СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 547.1'13 + 546.723.722-31 + 547.368.2

DFT-РАСЧЕТ ТЕРМОДЕСТРУКЦИИ 1,1'-ДИАЦЕТИЛФЕРРОЦЕНА

© 2022 г. В. Н. Бабин^{*a*}, Ю. А. Белоусов^{*a*,*}, Ю. А. Борисов^{*a*}, В. Н. Куликов^{*a*,**}

^аИнститут элементоорганических соединений им. А.Н. Несмеянова РАН, 119991, Москва, Россия

*e-mail: belur@ineos.ac.ru, **e-mail: kulikov_v_n@mail.ru Поступила в редакцию 04.03.2021 г. После доработки 27.10.2021 г. Принята к публикации 30.10.2021 г.

Расчетами методом функционала плотности DFT B3LYP/6-311+G* для модели термодеструкции 1.1'-диацетилферроцена показано, что на первом этапе происходит редокс-диспропорционирование 1.1'-диацетилферроцена в присутствии следов воды с образованием неустойчивых координационно ненасыщенных 17-электронных соединений. Установлено, что распад этих соединений в условиях дегидратации продуктов осмоления приводит к формированию магнетита.

Ключевые слова: 1.1'-диацетилферроцен, термодеструкция, окислительно-восстановительное диспропорционирование, DFT

DOI: 10.31857/S004445372205003X

В работе [1] было показано, что в реакции 1,1'диацетилферроцена (ДАФ) и ε -капролактама или таурина в температурном интервале 100–180°С происходит термодеструкция ферроценового компонента в магнетит Fe₃O₄ с образованием однородных магнетитоподобных веществ сферолитного типа. Была предложена схема процесса с предварительной дегидратацией 1.1'-диацетилферроцена, редокс-диспропорционированием ферроценовой системы с образованием 17-электронного феррициниевого фрагмента и его дальнейшим распадом до неорганического трёхвалентного железа.

DFT-PAC4ETЫ

В настоящей работе проведены расчеты методом функционала плотности DFT B3LYP/6-311+G* [2] для модели дегидратации 1,1'-диацетилферроцена и редокс-диспропорционирования 1.1'-диацетилферроцена в присутствии следов воды. Поскольку отсутствуют экспериментальные данные о строении конденсированной фазы, влияние среды учтено применением метола самосогласованного поля с моделью поляризуемого континуума SCRF = PCM [3]. В литературе отсутствуют данные по величинам относительной статической диэлектрической проницаемости є рассматриваемых систем, поэтому значения ε на момент начала реакции приняты равными 2.0 (для системы $\square A\Phi - \epsilon$ -капролактам) и 40.0 (для системы ДАФ – таурин), исходя из электрических проницаемостей исходных компонентов смеси [4-6].

Расчётные данные для модели дегидратации 1.1'-диацетилферроцена (см. схему 1) показывают, что стадии образования воды и 1-этинил-1'ацетилферроцена имеют значительный активационный барьер, и в целом процесс, за исключением присоединения гидратированного протона на первой стадии (энтальпия реакции (1) составляет – 36.81 и –23.20 ккал/моль для систем ДАФ – ϵ -капролактам и ДАФ – таурин соответственно), является энергозатратным (энтальпия реакции (2) более +40 ккал/моль для обеих систем). Поэтому протекание реакций (2) и (3) представляет-ся маловероятным.

На основании расчётных данных более вероятным представляется редокс-диспропорционирование 1.1'-диацетилферроцена в присутствии следов воды, находящейся в образцах (реакции (1), (4) и (5)). Процесс присоединения гидроксиланиона к молекуле 1.1'-диацетилферроцена показан в реакции (4) на схеме 2.

Гидроксилирование 1.1'-диацетилферроцена ((4) на схеме 2) может проходить как в α -, так и в β -положение. Энтальпия реакции (4) составляет –11.60 ккал/моль (+8.14 ккал/моль) при α -ориентации и –0.50 ккал/моль (+15.59 ккал/моль) при β -ориентации для системы ДАФ – ϵ -капролактам (ДАФ – таурин) соответственно. На рис. 1 представлено расчётное строение анионных продуктов **5a** и **5b**.

Схема 1.

На стадии редокс-диспропорционирования ((5) на схеме 2) происходит электронный перенос с гидроксилированного 1.1'-диацетилферроцена (**5a,b**) на протонированный 1.1'-диацетилферроцен (**2**), образующийся по реакции (1). Энтальпия

реакции (5) составляет –52.15 ккал/моль (-14.35 ккал/моль) при α-ориентации и -54.26 ккал/моль (-16.74 ккал/моль) при β-ориентации для системы ДАФ – ε-капролактам (ДАФ – таурин) соответственно. На рис. 2 пред-

Рис. 1. Расчетное строение анионов 5а и 5b.

ставлено расчетное строение радикальных продуктов **6a** и **6b**, а на рис. 3 – расчетное строение протонированной формы 1.1'-диацетилферроцена (2) и его восстановленного 19-электронного радикала (7).

Энергетические характеристики соединений в атомных единицах приведены в табл. 1.

В табл. 2 представлены энтальпии реакций и свободные энергии Гиббса, ккал/моль. Как видно из расчетов, реакции проходят в экзотермическом режиме либо с небольшими затратами энергии, а величины энергий активации процессов (1), (4), (5) позволяют им протекать в условиях проведения синтеза с достаточной скоростью. Таким образом, начальными стадиями термодеструкции 1.1'-диацетилферроцена можно считать редокс-диспропорционирование 1.1'-диацетилферроцена в присутствии следов воды, протекающее по реакциям (1), (4) и (5).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Реакции (1) и (4) являются стадиями активирующего комплексообразования, которые приводят к последующей стадии переноса электрона (реакция (5)). Впервые такие процессы были описаны в работах [7, 8]. Суть таких процессов, применительно к ферроценовым системам, заключается в следующем. Если донор (основание Льюиса, например, в анионной форме L⁻, в нашем случае ОН⁻) непосредственно не может восстановить акцептор (производное ферроцена Φ), то образуется комплекс ФL⁻, который приобретает свойство восстановителя. Акцептором по отношению к молекуле ФL- выступает протонированная форма соединения ферроцена (ΦH^+), и в такой системе одноэлектронный перенос уже осушествим:

$$L^- + \Phi \rightarrow \Phi L^-$$
,

Рис. 2. Расчетное строение радикальных продуктов 6а и 6b.

Рис. 3. Расчетное строение протонированной формы 1.1'-диацетилферроцена (2) и его восстановленного 19-электронного радикала (7).

$$H^{+} + \Phi \to \Phi H^{+},$$

$$\Phi L^{-} + \Phi H^{+} \to \Phi L^{\bullet} + \Phi H^{\bullet}$$

Соединения **6a**, **6b**, получающиеся на стадии (5), имеют неустойчивую 17-электронную координационную оболочку и в условиях высокотемпературного расплава распадаются с образованием неорганического Fe³⁺ и циклопентадиенильных лигандов, последние при высокой температуре осмоляются [9]. Координационная сфера трёхвалентного железа первоначально формируется за счет анионов таурина (2-аминоэтансульфоновой кислоты) или ε -аминокапроновой кислоты, образующейся из капролактама, использовавшихся в качестве компонентов исходных смесей. Образование зёрен магнетита Fe₃O₄ происходит в результате протекающего в условиях дегидратации продуктов осмоления формирования кислородного окружения неорганического Fe³⁺. Образующееся на стадии (5) 19-электронное соединение 7 при элиминировании атомарного водорода может восстанавливать циклопентадие-

Обозначение	ε=	2.0	$\varepsilon = 40.0$			
	-H	-G	-H	-G		
1	1956.024065	1956.085090	1956.035853	1956.096682		
2	1956.399974	1956.459158	1956.445369	1956.506887		
3	1879.912205	1879.969242	1879.947952	1880.005743		
4	1879.525960	1879.583597	1879.538634	1879.596592		
5a	2031.902831	2031.966016	2031.943680	2032.006767		
TS ($1 \rightarrow 5a$)	2031.865799	2031.930198	2031.907561	2031.969342		
5b	2031.890139	2031.954631	2031.931804	2031.996762		
TS (1 \rightarrow 5b)	2031.863931	2031.928030	2031.905895	2031.969506		
6a	2031.816410	2031.881855	2031.830141	2031.896489		
6b	2031.807081	2031.873906	2031.822082	2031.889988		
7	1956.569505	1956.633221	1956.581771	1956.645057		
H_2O	76.423276	76.445353	76.428129	76.450214		
H_3O^+	76.740532	76.763533	76.800666	76.823647		
HO-	75.865281	75.884851	75.920801	75.940368		

Таблица 1. Энергетические характеристики субстратов, ат.ед.

Обозначения: $H = E_e + ZPE + E_{vib} + E_{rot} + E_{trans}$, G = H - TS; $E_e - электронная энергия, ZPE - энергия нулевых (0 K) колеба$ $ний, <math>E_{vib} - энергия колебательного движения, E_{rot} - вращательного движения, <math>E_{trans} -$ поступательного движения, S -энтропия и T - температура по Кельвину; **TS** - переходное состояние.

№№ п.п.	Реакция	$\epsilon = 2.0$			$\varepsilon = 40.0$		
		$\Delta H_{ m T}^0$	E_{a}	$\Delta G_{ m T}^0$	$\Delta H_{ m T}^0$	E_{a}	$\Delta G_{ m T}^0$
(1)	$1+\mathrm{H_3O^+} \!\rightarrow\! 2+\mathrm{H_2O}$	-36.81	0.00	-35.07	-23.20	0.00	-23.08
(2)	$2' \rightarrow 3 + H_2O$	+40.47		+27.96	+43.48		+31.96
(3)	$3 + 1 \rightarrow 4 + 2$ '	+6.49		+7.26	-0.12		-1.88
(4)	$1 + OH^- \rightarrow 5a$	-11.60	14.78	+2.46	+8.14	30.81	+19.00
	$1 + OH^- \rightarrow 5b$	-0.50	15.95	+9.61	+15.59	31.85	+25.28
(5)	$5a + 2 \rightarrow 6a + 7$	-52.15	0.00	-56.41	-14.35	0.00	-17.50
	$5b + 2 \rightarrow 6b + 7$	-54.26	0.00	-58.57	-16.74	0.00	-19.70

Таблица 2. Энергетика превращений (энтальпии, энергии активации реакций и свободные энергии Гиббса, ккал/моль)

новые продукты конденсации, переходя в исходный 1.1'-диацетилферроцен.

Предложенная схема термодеструкции 1.1'-диацетилферроцена с начальными стадиями редоксдиспропорционирования протонированной и гидратированной форм 1.1'-диацетилферроцена логично объясняет образование ферримагнитных композитов.

Работа выполнена при поддержке фонда РНФ (проект № 17-73-30036).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бабин В.Н., Белоусов Ю.А., Борисов Ю.А. и др. // Журн. физ. химии. 2020. Т. 94, № 10. С. 1468.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.

- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105 (8). P. 2999.
- Фрунзе Т. М., Котельников В.В, Волкова Т.В. и др. // Докл. АН. Сер. хим. 1980. Т. 255. № 3. С. 612.
- 5. *Gajendra K.J., Dinesh S.* // Proc. 5th Intern. Symp. Electrets. Heidelberg, 1985. P. 252.
- Kirchnerova J., Farrell P.G., Edward J.T. // J. Phys. Chem. 1976. V. 80 (18). P. 1974.
- Абакумов Г.А. Применение метода ЭПР для исследования свободно-радикальных процессов в жидкой фазе. Дис. ...д-ра хим. наук. Горький: ГГУ, 1975.
- Абакумов Г.А. Комплексы металлов со свободнорадикальными лигандами// Металлоорганические соединения и радикалы. /Под ред. М. И. Кабачника.М.: Наука, 1985. С. 85–108.
- 9. Пендин А.А., Захарьевский М.С., Леонтьевская П.К. // Кинетика и катализ. 1966. Т. 7. С. 1074.