия, 1986. 157 с.
- Fales H.M., Milne G.W.A., Winkier H.U. et al. // Anal. Chem. 1975. V. 47. P. 207.
- 52. *Кузьмин В.С., Кацер С.Б.* // Изв. Академии наук. Сер. химич. 1992. Т. 41. С. 922.
- 53. Баделин В.Г., Смирнов В.И., Межевой И.Н. // Журн. физ. химии. 2002. Т. 76. № 7. С. 1299.
- 54. Smirnov V.I. // J. Chem. Thermodynamics. 2021. V. 159. P. 106481.
- 55. Смирнов В.И., Баделин В.Г. // Журн. физ. химии. 2018. Т. 92. № 5. С. 732. [Russ. J. Phys. Chem. A. 2018. V. 92. Р. 900.]

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 4 2022

- 56. Смирнов В.И., Баделин В.Г. // Там же. 2008. Т. 82. № 7. С. 1359. [Russ. J. Phys. Chem. A. 2008. V. 82. Р. 1206.]
- 57. *Piekarski H., Nowicka B.* // J. Therm. Anal. Calorim. 2010. V. 102. P. 31.
- 58. Rodante F., Fantauzzi F., Catalani G. // Thermochimica Acta. 1997. V. 296. P. 15.
- Chickos J.S., Acree Jr. W.E. // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 537.
- Gutterman A., Rath N., Chickos J. // J. Chem. Eng. Data. 2013. V. 58. P. 749.

- 61. *Калоус В., Павличек 3*. Биофизическая химия. М.: Мир, 1985. 446 с.
- 62. Gavezzotti A. // Acta Crystallogr. 1987. V. B43. P. 559.
- 63. *Vinogradov S.N.* // Int. J. Peptide Prot. Res. 1979. V. 14. P. 281.
- 64. Молекулярные взаимодействия / Под ред. Г. Ратайчак, У. Орвилл-Томаса. М.: Мир, 1984. 600 с.
- 65. Palecz B. // J. Am. Chem. Sos. 2002. V. 124. P. 6003.
- Palekar D., Hiue M., Lien E.J. // Pharm. Res. 1996.
 V. 13. P. 1191.