ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 544.723:661.185

АДСОРБЦИЯ НЕОНОЛА АФ 9—10 НА УГЛЕРОДНО-МИНЕРАЛЬНОМ АДСОРБЕНТЕ НА ОСНОВЕ ПРИРОДНОГО АЛЮМОСИЛИКАТА И ШИННОЙ КРОШКИ

© 2022 г. М. М. Фидченко^{а,*}, А. Д. Варнавская^а, М. Б. Алехина^а, Г. А. Бузанов^b

^аФГОУ ВО "Российский химико-технологический университет им. Д.И. Менделеева", 125047, Москва, Россия ^bФГБУН Институт общей и неорганической химии им. Н.С. Курнакова РАН, 119991, Москва, Россия

*e-mail: fidchenkomm@mail.ru Поступила в редакцию 09.11.2021 г. После доработки 09.11.2021 г. Принята к публикации 15.11.2021 г.

Получены образцы углеродно-минерального адсорбента на основе природной монтмориллонитовой глины и шинной крошки. Физико-химические свойства охарактеризованы с помощью рентгенофлуоресцентного, рентгенофазового анализов, метода низкотемпературной адсорбции азота. Показано, что с ростом температуры пиролиза возрастало содержание углерода на поверхности глины. Получены изотермы адсорбции неонола АФ 9–10 из водных растворов на образцах УМА, пиролизованных при 450–800°С. Наилучшими адсорбционными свойствами, сопоставимыми со свойствами промышленных активированных углей, обладал образец, пиролизованный при 650°С.

Ключевые слова: природный алюмосиликат, монтмориллонит, углеродно-минеральный адсорбент, адсорбция из водных растворов, неонол АФ 9–10 **DOI:** 10.31857/S0044453722060085

Физическая адсорбция — один из методов очистки сточных вод от эмульгированных и растворенных неполярных и высокомолекулярных органических веществ (нефтепродуктов, масел, ПАВ, фенолов и др.), коллоидов и микровзвесей. Наиболее распространенные виды адсорбентов, применяемых для этих целей: активированные угли, природные алюмосиликаты (глины, цеолиты). Большой интерес для использования в качестве адсорбентов вызывают углеродно-минеральные материалы, получаемые на основе природных минералов, модифицированных углеродом [1–8].

Искусственное создание водоотталкивающих свойств за счет нанесения на поверхность минералов тонких слоев гидрофобизаторов либо органической, либо кремний-органической природы является весьма перспективным [7]. Сам гидрофобизатор при этом должен обладать хорошей адгезией к материалу, равномерно распределяться и полностью покрывать его, не вымываться при эксплуатации. В качестве сырья для гидрофобизации могут использоваться как техногенные, так и природные глинистые материалы (керамзитовый гравий, вспученный перлит, вермикулит и др.), обладающие высокими адсорбционными, каталитическими и ионообменными свойствами. Материалы должны быть доступными и дешевыми в регионе производства и потребления сорбента [7].

Примерами углеродно-минеральных адсорбентов (УМА) служат угольно-цеолитный адсорбент, полученный путем пропитки цеолита водной суспензией углеродных материалов и последующей термообработки в токе СО₂ [2]; углеродно-минеральный адсорбент-катализатор, включающий цеолит, активный уголь, бентонитовую глину, диоксид марганца, продукты термодеструкции синтетических углеродных материалов [3], сорбент на основе гуминовых кислот, нанесенных на силикагель [4] или сапропель [5]; органоминеральные адсорбенты на основе цеолитов после пропитки раствором крекинг-остатка для сорбшии и концентрирования токсичных металлов (As, Pb, Hg) из сточных вод [6]. Получены и применяются гидрофобизированные минеральные сорбенты типа модифицированных бентонитов [8-13]. Авторами [14] выполнен цикл работ по получению и изучению гидрофобномодифицированных техногенных и природных адсорбентов из алюмосиликатных материалов Дальневосточного региона.

В нашей работе для синтеза УМА в качестве минеральной матрицы была использована монтмориллонитовая глина, а в качестве гидрофобизатора была выбрана шинная крошка. Монтмориллонит — это основной глинистый минерал в группе бентонитов со структурой 2:1 [15–18]. Выбор шинной крошки связан с экологическими аспектами. Масштабы роста количества изношенных шин приобретают колоссальные размеры и требуют квалифицированного рассмотрения с целью создания технологий их утилизации с получением продуктов, имеющих ценность для различных отраслей промышленности в качестве вторичного сырья [19–21].

Целью данной работы являлось получение углеродно-минеральных адсорбентов на основе природной глины и шинной крошки и изучение их адсорбционных свойств по отношению к НПАВ в водных растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве сырья для синтеза УМА была выбрана природная монтмориллонитовая глина Борщевского месторождения Калужской области. По данным ФГУП "ЦНИИГеолнеруд" [22] минеральный состав глины характеризуется содержанием (в мас. %): монтмориллонита до 65%, палыгорскита до 61%, каолинита до 50%, гидрослюд до 14%. Выбор глины Борщевского месторождения был обоснован предыдущими исследованиями [23].

В качестве гидрофобизатора была выбрана шинная крошка — продукт переработки автомобильной резины, торговая марка РД-0.5, изготовитель ОАО "Чеховский регенератный завод" (Московская область, г. Чехов). Была использована фракция крошки 0.5–1 мм.

Общая схема получения гранулированных УМА состояла из тонкого измельчения глины (размер частиц <0.25 мм после сушки при 105° С до постоянной массы), смешения глины и шинной крошки (размер частиц 0.5-1 мм) в соотношении 75 : 25, формования полученной смеси с помощью экструдера с добавлением необходимого количества дистиллированной воды, получением гранул требуемого размера, сушки гранул при 105° С до постоянной массы для придания материалу прочности. Далее формованные частицы смеси реагентов подвергали пиролизу.

Пиролиз полученных гранул осуществляли в кварцевом реакторе, снабженном электрической спиралью и теплоизоляцией. Навеску материала помещали в реактор на перфорированную перегородку в зону устойчивой температуры, контролируемой хромель-алюмелевой термопарой. Конденсат собирали в приемник жидких продуктов. Образующиеся в процессе пиролиза парогазовые продукты отводили из реакционного объема в систему конденсации, состоящую из водяного холодильника, склянки Дрекселя с дистиллированной водой и газометра. В процессе работы было синтезировано 10 образцов УМА с температурой пиролиза в диапазоне 350–800°С с шагом 50°С; продолжительность нагревания – 1 ч, продолжительность изотермической выдержки – 1 ч.

Элементный анализ исходной глины, шинной крошки и всех образцов углеродно-минеральных адсорбентов был выполнен в ЦКП имени Д.И. Менделеева на сканирующем электронном микроскопе JEOL1610LV с энергодисперсионным спектрометром для электроннозондового микроанализа SSDX-Max Inca Energy. Результирующее значение было получено путем усреднения результатов, снятых с трех точек на поверхности материала.

Исследование методом РФА было проведено в ЦКП ИОНХ РАН в рамках государственного задания в области фундаментальных научных исследований. Регистрацию дифрактограмм производили на рентгеновском дифрактометре Bruker D8 Advance (Си K_{α} -излучение, Ni-фильтр, геометрия на отражение, детектор LYNXEYE) в интервале углов 2 θ = 2–60° с шагом 0.01125° и временем накопления 0.30 с.

Суммарный объем пор (V_{Σ} , см³/г) определяли по влагоемкости, согласно ГОСТ 17219-71 [24]. Объем сорбирующих пор (по сумме микро- ($V_{\rm ми}$, см³/г) и мезопор ($V_{\rm мe}$, см³/г) измеряли весовым эксикаторным методом при насыщении пористого объема образца парами бензола при комнатной температуре [25].

Эксперименты по низкотемпературной адсорбции-десорбции азота при 77 К на образцах УМА проводили на объемнометрической установке ASAP 2020 MP (Micromeritics Instrument Согр., США) в ЦКП имени Д.И. Менделеева. Перед измерением изотерм проводили дегазацию образцов в два этапа: первый этап – дегазация при температуре 100°С в течение 30 мин при остаточном давлении не более 0.5 мм рт.ст., второй этап проводился при температуре 300°С и остаточном давлении менее 0.5 мм рт.ст. в течение 12 ч. Удельную поверхность (S_{уд}) образцов рассчитывали по уравнению БЭТ. Суммарный объем микро- и мезопор ($V_{\rm s}$) определяли по изотерме адсорбции азота при значении относительного давления, равном 0.995. Объем микропор (W_0) был определен по уравнению Дубинина-Астахова. Объем мезопор был определен как разность суммарного объема мезо- и микропор (V_{s}) и объема микропор (W_0). Средний диаметр мезопор определяли методом Барретта-Джойнер-Халенда (ВЈН), используя в качестве исходных данных адсорбционную ветвь изотермы адсорбции-десорбции азота при 77 К.

Для изучения сорбционной активности УМА по отношению к органическим веществам из вод-

Компонент	Элементный состав, мас. %										
	С	0	Mg	Al	Si	K	Ca	Fe	S	Zn	
Исходная глина	10.28	51.56	2.94	5.32	18.67	1.44	1.80	7.82	_	_	
Шинная крошка	89.44	6.97	—	0.10	0.31	_	_	—	1.22	2.00	

Таблица 1. Элементный состав исходных материалов

Таблица 2. Элементный состав образцов углеродно-минеральных адсорбентов

N⁰ $T, °$	T °C	Элементный состав, мас. %										
	1, 0	С	0	Mg	Al	Si	S	K	Ca	Fe	Zn	Na
1	350	30.59	44.80	2.03	3.56	13.46	0.37	0.93	0.80	2.77	0.69	_
2	400	24.94	44.99	2.37	4.34	16.65	0.28	1.00	1.29	3.38	0.78	_
3	450	33.79	41.28	2.02	3.45	13.43	0.48	0.85	0.95	2.76	1.00	—
4	500	17.54	48.55	3.34	4.82	18.40	0.20	1.13	1.72	3.91	0.40	—
5	550	28.43	42.47	2.38	3.91	15.51	0.39	0.99	1.49	3.81	0.62	—
6	600	31.34	42.07	2.12	3.46	13.01	0.46	0.83	3.23	3.09	0.38	—
7	650	43.80	35.84	1.42	2.71	10.54	0.37	0.60	1.56	2.54	0.62	—
8	700	29.62	42.16	2.31	3.82	15.21	0.17	0.93	2.22	2.99	0.34	0.23
9	750	33.50	40.02	2.05	3.66	13.63	0.42	1.04	2.06	3.07	0.54	—
10	800	47.77	32.51	1.60	2.55	9.71	0.39	0.65	2.36	2.35	0.12	—

Обозначения: Т – температура пиролиза.

ных растворов был использован неионогенный ПАВ, оксиэтилированный нонилфенол торговой марки "Неонол АФ 9–10" производства ОАО "Нижнекамскнефтехим". Химическое название: α -(изононилфенил)- ω -гидрокси-полиокси-1,2этандиил. Эмпирическая формула: C₉H₁₉C₆H₄O (C₂H₄O)₁₀H. По степени воздействия на организм человека неонолы относятся к умеренно опасным веществам (3 класс опасности) [26–30]. Нонилфенолы устойчивы в водных растворах [27–29] и к биологичесому разложению [30]. Значение критической концентрации мицеллообразования (ККМ) неонола АФ 9–10 в водном растворе равно 8 × 10⁻⁵ моль/л [31–33].

Для определения изотерм адсорбции неонола на исходной глине и образцах УМА использовали модельные растворы, содержащие 100 мг/л неонола АФ 9–10. Значение концентрации неонола было выбрано на основании предположения, что сорбционная очистка используется после пенного фракционирования [34, 35].

Для опытов использовали образцы сорбента с размером частиц 0.5–1 мм, предварительно высушенные до постоянной массы при 105°С. В конические колбы объемом 250 мл помещали навески адсорбента различной массы (0.2–1.5 г), после чего к адсорбенту добавляли 100 мл раствора неонола АФ 9–10 с концентрацией 100 мг/л. Подробно методика экспериментов изложена в [36, 37]. Концентрацию неонола в исходном и в равновесном растворах определяли с помощью спектрофотометра Specord M40 в кюветах с длиной оптического пути 1 см при длине волны 272 нм. Ошибка измерений концентрации неонола AФ 9–10 составила 10%. Величину избыточной адсорбции неонола AФ 9–10 рассчитывали по формуле:

$$\Gamma = \frac{(c_0 - c_p)V}{m},\tag{1}$$

где Γ – величина избыточной адсорбции неонола, мг/г; c_0 – концентрация исходного раствора, мг/л; c_p – концентрация равновесного раствора, мг/л; V – объем раствора, л; m – масса адсорбента, г.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 и 2 представлены элементные составы исходных материалов и полученных образцов УМА, отличающихся значениями температуры пиролиза. Эти образцы были маркированы как УМА-350, УМА-400 и так далее. Из представленных данных можно заметить, что с ростом температуры пиролиза прослеживается тенденция увеличения содержания углерода на поверхности адсорбентов.

Разброс данных по содержанию углерода в образцах УМА объясняется тем, что, по-видимому,

Рис. 1. Дифрактограммы образца исходной глины (*1*), а также глины, отожженной при 500 и 600°С (*2* и *3*) соответственно; М – монтмориллонит, К – каолинит, С – кальцит, Q – кварц, D – доломит.

углерод распределялся по поверхности глины неравномерно.

Результаты рентгенофазового анализа исходной глины и образцов УМА представлены на рис. 1 и 2. Для сравнительной характеризации наблюдаемых процессов, нами были исследованы превращения, которые претерпевает использованный тип глины при нагревании (в тех же условиях, что и образцы УМА) в интервале 100-750°С. На рис. 1 приведены дифрактограммы исходной глины, а также ее образцов, подвергнутых отжигу. Как видно из рис. 1, с повышением температуры до 600°С, главным образом, наблюдаются процессы, связанные с дегидратацией и аморфизацией монтмориллонита. В остальных интервалах температуры, при которой был проведен отжиг исходной глины, фазовый состав образцов практически не изменялся.

Низкоинтенсивные рефлексы на дифрактограмме исходной глины в области $2\Theta = 16-18^{\circ}$ не могут быть идентифицированы однозначно, а рефлекс при $2\Theta = 21.4^{\circ}$, по-видимому, может быть отнесен к фазе кристобалита.

Из дифрактограмм образцов глины, отожженных с шинной крошкой видно, что с ростом температуры наблюдается значительная аморфизация фазы монтмориллонита (рис. 2), которая происходит при более низкой температуре, чем в случае с отжигом чистых образцов исходной глины (рис. 1). Это же касается и других минеральных компонентов. Так, в образцах УМА-400 и

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 6 2022

УМА-600, полученных при отжиге при 400 и 600°С уже не наблюдаются рефлексы доломита и кальцита, соответственно, температуры диссоциации которых лежат в более высоких областях значений температуры. Образование фазы графита наиболее выражено на образцах, полученных при 600°С и выше, что заметно по расщеплению рефлекса $2\Theta = 26.6^{\circ}$. При этой же температуре начинается образование твердого раствора на основе алюмосиликата акерманита Ca2MgSi2O7 (ряд уширенных рефлексов при $2\Theta \approx 31.4^{\circ}$), солержание и кристалличность которого увеличивается с ростом температуры, что особенно заметно на кривых 6 (700°С) и 7 (800°С). Для выяснения влияния образующегося алюмосиликата (в случае образцов, пиролизованных при 600°С и выше) на сорбционные свойства полученных адсорбентов (см. далее) в изучаемой системе необходимы дальнейшие исследования.

В табл. 3 приведены сводные данные по определению текстурных характеристик глины и образцов УМА разными методами.

Данные, представленные в табл. 3, свидетельствуют о снижении общей пористости и объемов пор образцов УМА, полученных при 600°С и более высоких температурах. Значения V_{Σ} и объема сорбирующих пор по C₆H₆ хорошо коррелируют друг с другом. Данные текстурных характеристик, рассчитанные по изотермам адсорбции N₂ при 77 К, выглядят несколько заниженными. Например, образец УМА-750 имеет низкое значение V_s ,

Рис. 2. Дифрактограммы образцов глины, подвергшихся отжигу с шинной крошкой в герметичном реакторе с ограниченным количеством воздуха при 350 (1), 400 (2), 550 (3), 600 (4), 650 (5), 700 (6) и 800°С (7) соответственно. Приведено отнесение только основных рефлексов; М – монтмориллонит, С – кальцит, Q – кварц, D – доломит, G – графит, A – акерманит.

но вместе с тем сорбент хорошо поглощает исследуемые вещества из насыщенных паров (бензол). Такое явление, как сорбция насыщенных паров при незначительном количестве пор, в работе [19] объяснено с позиций капиллярной конденсации. Если в сорбирующем материале присутствуют супермезопоры, переходящие в капилляры, сорбционный метод БЭТ не имеет возможность их

<i>T</i> , °C		V _{C6H6} , см ³ /г	Характеристики, рассчитанные по изотермам адсорбции N_2 при 77 K							
	$V_{\Sigma}, \mathrm{cm}^3/\mathrm{f}$		<i>S</i> _{уд} по БЭТ, м ² /г	$V c M^3/F$	Объем п	ВІН им				
				<i>v</i> _s , ew <i>y</i> 1	микро-	мезо-				
Исходная глина	_	_	83.7	0.24	0.03	0.21	14.1			
350	0.39	0.18	39.9	0.21	0.02	0.19	22.2			
400	0.41	0.21	45.3	0.24	0.02	0.22	22.6			
450	0.34	0.26	52.2	0.24	0.02	0.22	21.2			
500	0.44	0.36	49.6	0.35	0.02	0.33	22.1			
550	0.48	0.40	47.3	0.24	0.02	0.22	24.1			
600	0.37	0.35	21.2	0.13	0.01	0.12	28.6			
650	0.37	0.43	20.6	0.13	0.01	0.12	28.6			
700	0.30	0.38	14.8	0.08	0.01	0.07	25.4			
750	0.50	0.29	29.8	0.14	0.01	0.13	26.7			
800	0.23	0.20	15.2	0.06	0.01	0.05	21.0			

Таблица 3. Текстурные характеристики образцов УМА

Обозначения: T – температура пиролиза, V_{Σ} – суммарный объем пор, $V_{C_6H_6}$ – объем сорбирующих пор по C_6H_6 , V_s – суммарный объем микро- и мезопор, ВЈН – средний диаметр мезопор.

Рис. 3. Изотермы избыточной адсорбции неонола АФ 9–10 при 20°С на (а) глине и углеродно-минеральных адсорбентах, пиролизованных при 450–650°С и (б) 700–800°С.

фиксировать, так осуществляется совсем иной механизм сорбции — капиллярная конденсация паров [38].

Значения среднего диаметра мезопор, рассчитанного методом ВЈН при использовании в качестве исходных данных адсорбционную ветвь изотермы, говорят о том, что как исходная глина, так и образцы УМА обладали мезопористой структурой, причем средний диаметр мезопор образцов УМА был в 1.5–2.0 раза выше по сравнению с таковым у глины.

На рис. За представлены изотермы избыточной адсорбции неонола АФ 9–10 на гидрофильной поверхности монтмориллонитовой глины и на образцах УМА, пиролизованных при 450– 650°С. Анализ полученных результатов показывает, что адсорбция неонола на образцах УМА, пиролизованных при 450–650°С, несмотря на близкое по величине содержание пироуглерода на поверхности, протекает по различным механизмам.

Адсорбция неионных ПАВ на гидрофильных поверхностях контролируется взаимодействием между поверхностью и полиоксиэтиленовой цепью. Изотерма адсорбции неонола на образце УМА-450 лежит несколько выше изотермы адсорбции на исходной глине, но практически адсорбционные свойства образца близки свойствам исходной глины. Несмотря на высокое содержание углерода в образце УМА-450 (33.8 мас. %), по-видимому, его поверхность не была равномерно покрыта гидрофобизатором. Адсорбция неонола возрастала в ряду УМА-500 > УМА-550 > >УМА-600 > УМА-650, что было связано не только с ростом содержания углерода на поверхности, но и одновременным увеличением объема сорбирующих пор по бензолу. Из полученных данных очевидно, что с ростом температуры пиролиза постепенно возрастала величина адсорбции неонола на образцах УМА при низких равновесных концентрациях НПАВ. Образец, пиролизованный при 650°С, характеризуется резким ростом адсорбции в начальной области изотермы в диапазоне изменения концентрации (0.2–3.0) × 10⁻² ммоль/л и формированием плато при $\Gamma = 0.021$ ммоль/г и $C_{\text{равн}}$ неонола ~ 0.03 ммоль/л.

На рис. Зб представлены изотермы адсорбции неонола АФ 9–10 на УМА, пиролизованных при 650-800°С. У образцов УМА-700 и УМА-750, по данным элементного анализа, близкое содержание углерода на поверхности (29.6 и 33.5 мас. % соответственно) и близкие значения объема пор по бензолу (0.38 и 0.40 см³/г соответственно). В образце УМА-800 самое большое содержание углерода (47.7 мас. %), и малый объем сорбирующих пор по бензолу ($0.2 \text{ см}^3/\Gamma$). Все три образца имели близкие значения величин адсорбции неонола и аналогичную конфигурацию изотерм, причем в области низких равновесных концентраций неонола они проявляли худшие адсорбционные свойства по сравнению с УМА-650. Повидимому, максимальные сорбционные характеристики образца, полученного при 650°С, могут быть вызваны оптимальным соотношением параметров пор получаемого материала и его кристалличностью.

На изотермах адсорбции неонола для всех полученных образцов УМА наблюдали ступени, характерные для адсорбции коллоидов. Проявление гидрофобного и адсорбционного взаимодействия между дифильными молекулами мицеллообразующих веществ и гидрофобной поверхностью ад-

Рис. 4. Изотермы избыточной адсорбции неонола $A\Phi$ 9–10 из водных растворов при 20°С на углеродно-минеральном адсорбенте, полученном при температуре пиролиза 650°С, и активированном угле *F*-300 [36].

сорбента приводит к их концентрированию в приповерхностном слое, агрегации и адагуляции образующихся ассоциатов на поверхности адсорбента [1]. В равновесном растворе при этом концентрация дифильных молекул может быть намного ниже ККМ.

Для сопоставления адсорбционных характеристик на рис. 4 показаны изотермы адсорбции неонола $A\Phi 9-10$ из водных растворов при 20°С на образце УМА-650 и микропористом активированном угле F-300 (Chemviron Carbon, Бельгия) [36].

Из приведенного выше рисунка видно, что в области низких равновесных концентраций неонола $A\Phi$ 9–10 образец УМА-650 практически не уступает по сорбционной емкости активированному углю F-300.

Таким образом, в результате гидрофобизации природной монтмориллонитовой глины углеродом при пиролизе гранул смеси глины и шинной крошки в температурном диапазоне 350-800°С получены образцы углеродно-минерального адсорбента. Наилучшими адсорбционными свойствами по отношению к неонолу АФ 9-10 при сорбции из водных растворов при 20°С обладал образец, пиролизованный при 650°С. УМА-650 характеризуется резким ростом величины избыточной адсорбции при низких значениях равновесной концентрации неонола в диапазоне (0.2-3.0) \times 10⁻² ммоль/л и формированием плато на изотерме. В области низких равновесных концентраций неонола АФ 9-10 образец УМА-650 практически не уступает по сорбционной емкости активированному углю F-300 (Chemviron Carbon, Бельгия). Изученные сорбционные материалы получены из доступного природного и техногенного сырья с использованием стандартных, простых технологических операций, что обеспечивает возможность масштабирования производства.

СПИСОК ЛИТЕРАТУРЫ

- Когановский А.М., Клименко Н.А., Левченко Т.М., Рода И.Г. Адсорбция органических веществ из воды. Л.: Химия, 1990. С. 256.
- Гурьянов В.В., Дворецкий Г.В., Максимова Л.М. и др. // Пат. РФ 2117526, опубликовано: 20.08.1998.
- Гурьянов В.В., Дворецкий Г.В., Максимова Л.М. и др. // Пат. РФ 2122893, опубликовано: 10.12.1998.
- Ветрова О.В., Бурметьева М.С., Гавриленко М.А. // Изв. ТПУ. 2013. Т. 322. № 3. С. 18.
- 5. Платонова Д.С., Беднюк А.Е., Адеева Л.Н. // Вест. ОМГУ 2017. № 2(84). С. 56.
- Pokonova Yu.V. // Chem. and tech. 2009. V. 45. № 2. P. 138.
- Кружалов А.В., Ромаденкина С.Б., Решетов В.А., Щипанова М.В. // Изв. Сарат. ун-та, Нов. сер. хим., биол., экол. 2014. Т. 14, вып. 2. С. 39–42.
- Корнев В.А., Рыбаков Ю.Н. // Проб. совр. наук. и обр. 2015. № 12. С. 79.
- 9. Хаширова С.Ю., Микитаев А.К., Мусаев Ю.И. и др. // Патент RU 2397809 С1, опубликовано: 27.08.2010.
- 10. Bandura L., Woszuk A., Kołodynska D., and Franus W. // Minerals. 2017. V. 7. № 3. P. 37. https://doi.org/10.3390/min7030037
- 11. *Ali I., Asim M., Khan T.A.* // J. of Environment Man. 2012. V. 113. P. 170.
- 12. *Ahmed M.B., Zhou J.L., Ngo H.H., Guo W. //* Sci. of the Total Environment. 2015. V. 532. P. 112.
- Barata-Rodrigues P.M., Mays T.J., Moggridge G.D. // Carbon. 2003. V. 41. № 12. P. 2231.
- 14. Юдаков А.А., Ксеник Т.В., Перфильев А.В., Молчанов В.П. // Вест. ДВО РАН. 2009. № 2. С. 59.
- 15. *Тарасевич Ю.И*. Поверхностные явления на дисперсных материалах. Киев: Наукова думка, 2011. С. 381.
- Тарасевич Ю.И. Строение и химия поверхности слоистых силикатов. Киев: Наукова думка, 1988. С. 246.
- Арипов Э.А., Агзамходжаев А.А. Активные центры монтмориллонита и хемосорбция. Ташкент: Фан, 1983. С. 163.
- 18. *Ходосова Н.А., Пряженцева К.А., Зотова С.А.* // Науч. вестн. ВГТУ. 2016. № 1. С. 130.
- 19. Передерий М.А., Цодиков М.В., Маликов И.Н., Кураков Ю.И. // Хим. тверд. топл. 2011. № 2. С. 37–44.
- 20. Минхайдарова Г.В., Мухутдинов А.А., Мирясова Ф.К. // Вестн. КТУ. 2003. № 1. С. 104.
- 21. *Бортник А.В., Колотов А.С., Юхин И.А.* // Нов. наука: страт. и вект. разв. 2017. Т. 2. № 2. С. 108.
- Отчет по государственному контракту № 43/09-к от 29.06.2009 ФГУП "ЦНИИгеолнеруд" Калуга, 2010.
- Фидченко М.М., Отырба Г.Г., Каменчук И.Н., Клушин В.Н. // Успехи в хим. и хим. техн. 2018. Т. 32. № 12. С. 76.
- 24. ГОСТ 17219-71.

- 25. *Кельцев Н.В.* Основы адсорбционной техники. М.: Химия, 1984. 591 с.
- Бураковский А.И. // Иммун., аллерг., инфект. 2008.
 № 1. С. 11.
- 27. Safarik L., Ptackova L., Koneracka M. et al. // BioTech. Letters. 2002. V. 24. P. 355.
- Keith T.L., Snyder S.A., Naylor C.G. et al. // Env. Sci. Tech. 2001. V. 35. P. 10.
- 29. McLachlan J. // Endocrine Rev. 2001. V. 22. P. 319.
- 30. *Chhonker Y.S., Chandasana H., Bala V. et al.* // J. of Chroma. B. 2014. V. 965. № 15. P. 127.
- Тихова А.А., Козырева Ю.Н., Глухарева Н.А., Лебедева О.Е. // Журн. физ. химии. 2011. Т. 85. № 9. С. 1788.
- 32. Холмберг К., Йёнссон Б., Кронберг Б., Линдман Б. Поверхностно-активные вещества и полимеры в

водных растворах. М.: Изд. БИНОМ. Лаборатория знаний, 2007. С. 528.

- 33. Башкирцева Н.Ю., Гараев Л.А., Сладовская О.Ю. // Вестн. КТУ. 2014. Т. 17. № 22. С. 315.
- 34. *Клименко Н.А., Тимошенко М.Н. //* Хим. и техн. вод. 1993. Т. 15. № 7-8. С. 534.
- 35. *Куренкова О.В.* // Науч. вест. ВГТУ Сер. Физ. хим. Пробл. стр. мат. и выс. техн. 2011. № 3-4. С. 66.
- 36. Курилкин А.А., Морозов А.Р., Родионов А.И., Каменчук И.Н. // Успехи в хим. и хим. техн. 2008. Т. 22. № 13 (93). С. 54.
- 37. Учанов П.В., Каменчук И.Н., Жолдабекова Н., Мухин В.М. // Хим. пром. сегодня. 2014. № 9. С. 50.
- 38. *Грег С., Синг К.* Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. 306 с.