__ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 563.63

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ГЕРМАНАТОВ $CaR_2Ge_3O_{10}$ (R = Pr, Nd) В ОБЛАСТИ 320–1000 К

© 2022 г. Л. Т. Денисова^{*a*,*}, М. С. Молокеев^{*a*,*b*}, Н. А. Галиахметова^{*a*}, В. М. Денисов^{*a*}, Н. В. Белоусова^{*a*}

^{*а*}Сибирский федеральный университет, Красноярск, Россия ^{*b*}Институт физики им. А.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия **e*-mail: antluba@mail.ru Поступила в редакцию 05.10.2021 г.

Поступила в редакцию 05.10.2021 г. После доработки 25.11.2021 г. Принята к публикации 29.11.2021 г.

Последовательным обжигом на воздухе при 1423–1473 К стехиометрических смесей CaCO₃, $Pr_6O_{11}(Nd_2O_3)$, GeO_2 получены германаты CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀. Методом рентгеновской дифракции уточнена их кристаллическая структура. Высокотемпературная теплоемкость (320–1000 K) измерена методом дифференциальной сканирующей калориметрии. На основании экспериментальных зависимостей $C_p = f(T)$ рассчитаны термодинамические свойства германатов.

Ключевые слова: кальций-германаты неодима и празеодима, дифференциальная сканирующая калориметрия, высокотемпературная теплоемкость

DOI: 10.31857/S0044453722050077

В последнее время наблюдается устойчивый интерес к сложным оксидным соединениям типа $MR_2Ge_3O_{10}$ (M = Ca, Sr; R = P3 Θ , Y) [1-4]. K taким германатам относятся и CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀. Связано это с возможностями их практического применения в качестве материалов для лазеров и люминофоров. Поэтому основное внимание было уделено изучению оптических свойств этих германатов. В то же время многие свойства таких соединений исследованы крайне мало. Использование подобных материалов на практике предполагает знание их поведения в условиях эксплуатации. Сведений о термической стабильности таких германатов практически нет. По данным [1], CaY₂Ge₃O₁₀ имеет конгруэнтный характер плавления (выше 1673 К), а CaY₂Ge₄O₁₂ – инконгруэнтный (в области 1503– 1523 К). Для других соединений такие данные отсутствуют. Диаграммы состояния CaO - Pr₂O₃ - GeO_2 и $CaO - Nd_2O_3 - GeO_2$ полностью не построены. Имеются лишь сведения о бинарных системах: CaO – $Pr_2O_3(Nd_2O_3)$ [5], $Pr_2O_3(Nd_2O_3)$ – GeO₂ [6-8], CaO – GeO₂ [9]. Для компьютерного моделирования фазовых равновесий в тройных системах необходимы надежные сведения о термодинамических свойствах всех образующихся соединений. Такие данные к настоящему времени в литературе отсутствуют.

В настоящей работе экспериментально определены высокотемпературные теплоемкости германатов $CaPr_2Ge_3O_{10}$ и $CaNd_2Ge_3O_{10}$ в области 320–1000 К, на основании которых рассчитаны их термодинамические функции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Германаты CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀ получали твердофазным методом. Для этого предварительно отожженные исходные CaCO₃ (99.9%), Pr₆O₁₁ (Alfa Aesar 99.996%) (Nd₂O₃ (99.98%)) и GeO₂ (99.999%) в стехиометрических соотношениях перетирали в агатовой ступке, помещали в полиэтиленовые контейнеры, вакуумировали и запаивали. После этого прессовали на изостатическом прессе YLJ-CIP-20B (P = 150 МПа, $\tau =$ = 5 мин). Затем проводили обжиг на воздухе в тиглях с крышкой 2 раза по 10 ч при 1423 К и 2 раза по 10 ч при 1473 К. Для полноты протекания твердофазной реакции после каждого обжига образцы перетирали и снова прессовали. Контроль фазового состава синтезированных германатов проводили с использованием рентгенофазового анализа. Порошковые рентгенограммы при комнатной температуре получали на дифрактометре Bruker D8 ADVANCE (Си K_{α} -излучение) с использованием линейного детектора VANTEC. Шаг сканирования составлял 0.016°, а время экспози-

Параметры	CaPr ₂	Ge_3O_{10}	$CaNd_2Ge_3O_{10}$		
	Наши данные	[4]	Наши данные	[4]	
Пр. гр.	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	
<i>a</i> , Å	6.9909(2)	7.0001(1)	6.9950(1)	6.9938(1)	
b, Å	6.9858(2)	6.9892(1)	6.9671(1)	6.9666(1)	
c, Å	18.8731(1)	18.89994(3)	18.9049(3)	18.8991(3)	
β, град	106.71(6)	106.7689(8)	107.35(6)	107.3452(8)	
$V, Å^3$	883.3(4)	885.34(3)	879.30(3)	878.95(3)	

Таблица 1. Параметры элементарной ячейки CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀

ции на каждый шаг 2 с. Уточнение Ритвельда проводили в программе TOPAS 4.2 [10].

Высокотемпературную теплоемкость полученных германатов $CaPr_2Ge_3O_{10}$ и $CaNd_2Ge_3O_{10}$ изучали на термоанализаторе STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов аналогична описанной ранее [11]. Проводили не менее трех параллелей на двух приборах, при этом погрешность измерения теплоемкости не превышала 2%. Экспериментальные результаты обрабатывали с помощью пакета программ NETZSCH Proteus Thermal Analysis.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По результатам РФА установлено, что синтезированные нами образцы $CaPr_2Ge_3O_{10}$ и $CaNd_2Ge_3O_{10}$ однофазны. Полученные нами данные о структуре в сравнении с результатами других авторов приведены в табл. 1. Видно, что они достаточно хорошо согласуются между собой.

Рис. 1. Температурные зависимости молярной теплоемкости $CaNd_2Ge_3O_{10}$. *1* – экспериментальные данные, *2* – расчет по методу Неймана–Коппа (HK₂).

На рис. 1 и 2 показано влияние температуры на теплоемкость германатов CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀. Видно, что значения молярной теплоемкости с ростом температуры от 320 до 1000 К закономерно увеличиваются, а на зависимостях $C_p = f(T)$ нет разного рода экстремумов. Это позволяет считать, что у данных соединений в указанной области температур нет полиморфных превращений. Установлено, что полученные данные по теплоемкости хорошо описываются уравнением Майера–Келли [12]:

$$C_p = a + bT - CT^{-2},$$
 (1)

которое для $CaPr_2Ge_3O_{10}$ и $CaNd_2Ge_3O_{10}$ имеет, соответственно, следующий вид:

$$C_{p} = (375.10 \pm 0.72) + (43.31 \pm 0.80) \times \times 10^{-3}T - (47.18 \pm 0.70) \times 10^{5}T^{-2},$$

$$C_{p} = (385.60 \pm 0.66) + (28.14 \pm 0.72) \times \times 10^{-3}T - (70.53 \pm 0.62) \times 10^{5}T^{-2}.$$
(3)

Коэффициенты корреляции для уравнений (2) и (3) равны 0.9992 и 0.9995, а максимальные отклонения от сглаживающих кривых 0.77 и 0.71% соответственно.

С использованием уравнений (2) и (3) по известным термодинамическим соотношениям рассчитаны термодинамические свойства $CaPr_2Ge_3O_{10}$ и $CaNd_2Ge_3O_{10}$. Эти результаты приведены в табл. 2. Из нее следует, что значения C_n лля обоих соелинений при высоких температурах (>700 и >800 К соответственно) превышают классический предел Дюлонга-Пти 3Rs, где R - универсальная газовая постоянная, *s* – число атомов в формульной единице германатов. Следует заметить, что при сравнении экспериментальных величин теплоемкости со значениями 3Rs необходимо использовать теплоемкость при постоянном объеме C_V , а не при постоянном давлении C_p . Для определения C_V на основании экспериментальных значения С_р требуются дополнительные данные. Так, например, для такого расчета по соотношениям [13] Нернста-Линдемана:

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 5 2022

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ГЕРМАНАТОВ

или Магнуса-Линдемана

$$C_p = C_v + \alpha^{\circ} T^{3/2}, \qquad (5)$$

где $\alpha^{\circ} = 6.076s/T_{n\pi}^{3/2}$, требуется знание температур плавления $T_{n\pi}$, которые для $CaPr_2Ge_3O_{10}$ и $CaNd_2Ge_3O_{10}$ до настоящего времени не установлены. В случае использования уравнения [14]

$$C_p = C_v (1 + 3\gamma_G \alpha T) \tag{6}$$

необходимы сведения о температурной зависимости параметра Грюнайзена γ_G и температурном коэффициенте линейного расширения α . Такие данные для CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀ в литературе отсутствуют.

Сравнить полученные нами результаты по теплоемкости германатов с данными других авторов не представлялось возможным из-за их отсутствия. Поэтому сделаем такое сравнение с рассчитанными значениями по различным модельным представлениям. Расчет температурной зависимости теплоемкости CaPr₂Ge₃O₁₀ нами проведен методом Эрдоса и Черны [13, 15] по уравнению

$$C_{p} = a + kbT - k^{-2}cT^{-2}, (7)$$

где k — коэффициент подобия, равный отношению температур эталона и исследуемого вещества, при которых их теплоемкости равны. В качестве эталона нами взят германат CaNd₂Ge₃O₁₀ (соблюдение основного критерия — формульное подобие). При использовании уравнения (7) необходимо чтобы значения $C_{p,298}$ были близки для эталона и исследуемого вещества, что не всегда наблюдается. Учитывая это, уравнение Эрдоса и Черны представили в несколько ином виде:

$$C_p = k(a + bT - cT^{-2}).$$
 (8)

Расчет $C_p = f(T)$ для CaPr₂Ge₃O₁₀ по уравнению (8) показывает, что в этом случае наблюдается достаточно хорошее совпадение с экспериментальными данными (рис. 2). При сравнении значений теплоемкости CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀ необходимо учитывать, что у Pr и Nd структура электронных уровней на *f*-орбитали разная, вследствие чего температурная зависимость теплоемкости Шоттки может иметь различный вид [16, 17]. Значения этого вклада зависят от температуры и конкретных энергий уровней соответствующего лантаноида [18]. Для одних ионов этот эффект будет иметь место при низких температурах (например, $DyVO_4$ [16], а для других он проявляется в широком интервале температур (например, Nd₂Zr₂O₇ [18] и NdPO₄ [19]). При этом следует

Рис. 2. Температурные зависимости молярной теплоемкости CaPr₂Ge₃O₁₀. *1* – экспериментальные данные, *2* – расчет по методу Неймана–Коппа (HK₂), *3* – расчет по методу Эрдоса и Черны.

принимать во внимание, что вид аномалий Шоттки зависит от материала матрицы [18, 20].

Для оценки температурной зависимости теплоемкости в ряде случаев используют метод групповых вкладов [21]. Нами установлено, что рассчитанные значения C_p по уравнению, которое лежит в основе метода,

$$C_{p} = a + bT + cT^{-2} + dT^{2}, \qquad (9)$$

плохо описывает экспериментальные значения. До температуры 489 К (CaPr₂Ge₃O₁₀) и 429 К (CaNd₂Ge₃O₁₀) рассчитанные значения C_p ниже экспериментальных, а начиная с этих температурр – выше. Причем, чем выше температура, тем больше это различие (на рис. не показано). Проведенный анализ авторами работы [22] метода групповых вкладов показал, что он дает удовлетворительные результаты для C_p при 298 К, тогда как при других температурах могут наблюдаться различия с экспериментальными данными. Последнее отмечено и самими авторами метода групповых вкладов [21].

Расчет C_p при 298 К нами проведен методами Неймана–Коппа (НК) [23–25], Келлога (Кел) [26] и инкрементным методом Кумока (ИМК) [27]. При расчете методом НК учтены два варианта: использование данных по теплоемкости оксидов CaO, Pr₂O₃ (Nd₂O₃) и GeO₂ [20] (HK₁) или Pr₂Ge₂O₇ (Nd₂Ge₂O₇) [28] и CaO, GeO₂ [23] (HK₂). Эти результаты приведены в табл. 3. Из нее следует, что лучшее согласие с экспериментом (рассчитано по уравнениям (2) и (3)) дает инкрементный метод Кумока.

1 1		2 3 10 2 3	10					
ТК	С _р ,	$H^{\circ}(T) - H^{\circ}(320 \text{ K}),$	$S^{\circ}(T) - S^{\circ}(320),$	$-\Delta G/T^*,$ Дж моль $^{-1}~{ m K}^{-1}$				
<i>1</i> , K	Дж моль $^{-1}$ K $^{-1}$	кДж моль ^{—1}	Дж моль $^{-1}$ K $^{-1}$					
$CaPr_2Ge_3O_{10}$								
320	343.8	-	_	—				
350	352.7	10.45	31.22	1.36				
400	364.1	28.39	79.10	8.13				
450	372.6	46.81	122.5	18.48				
500	379.3	65.62	162.1	30.86				
550	384.9	84.73	198.5	44.44				
600	389.7	104.1	232.2	58.70				
650	394.0	123.7	263.6	73.29				
700	397.8	143.5	293.0	88.00				
750	401.4	163.5	320.5	102.5				
800	404.7	183.6	346.5	117.0				
850	407.9	203.9 371.2		131.3				
900	410.9	224.4	224.4 394.6					
950	413.8	245.0 416.9		159.0				
1000	416.6	265.8	438.2	172.4				
	I	$CaNd_2Ge_3O_{10}$		I				
320	325.8	-	_	_				
350	337.9	9.96	29.75	1.29				
400	352.8	27.25	27.25 75.90					
450	363.5	45.17	45.17 118.1					
500	371.5	63.56	156.8	29.72				
550	377.8	82.29	192.5	42.92				
600	382.9	101.3	225.6	56.79				
650	387.2	120.6	256.5	70.98				
700	390.9	140.0	285.3	85.27				
750	394.2	159.7	312.4	99.52				
800	397.1	179.4	337.9	113.6				
850	399.8	199.4	362.1	127.6				
900	402.3	219.4	385.0	141.2				
950	404.5	239.6	406.8	154.6				
1000	406.7	259.9	427.6	167.7				

Таблица 2. Термодинамические свойства CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀

Примечание: $-\Delta G/T^* = [H^\circ(T) - H^\circ(320 \text{ K})]/T - [S^\circ(T) - S^\circ(320 \text{ K})].$

Таблица 3. Сравнение экспериментальных значений $C_{p,298}$ (Дж моль⁻¹ K⁻¹) для CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀ с рассчитанными различными методами

Соединение	<i>C</i> _{<i>p</i>,298}	HK ₁	Δ, %	HK ₂	$\Delta, \%$	Кел	$\Delta, \%$	ИМК	Δ, %
CaPr ₂ Ge ₃ O ₁₀	335.7	314.9	-6.2	333.5	-0.7	293.0	-12.7	326.3	-2.8
CaNd ₂ Ge ₃ O ₁₀	314.6	309.6	-1.6	332.5	+5.7	293.0	-6.9	319.9	+1.7

Сравнение экспериментальных зависимостей теплоемкости CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀ в сравнении с рассчитанными методом Неймана-Коппа (НК₂) показано на рис. 1 и 2 соответственно. Если в первом случае получены достаточно близкие результаты (рис. 1), то во втором – при температурах выше 800 К имеются некоторые различия. Согласно [29], могут наблюдаться как положительные, так и отрицательные отклонения от аллитивного правила. Это связывают с изменением частот колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами. Отметим, что отличие экспериментальных и рассчитанных методом Неймана-Коппа значений теплоемкости наблюдали и ранее [17]. Для расчета $C_p = f(T)$ данные по теплоемкости Pr₂Ge₂O₇ и Nd₂Ge₂O₇ брали из работы [28], а CaO и GeO₂ – [30].

Таким образом, твердофазным методом получены поликристаллические образцы германатов CaPr₂Ge₃O₁₀ и CaNd₂Ge₃O₁₀. Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на их молярную теплоемкость. Установлено, что в области температур 320–1000 К зависимости $C_p = f(T)$ хорошо описываются уравнением Майера–Келли. На основании экспериментальных результатов рассчитаны термодинамические свойства оксидных соединений.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Красноярскому региональному центру коллективного пользования ФИЦ КНЦ СО РАН. Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Yamane H., Nanimura R., Yamad T., Shimada M. // J. Solid State Chem. 2006. V. 179. P. 289. https://doi.org/10.1016/j.jssc.2005.10.023
- Lipina O.A., Surat L.L., Melkozerova M.A. et al. // J. Solid State Chem. 2013. V. 206. P. 117. https://doi.org/10.1016/j.jssc.2013.08.002
- 3. Липина О.А., Сурат Л.Л., Мелкозерова М.А. и др. // Оптика и спектроскоп. 2014. Т. 116. № 5. С. 751. https://doi.org/10.7868/S0030403414050134
- Lipina O.A., Surat L.L., Tyutyunnik A.P. et al. // Cryst. Eng. Comm. 2015. P. 1. https://doi.org/10.1039/c5ce00063g

- 5. Арсеньев П.А., Ковба Л.М., Багдасаров Х.С. и др. Соединения редкоземельных элементов. Системы с оксидами элементов I-III групп. М.: Наука, 1983. 280 с.
- 6. Демьянец Л.Н., Лобачев А.Н., Емельяненко Г.А. Германаты редкоземельных элементов. М.: Наука, 1980. 152 с.
- 7. Портной К.И., Тимофеева Н.И. Кислородные соединения редкоземельных элементов. М.: Металлургия, 1986. 480 с.
- 8. Бондарь И.А., Виноградова Н.В., Демьянец Л.Н. и др. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. М.: Наука, 1983. 288 с.
- 9. Торопов Н.А., Барзаковский В.П., Лапин В.В., Кудрявцева Н.Н. Диаграммы состояния силикатных систем. Двойные системы. Справочник. Вып. 1. Л.: Наука, 1969. 822 с.
- Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User's Manual. Bruker AXS, Karlsruhe, Germany. 2008.
- Денисова Л.Т., Иртюго Л.А., Белоусова Н.С. и др. // Журн. физ. химии. 2019. Т. 93. № 3. С. 476. https://doi.org/10.1134/S004445371903004X
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932.
 V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
- Морачевский А.Г., Сладков И.Б., Фирсова Е.Г. Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
- Прекул А.Ф., Казанцев В.А., Щеголихина Н.М. и др. // Физика твердого тела. 2008. Т. 50. № 11. С. 1933. https://doi.org/10.1134/S1063783408110024
- 15. Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных ACTPA. OWN). Екатеринбург: УРО РАН, 1997. 230 с.
- 16. Гавричев К.С., Рюмин М.А., Гуревич В.М., Тюрин *А.В.* // Неорган. материалы. 2014. Т. 50. № 9. С. 993. https://doi.org/10.7868/S0002337X14090036
- 17. *Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. //* Журн. физ. химии. 2020. Т. 94. № 2. С. 163. https://doi.org/10.31857/S0044453720020120
- Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1072.
 - https://doi.org/10.1134/S0044457X19100040
- Popa K., Jutier F., Wastin F., Konings R.J.M. // J. Chem. Thermodynamics. 2006. V. 38. P. 1306. https://doi.org/10.1016/j.jct.2006.02.006
- 20. Никифорова Г.Е., Кондратьева О.Н., Тюрин А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 242. https://doi.org/10.31857/S0044457X21020148
- Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343.
- 22. Leitner J., Sedmidubský D., Chuchvalec P. // Ceramics-Silikáty. 2002. V. 46. № 1. P. 29.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 5 2022

- 23. Leitner J., Chuchvalec P., Sedmidudský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
- 24. Qiu L., White M.A. // J. Chem. Education. 2001. V. 78. P. 1076. https://doi.org/10.1021/ed078p1076
- 25. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- 26. Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- 27. *Кумок В.Н.* // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- Денисова Л.Т., Иртюго Л.А., Белецкий В.В. и др. // Физика твердого тела. 2018. Т. 60. № 3. С. 618. https://doi.org/10.21883/FTT.2018.03.45571.285
- 29. *Резницкий Л.А.* Калориметрия твердого тела (структурные, магнитные, электронные превращения). М.: Изд-во МГУ, 1981. 184 с.
- 30. *Третьяков Ю.Д.* Твердофазные реакции. М.: Химия, 1978. 360 с.