_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 536.631,544.31,53.096

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА И ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ Gd₂Sn₂O₇ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

© 2022 г. А. В. Хорошилов^а, В. Н. Гуськов^а, А. В. Гуськов^а, П. Г. Гагарин^а, К. С. Гавричев^{а,*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, 119991, Москва, Россия

*e-mail: gavrich@igic.ras.ru Поступила в редакцию 12.10.2021 г. После доработки 12.10.2021 г. Принята к публикации 14.10.2021 г.

Представлены результаты измерения молярной теплоемкости и рассчитаны термодинамические функции станната гадолиния структурного типа пирохлора в области 298.15–1350 К. Выполнена оценка энергии Гиббса образования станната гадолиния из оксидов гадолиния (III) и олова (IV). Методом высокотемпературной дифракции определена температурная зависимость параметра кубической решетки $Gd_2Sn_2O_7$ и рассчитаны коэффициенты термического расширения в интервале 299–1273 К.

Ключевые слова: станнат гадолиния, пирохлоры, энтальпия образования, теплоемкость **DOI:** 10.31857/S0044453722050144

Вещества со структурой пирохлора (пр. гр. Fd3m) в последнее время привлекают большое внимание благодаря их широкому применению в керамических теплозащитных покрытиях [1, 2], диэлектриках с высокой проницаемостью [3], перспективных твердых электролитах в твердооксидных топливных элементах [4] и в качестве матриц для иммобилизации актинидов, образующихся в результате ядерного топливного цикла [5-7]. Соединения с кубической структурой пирохлора, к которым относятся и станнаты редкоземельных элементов (РЗЭ) [8, 9], имеют общую формулу $A_2B_2O_7$, где A и B – катионы металлов, которые могут быть либо трех- и четырехвалентными, либо двух- и пятивалентными соответственно. В отличие от цирконатов РЗЭ, станнаты не имеют структурных переходов в широкой области температур, что способствует их использованию для создания высокотемпературных материалов.

Согласно литературным данным, станнаты РЗЭ синтезировали различными методами, включая механохимический, твердотельный синтез (керамический) из оксидов, соосаждением гидроксидов с последующим прокаливанием и другие. При этом параметры синтеза могут существенно различаться. Например, в [10] указано, что станнаты и цирконаты РЗЭ получали твердофазным синтезом при нагревании лишь до 700°С (973 K), в то время как в [11] потребовалось прокаливание при 1673°С в течение 4 ч, а в [12] образец прокаливали 100 ч при 1473 К.

Сведения по энтальпии образования станнатов носят фрагментарный и, зачастую, противоречивый характер. Численные данные о прямых измерениях энтальпии образования Gd₂Sn₂O₇ из элементов не найдены, имеется лишь значение, которое получено модельным расчетом и представлено в графическом виде (≈–3070 кДж моль⁻¹) [13]. Литературные данные по теплоемкости станната гадолиния в области высоких температур (356–1000 K), полученные методом дифференциальной сканирующей калориметрии (ДСК) [12, 14] и расчетом с применением квазигармонического приближения с использованием программного обеспечения GIBBS [13] (300–1600 K), согласуются неудовлетворительно.

Опубликованные в [13] экспериментальные данные по линейному коэффициенту термического расширения (КТР) получены дилатометрическим методом в интервале температур 320—1600 К и представлены в виде графика, из которого следует, что значения КТР возрастали от 7.2×10^{-6} при 320 К до 8.8×10^{-6} К⁻¹ при 1600 К.

Цель данной работы — измерение теплоемкости $Gd_2Sn_2O_7$ в области высоких температур методом ДСК для определения достоверных величин, расчет термодинамических функций, оценка термодинамической стабильности и определение параметров термического расширения станната гадолиния методом высокотемпературной рентгеновской дифрактометрии.

ЭКПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза станната гадолиния в качестве исходных реагентов использовали: оксид гадолиния (III) (99.99%) производства ООО "Ланхит", аммоний-олово (IV) хлористый ("ч."), РЕАХИМ, соляную кислоту (35–38 мас. %, "ос.ч. 20–4") и водный раствор аммиака (NH₄OH, 25–28 мас. %) производства ООО "Химмед" ("х.ч."). Образец станната гадолиния получали методом обратного осаждения стехиометрической смеси хлоридных растворов олова и гадолиния в растворе аммиака с последующим обезвоживанием и окончательным отжигом при 1673 К в течение 4 ч.

Лля илентификации полученного станната гадолиния использовали рентгенофазовый анализ (РФА), выполненный на дифрактометре фирмы BrukerAdvanceD8 (Си K_{α} -излучение, $\lambda = 1.5418$ Å, $2\theta = 10^{\circ} - 65^{\circ}$, никелевый фильтр, геометрия на отражение) при комнатной температуре. Для интерпретации данных РФА использовали программу BrukerDIFFRAC.EVA и базу данных ICD-Кристаллографические параметры DPDF-2. определяли с помощью программного обеспечения TOPAS-R (Bruker). Состав и чистоту образца определяли химическим анализом (оптикоэмиссионный спектрометр с индуктивно-связанной плазмой Agilent 725). Морфологию, размер и форму частиц оценивали с помощью растрового электронного микроскопа (РЭМ) фирмы JEOLJCM-7000 NeoScope.

Термический анализ и измерение теплоемкости образца $Gd_2Sn_2O_7$ в интервале 310–1345 К проводили на установке синхронного термического анализа STA 449F1 Jupiter® фирмы Netzsch. Калибровку по температуре и чувствительности проводили измерением плавления стандартных образцов металлов в тиглях из платины-родия с крышкой и вкладышем из Al_2O_3 . По результатам калибровки погрешности составили 0.3 К по температуре и 0.2% по энтальпии. Теплоемкость определяли методом отношений по формуле:

$$c_{p} = \frac{m_{\rm ref}}{m_{\rm sample}} \frac{DSC_{\rm sample} - DSC_{\rm bas}}{DSC_{\rm ref} - DSC_{\rm bas}} c_{p,\rm ref},$$
 (1)

где m_{ref} и m_{sample} — массы вещества сравнения (стандарта) и исследуемого образца, соответственно; DSC_{sample} , DCS_{ref} и DSC_{bas} — сигнал ДСК при измерении исследуемого образца, образца сравнения и тигля без образца, соответственно; $c_{p,\text{ref}}$ — удельная теплоемкость вещества сравнения.

По результатам проверки теплоемкости сапфира, использованного в качестве вещества сравнения, максимальная погрешность (2.2% от справочных данных [15]) наблюдалась в конце температурного интервала измерений (1100–1350 K).

Изучение температурной зависимости параметра кристаллической решетки образцов станната гадолиния проводили на порошковом рентгеновском дифрактометре Bruker D8 Discover A25 (излучение Cu K_{α} , Ni-фильтр, LynxEye детектор), оборудованном высокотемпературной камерой НТК 1200N, в интервале 10°-65° с шагом 0.02° и временем в шаге 0.35-0.4 с. Высокотемпературную съемку проводили в интервале температур 299-1273 К, с шагом по температуре 150 К, скоростью нагрева 10 К мин⁻¹ и выдержкой образца при каждой температуре перед съемкой дифрактограмм 15 мин.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Выполненный рентгенофазовый анализ синтезированного образца $Gd_2Sn_2O_7$ показал (рис. 1), что посторонние фазы отсутствуют, и все дифракционные отражения соответствуют станнату гадолиния структурного типа пирохлора (*Fd3m*) с параметром кубической ячейки a = 10.461(1), что хорошо согласуется с литературными данными [8, 12, 13, 16-18]. Синтезированный образец, по данным химического анализа, имел состав Gd₁₉₈Sn₂O₆₉₇, индекс кислорода рассчитывали из соотношения оксидов гадолиния и олова. Как было показано ранее [19], такое отклонение от стехиометрического состава не может оказать существенного влияния на величину молярной теплоемкости. Оценка по Дебаю-Шереру размеров областей когерентного рассеяния по ширине дифракционных отражений, показали, что их размеры превышают 100 нм и находятся вне интервала существования наноразмерных частиц. Микрофотография порошка станната гадолиния показала, что он состоит из округлых частиц, преимущественно размерами ~400 нм (рис. 2).

Измерение теплоемкости выполняли методом дифференциальной сканирующей калориметрии в интервале 310—1345 К. Кривая теплоемкости имеет вид постоянно возрастающей зависимости без видимых аномалий, (рис. 3, кривая *1*).

Полученные значения молярной теплоемкости сглаживали с использованием уравнения Майера—Келли [20], которое для изученного температурного интервала имеет вид

По сглаженным значениям теплоемкости рассчитывали термодинамические функции (энтропию, изменение энтальпии и приведенную энергию Гиббса), которые приведены в табл. 1.

На рис. 3 приведено сравнение полученных данных и измеренных в [14] значений теплоемкости $Gd_2Sn_2O_7$ в области высоких температур, а также результаты модельного расчета [13]. Видно,

Рис. 1. Дифрактограмма образца станната гадолиния (пирохлор), a = 10.461(1) Å.

Рис. 2. Микрофотография поверхности образца станната гадолиния.

что данные работы [13] не согласуются с результатами [14] и настоящей работы. Это может свидетельствовать о том, что значения, полученные модельным расчетом в [13], имеют недостаточную достоверность. В свою очередь, данные [14] при комнатных температурах превышают рассчиправилу Неймана-Коппа танные по на ~20 Дж К⁻¹ моль⁻¹ и располагаются несколько выше полученных нами, однако кривые 1 и 2 симбатны и удовлетворительно согласуются с полученной зависимостью $C_p(T)$ (уравнение (2)) выше 600 К, где различие в величинах не превышает

Рис. 3. Молярная теплоемкость станната гадолиния; *1* – настоящая работа, *2* – данные [14], *3* – [13].

ошибки эксперимента в ±3%. При экстраполяции в область высоких температур обе кривые идут практически параллельно. Такое согласие в величинах, определенных разными авторами, позволяет рекомендовать полученную температурную зависимость теплоемкости для использования в термодинамических расчетах.

В связи с перспективами практического использования станната гадолиния при высоких температурах целесообразно оценить вероятность его распада на оксиды SnO₂ и Gd₂O₃, рас-

Т, К	С°, Дж/(К моль)	<i>S</i> °(<i>T</i>) − <i>S</i> °(298.15), Дж/(К моль)	<i>H</i> °(<i>T</i>) − <i>H</i> °(298.15), Дж/моль	Ф°(<i>T</i>), Дж/(К моль)
298.15	214.1	0.0	0.0	0.0
300	214.7	1.326	372.4	0.08480
310	218.2	8.425	2404	0.6702
320	221.4	15.40	4465	1.453
330	224.4	22.26	6552	2.411
340	227.1	29.00	8663	3.525
350	229.7	35.62	10796	4.780
360	232.0	42.13	12949	6.159
370	234.2	48.52	15 121	7.649
380	236.3	54.79	17 309	9.239
390	238.3	60.95	19514	10.92
400	240.1	67.01	21733	12.68
450	248.0	95.76	33013	22.40
500	254.2	122.2	44532	33.16
550	259.4	146.7	56226	44.47
600	263.9	169.5	68051	56.05
650	267.8	190.7	79977	67.71
700	271.4	210.7	91 981	79.33
750	274.8	229.6	104049	90.84
800	277.9	247.4	116168	102.2
850	280.8	264.3	128329	113.4
900	283.7	280.5	140 526	124.3
950	286.4	295.9	152752	135.1
1000	289.1	310.6	165004	145.6
1050	291.7	324.8	177 277	156.0
1100	294.2	338.4	189569	166.1
1150	296.7	351.6	201878	176.0
1200	299.2	364.3	214200	185.8
1250	301.6	376.5	226535	195.3
1300	304.0	388.4	238881	204.6
1350	306.4	399.9	251 237	213.8

Таблица 1. Молярная теплоемкость и термодинамические функции Gd₂Sn₂O₇ (298.15–1350 K)

Примечание. Курсивом приведены расчетные значения; $\Phi^{\circ}(T) = [S^{\circ}(T) - S^{\circ}(298.15)] - [H^{\circ}(T) - H^{\circ}(298.15)]/T$.

считав энергию Гиббса этой реакции. В работе [21] было показано, что зависимость энтальпии образования ряда станнатов лантаноидов из оксидов, полученная в [17] методом дроп-калориметрии, может быть описана уравнением:

$$\Delta_{\rm f} H_{\rm ox}, \, \kappa \Delta_{\rm K} / \text{моль} = -1652.275 + 3528.519 R_{\rm i} -$$

$$-1919.038 R_{\rm i}^2 \quad (R^2 = 0.998813), \qquad (3)$$

где $R_{\rm i}$ – ионный радиус в Å [22] (рис. 4).

Исходными данными приведенной в табл. 2 оценки были термодинамические величины для простых оксидов (binary oxides) из [23–25]. Для расчетов энтальпии образования из элементов использовали величину $\Delta_f H^{\circ}(\text{SnO}_2) = -577.6 \pm \pm 0.2 \text{ кДж моль}^{-1}$ из справочника [25]. Данные по энтальпиям образования оксидов РЗЭ из работ [17, 23], хорошо согласуются между собой, но для последующих расчетов мы использовали величины из работы [23], в которой охвачены

все лантаноиды. Сравнение оценочных величин по энтальпии образования из оксидов, полученных по уравнению (3), показывает их близость с экспериментальными значениями [17]. Оценочные значения энтальпий образования станнатов РЗЭ со структурой пирохлора из элементов $\Delta_{\rm f} H^{\circ}({\rm Ln}_2{\rm Sn}_2{\rm O}_7)$ даны в табл. 2 и сопоставлены с данными [17] (колонка 5).

С использованием оцененной величины энтальпии образования станната гадолиния из оксидов при 298 К и температурных зависимостей термодинамических свойств $Gd_2Sn_2O_7$, Gd_2O_3 и SnO_2 выполнена оценка энергии Гиббса реакции:

$$Gd_2O_3 + 2SnO_2 = Gd_2Sn_2O_7 \tag{4}$$

в диапазоне температур 300—1500 К. Установлено, что в области высоких температур величина энергии Гиббса отрицательна (что свидетельствует о термодинамической стабильности станната гадолиния) и может быть описана линейным уравнением (рис. 5):

$$\Delta_{\rm f} G_{\rm ox}^{\circ}, \ \mathcal{J}$$
ж/моль = $-50\,672 - 27.822T$ (5)
($R^2 = 0.999957$).

Термическое расширение станната гадолиния структурного типа пирохлора (*Fd3m*) изучали методом высокотемпературной дифракции. Полученная температурная зависимость параметра *a*

Рис. 4. Энтальпия образования станнатов лантаноидов $Ln_2Sn_2O_7$ из оксидов, уравнение (3) [21].

кубической решетки носит квадратичный характер и может быть описана уравнением:

a, Å = 10.43657 + 8.04004 × 10⁻⁵T +
+ 5.29408 × 10⁻⁹T²,
$$R^2 = 0.9999$$
, (6)

Соединение	$R_{\rm i} ({\rm RE}^{3+}, CN = 8), {\rm \AA} [22]$	$-\Delta_{\rm f} H^{\circ}({\rm Ln}_2{\rm O}_3)$ [23]/[17]	$-\Delta_{\rm f} H_{\rm ox}^{\circ},$ (3) [21]	$-\Delta_{\rm f} H^{\circ}({\rm Ln}_2 {\rm Sn}_2 {\rm O}_7) =$ = -(\Delta_{\rm f} H^{\circ}({\rm Ln}_2 {\rm O}_3) + + 2\Delta_{\rm f} H^{\circ}({\rm SnO}_2) + \Delta_{\rm f} H^{\circ}_{\rm ox})
$La_2Sn_2O_7$	1.160	$1791.6 \pm 2.0/1793.7 \pm 1.6$	<i>141.4</i> /142.12 ± 4.88	<i>3088.2</i> /3091.0
$Ce_2Sn_2O_7$	1.143	1813.1 ± 0.8	126.3	3094.6
$Pr_2Sn_2O_7$	1.126	1809.9 ± 3.0	112.2	3077.3
$Nd_2Sn_2O_7$	1.109	$1806.9 \pm 3.0 / 1807.9 \pm 1.0$	<i>99.33/</i> 97.28 ± 4.99	<i>3061.4</i> /3060.4
$Sm_2Sn_2O_7$	1.079	$1823.0 \pm 4.0 / 1823.0 \pm 2.0$	79.23/80.55 ± 4.04	<i>3057.4</i> /3058.8
$Eu_2Sn_2O_7$	1.066	$1662.5 \pm 6.0 / 1662.7 \pm 3.8$	$71.58/71.22 \pm 3.83$	<i>2889.3</i> /2889.1
$Gd_2Sn_2O_7$	1.053	1819.7 ± 3.6	64.59	3039.4
$Tb_2Sn_2O_7$	1.040	1865.2 ± 6.0	58.25	3078.6
$Dy_2Sn_2O_7$	1.027	$1863.4 \pm 5.0 / 1863.1 \pm 3.9$	<i>52.55/53.57</i> ± 3.06	<i>3071.1</i> /3071.9
$Ho_2Sn_2O_7$	1.015	1883.3 ± 8.2	47.87	3086.3
$Er_2Sn_2O_7$	1.004	1900.1 ± 6.5	44.06	3099.3
$Tm_2Sn_2O_7$	0.994	1889.3 ± 5.7	41.01	3085.5
$Yb_2Sn_2O_7$	0.985	$1814.5 \pm 6.0 / 1814.6 \pm 8.5$	<i>38.58</i> /37.99 ± 5.59	<i>3008.2</i> /3007.8
$Lu_2Sn_2O_7$	0.977	1877.0 ± 7.7	36.69	3068.8

Таблица 2. Оценка величин энтальпии образования станнатов РЗЭ Ln₂Sn₂O₇ из оксидов и элементов (кДж моль⁻¹)

Примечание. Курсивом даны оценочные значения, полученные с использованием уравнения (3).

Рис. 5. Энергия Гиббса образования из оксидов $\Delta_{\rm f} G_{\rm ox}^{\circ}$ (Gd₂Sn₂O₇) в области высоких температур.

и позволяет оценить коэффициенты линейного расширения:

текущий

$$\alpha_{\rm T}, \, \mathrm{K}^{-1} = (da/dT)/a(T), \tag{7}$$

относительный

$$\alpha_{298}, \mathbf{K}^{-1} = (da/dT)/a(298)$$
 (8)

и относительное линейное расширение

$$TE, \% = 100[a(T) - a(298)]/a(298).$$
(9)

Параметры кристаллической решетки станната гадолиния, коэффициенты термического расширения и относительное термическое расширение приведены в табл. 3.

На рис. 6 показаны зависимости текущего линейного коэффициента термического расшире-

Таблица 3. Температурные зависимости параметра кристаллической решетки (*a*), текущего (α_T) и относительного (α_{298}) коэффициентов линейного термического расширения и относительного линейного расширения (*TE*)

<i>Т</i> , К	a, Å	$\alpha_{\rm T} \times 10^{-6},$ ${\rm K}^{-1}$	$\alpha_{298} \times 10^{-6},$ K^{-1}	TE, %
299	10.4611	7.99	7.99	0.00
423	10.4714	8.11	8.11	0.10
573	10.4844	8.25	8.27	0.22
723	10.4978	8.39	8.42	0.35
873	10.5107	8.53	8.57	0.47
1023	10.5242	8.67	8.72	0.60
1173	10.5380	8.81	8.87	0.74
1273	10.5477	8.90	8.97	0.83

Рис. 6. Линейный коэффициент термического расширения $\text{Gd}_2\text{Sn}_2\text{O}_7 \alpha_{298}$; *1* – настоящая работа, *2* – данные [13].

ния α_т, рассчитанного в настоящей работе и измеренного в [13] методом дилатометрии.

Проведенные исследования показали, что термическое расширение станната гадолиния структурного типа пирохлора носит положительный характер, и подтвердили отсутствие структурных превращений в области температур 299—1273 К.

Таким образом, по результатам измерения высокотемпературной теплоемкости $Gd_2Sn_2O_7$ рассчитаны сглаженные значения молярной теплоемкости и термодинамические функции в области температур 310–1345 К. Анализ имеющих в литературе данных свидетельствует о достоверности полученных величин. Согласно оценке энергии Гиббса образования станната гадолиния из оксидов, в области высоких температур это соединение стабильно. Методом высокотемпературной рентгеновской дифрактометрии определены параметры кристаллической структуры пирохлора $Gd_2Sn_2O_7$ в интервале температур 300–1300 К и рассчитаны коэффициенты термического расширения.

БЛАГОДАРНОСТИ

Авторы выражают благодарность С.В. Кузнецову и Г.Е. Никифоровой за помощь в измерении методом высокотемпературной рентгенографии.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках госзадания ИОНХ РАН на проведения фундаментальных исследований с использованием оборудования ЦКП ФМИ ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- Clarke D.R. // Surf. Coat. Tech. 2003. V. 163. P. 67. https://doi.org/10.1016/S0257-8972(02)00593-5
- Pan W., Phillpot S.R., Wan C. et al. //MRS Bulletin. 2012. V. 37 (10). P. 917. https://doi.org/10.1557/mrs.2012
- Ren W., Trolier-McKinstry S., Randall C.A. et al. // J. Appl. Phys. 2001. V. 104. P. 767. https://doi.org/10.1063/1.1328408
- 4. *Sun C., Stimming U.* // J. Power Source. 2007. V. 171. P. 247.
- https://doi.org/10.1016/j.jpowsour.2007.06.086 5. *Taubes G.* // Sci.1994. V. 263. P. 629.
- https://doi.org/10.1126/science.263.5147.629
- Helean K.B., Navrotsky A., Vance E.R. et al. // J. Nucl. Mater. 2002. V. 303. P. 226. https://doi.org/10.1016/S0022-3115(02)00795-X
- Ewing R.C., Weber W.J., Lian J. // J. Appl. Phys. 2004. V. 95. P. 5949.
- https://doi.org/10.1063/1.1707213 *Kennedy B.J., Hunter B.A., Howard C.J.* // J. Solid State Chem. 1997. V. 130. P. 58.
- https://doi.org/10.1006/jssc.1997.7277 9. *Brisse F., Knop O. //* Can. J. Chem. 1968. V. 46. № 6.
- P. 859. https://doi.org/10.1139/v68-148
- 10. Merkushin A.O., Aung T., Mo UZ.E. // Glass and Ceramic. 2010. V. 11. P. 16.
- Tyurin A.V., Khoroshilov A.V., Ryumin M.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1891. https://doi.org/10.1134/S003602362010207
- Denisova L. T., Irtyugo L.A., Kargin Yu.F. et al. // Inorg. Mater. 2016. V. 52. P. 584. https://doi.org/10.1134/S0020168516060029
- 13. *Feng J., Xiao B., Zhou R. et al.* //Scripta Mater. 2013. V. 69. P. 401. http://dx.doi.org/j.scriptamat.2013.05.030

- Denisova L. T., Kargin Yu. F., Denisov V.M. // Inorg. Mater. 2017. V. 53. P. 956. https://doi.org/10.1134/S0020168517090059
- Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. NBS. 1982. V. 87. P. 159. https://doi.org/10.6028/jres.087.012
- Lian J., Helean K.B., Kennedy B.J. et al. // J. Phys. Chem. B. 2006. V. 110. P. 2343. https://doi.org/10.1021/jp055266c
- Zhao J., Liu Y., Fan Y. et al. //J. Mater. Sci. Technol. 2021. V. 73. P. 23. https://doi.org/10.1016/j.jmst.2021.09.033
- Powel M., Sunjeeva L.D., MacMillen C.D. et al. // Crys. Growth Des. 2019. V. 19. P. 4920. https://doi.org/10.1021/acs.cgd.8b01889
- Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 2892. https://doi.org/10.1016/j.ceramint.2020.09072
- 20. Maier C.G., Kelley K.K. // J. Amer. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.ja-1347a029
- Tyurin A.V., Khoroshilov A.V., Ryumin M.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 12. P. 1891. https://doi.org/10.1134/S0036023620120207
- 22. Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- 23. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
- 24. Gurevich V.M., Gavrichev K.S., Gorbunov V.E. // Geokhimia. 2004. V. 10. P. 1096 (In Russian).
- 25. Термические константы веществ: Вып. 1–10 / Справочник. Отв. ред. В.П. Глушко. М.: ВИНИТИ, 1965–1982. http://www.chem.msu.su/cgi-bin/tkv.pl