____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 544.31

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ТАНТАЛАТА ГАДОЛИНИЯ Gd₃TaO₇

© 2022 г. А. В. Гуськов^{*a*}, П. Г. Гагарин^{*a*}, В. Н. Гуськов^{*a*,*}, А. В. Тюрин^{*a*}, А. В. Хорошилов^{*a*}, К. С. Гавричев^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, Москва, 119991 Россия

*e-mail: guskov@igic.ras.ru Поступила в редакцию 28.10.2021 г. После доработки 16.11.2021 г. Принята к публикации 17.11.2021 г.

Методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии измерена молярная теплоемкость синтезированного и охарактеризованного методами РФА, РЭМ и химического анализа образца танталата гадолиния Gd₃TaO₇ в области температур 2–1350 К и рассчитаны термодинамические функции: энтропия, изменение энтальпии и приведенная энергия Гиббса. С использованием литературных данных вычислена энтальпия образования Gd₃TaO₇ из простых веществ. Для оценки стабильности танталата гадолиния по отношению к составляющим оксидам рассчитана энергия Гиббса образования из оксидов в области высоких температур.

Ключевые слова: гадолиния танталат, теплоемкость, термодинамические функции **DOI:** 10.31857/S0044453722060115

Существование двойного оксида Gd₃TaO₇ впервые установлено в работе [1] при изучении высокотемпературных фазовых равновесий в системе Gd₂O₃-Ta₂O₅. Показано, что Gd₃TaO₇ имеет высокую плотность 8.46 г/см³ и конгруэнтно плавится при температуре 2550 К [2]. Выполненные в дальнейшем исследования танталата гадолиния Gd₃TaO₇ показали наличие протяженного инконфазового превращения груэнтного веберит $(C222_1) \leftrightarrow$ дефектный флюорит (*Fm3m*) в области температур выше 1800 К [3]. Фазовый переход сопровождается сдвигом состава и увеличением содержания Gd₂O₃ в высокотемпературной фазе дефектного флюорита от 75 до 80 мол. %.

Танталат гадолиния состава Gd₃TaO₇ представляет интерес для материаловедов как основа прозрачных керамических материалов для сцинтилляторов [4], твердооксидных топливных элементов (SOFCs) и высокотемпературных электролитов [5]. Большое практическое значение имеет перспектива применения танталата гадолиния в качестве компонента термобарьерных (TBCs) и защитных (EBCs) покрытий для деталей газовых турбин [6, 7]. Требования, как к свойствам таких материалов, так и исходных соединений достаточно жесткие: помимо высоких температур существования соединения и отсутствия структурных превращений, необходима низкая теплопроводность (не более 2-3 Вт м⁻¹ К⁻¹), желателен высокий коэффициент термического расширения (КТР) (не менее 10^{-5} K^{-1}), близкий к

КТР никелевых суперсплавов, и химическая инертность [8, 9]. В [6] показано, что структурные превращения танталата гадолиния в области 373-1473 К отсутствуют, теплопроводность составляет 1.5-2.0 Вт м⁻¹ К⁻¹ в интервале температур 373-1173 К, а величина коэффициента термического расширения при нагревании до 1473 К приближается к значению 9 × 10^{-6} K⁻¹. Термическая стабильность Gd₃TaO₇ в интервале 273-1673 К подтверждена в работе [7], где также рассматривалась перспектива применения танталата гадолиния в качестве материала TBCs с точки зрения структурных и термофизических свойств. Измеренная методом лазерной вспышки теплопроводность составила ~1.3 Вт м⁻¹ К⁻¹ при 1273 К. Необходимо отметить, что авторы [7] при обработке дифрактограммы исследуемого образца игнорировали практически все слабые отражения с индексами 200, 111, 201 и т.д., в результате чего получили ошибочный результат – идентифицировали структурный тип Gd₃TaO₇ как *Fd3m* (пирохлор) с параметрами кристаллической ячейки a = b = c == 10.77 Å, что, несомненно, повлияло на результаты дальнейших расчетов термофизических свойств. Кроме того, для расчетов теплопроводности в работах [6, 7] использовали теплоемкость Gd₃TaO₇, оцененную по правилу Неймана-Коппа из-за отсутствия экспериментальных значений. Полученные в [6, 7] термофизические свойства танталата гадолиния, несмотря на отмеченные погрешности в расчетах, достаточно близки к

значениям этих величин для стабилизированного иттрием диоксида циркония, пределом термической стабильности которого является температура 1473 К [10], что подтверждает перспективность применения материалов на основе Gd₃TaO₇ в качестве термобарьерных покрытий или их компонентов. Важным критерием для практического применения новых материалов является их высокотемпературная химическая инертность, в первую очередь, по отношению к оксидам группы CMAS (CaO-MgO-Al₂O₃-SiO₂) [11, 12]. Определение параметров протекания взаимодействия материалов покрытия с CMAS при высоких температурах является довольно сложной задачей, требующей усилий и затрат времени при прямых экспериментальных исследованиях, однако термолинамическое молелирование фазовых равновесий может существенно упростить ее [13]. Для этого необходимо знать термодинамические величины для всех веществ, участвующих в исследуемом процессе. Величины энтальпий образования ряда танталатов лантаноидов Ln₃TaO₇ измерены методом растворения в расплаве молибдата натрия при температуре 1073 К и приведены в работе [14]. Для Gd₃TaO₇ величина энтальпии образования из оксидов равна $\Delta_{\rm f} H^{\circ}(298 \text{ K}) = -135.45 \pm$ ± 4.87 кДж/моль. Данные по низкотемпературным зависимостям теплоемкости и других термодинамических функций термодинамических функций для танталатов РЗЭ Ln₃TaO₇, в целом, и $Gd_{3}TaO_{7}$, в частности, в литературе не найдены. Высокотемпературная теплоемкость определена ранее в работе [15] методом ДСК в интервале 298-800 K:

$$C_p (Дж моль^{-1} K^{-1}) = 256.96 +$$

+ 0.03755 $T - 42.44 \times 10^5 / T^2$. (1)

Целью настоящей работы являлся синтез танталата гадолиния — Gd₃TaO₇, измерение молярной теплоемкости и расчет термодинамических функций (энтропии, приращения энтальпии и приведенной энергии Гиббса) в области температур 2–1350 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез танталата гадолиния проводили методом обратного осаждения с использованием пентахлорида тантала (99.99%), сексвиоксида гадолиния (99.99%) производства ООО "Ланхит", соляной кислоты (35–38 мас. %, "ос. ч. 20–4") и водного раствора аммиака (NH₄OH, 25–28 мас. %) производства ООО "Химмед". Осажденную стехиометрическую смесь гидроксидов тантала и гадолиния обезвоживали и ступенчато отжигали на воздухе при окончательной температуре 1673 К 4 ч. Подробное описание синтеза и измерений теплоемкости методами адиабатической и дифференциальной сканирующей калориметрии приведено в [16]. Идентификацию образца с помощью рентгенофазового анализа и электронной микроскопии проводили также как в работе [17]. Соотношение оксидов металлов определяли химическим анализом (оптико-эмиссионный спектрометр с индуктивно-связанной плазмой Agilent 725). Измерения низкотемпературной теплоемкости методом релаксационной калориметрии проводили на автоматизированном комплексе для измерения физических свойств PPMS-9 Quantum Design Inc. [18]. Для измерений теплоемкости методом релаксационной калориметрии порошкообразный танталат гадолиния прессовали (~400 МПа) в таблетку диаметром 3.0 мм, толщиной ~1 мм, которую отжигали при 1673 К 4 ч. Молярную массу Gd₃TaO₇ принимали равной 764.69368 г/моль в соответствии с рекомендациями [19].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для проведения исследований танталат гадолиния Gd₃TaO₇ синтезирован методом обратного осаждения. Рентгенофазовый анализ (рис. 1) показал отсутствие посторонних фаз. Полученный образец имеет структурный тип веберита ($C222_1$) с параметрами кристаллической ячейки а = = 10.632(9), *b* = 7.528(0) *c* = 7.541(9) Å, что хорошо соответствует литературным данным [14, 20]. Расчеты размеров областей когерентного рассеяния по Дебаю-Шереру, показали, что они существенно превышают 100 нм и, следовательно, не являются наноразмерными. Это также подтверждено методом электронной микроскопии. Химическим анализом прекурсора установлен формульный состав синтезированного танталата га-Gd_{3 07}TaO_{7 10} (кислородный индекс долиния рассчитан из соотношения двойных оксидов). Такое отклонение от стехиометрии находится в пределах точности химического анализа и не может существенно повлиять на результаты измерения теплоемкости, как это было показано в работе [21], поэтому дальнейшие вычисления выполнены в расчете на стехиометрический состав Gd₃TaO₇.

Молярная теплоемкость Gd_3TaO_7 в области низких температур измерена методами релаксационной (2–35 K, 30 точек) и адиабатической (6– 309 K, 135 точек) калориметрии, табл. 1. Как видно из рис. 2, данные полученные релаксационным (кр. 1) и адиабатическим (кр. 2) методами, хорошо согласуются между собой и демонстрируют наличие минимума теплоемкости при температуре ~10.8 К. При росте температуры выше ~10.8 К происходит к плавное и закономерное увеличение теплоемкости, не содержащее признаков структурных превращений (рис. 2, врезка).

Рис. 1. Дифрактограмма образца танталата гадолиния Gd_3TaO_7 структурного типа веберита $C222_1$ с параметрами ячейки a = 10.632(9), b = 7.528(0), c = 7.541(9) Å, $\lambda = 1.5418$ Å.

Уменьшение температуры ниже 10.8 К приводит к росту теплоемкости, характерному для соединений гадолиния [22–25].

Аномальный вид кривой теплоемкости в области низких температур обусловлен взаимодействием наполовину заполненной 4*f*-электронной оболочки с электрическим полем кристалла Gd₃TaO₇, приводящим к расщеплению основного состояния и заселению штарковских уровней, а также вкладом магнитного превращения. Эти процессы оказывают незначимое влияние на величину приращения энтальпии при 298.15 К, однако при расчете энтропии и приведенной энергии Гиббса [23, 24, 26] могут дать значительный вклад в абсолютную энтропию до $R \ln 8$ на каждый ион Gd³⁺. Аномальный рост теплоемкости по данным [22-24, 26] для Gd(OH)₃, GdTaO₄, $Gd_2Zr_2O_7$ и $Gd_2Hf_2O_7$ остается экспериментально заметным до температур 18-20 К. Но, так как Gd₃TaO₇ содержит три иона гадолиния, то по нашим оценкам, эта температура повышается до 25-27 К. В области температур ниже этого значения теплоемкость танталата гадолиния можно представить в виде суммы решеточной C_{lat} и избыточной C_{ехс} составляющих:

$$C_p = C_{\text{lat}} + C_{\text{exc}}.$$
 (2)

Полагая, что величина решеточной теплоемкости в области низких температур до 26 К подчиняется закону кубов Дебая, ее зависимость от температуры можно представить в виде уравнения:

$$C_{\text{lat}} = 0.000726T^3$$
 (0–26 K). (3)

Рис. 2. Молярная теплоемкость Gd_3TaO_7 в интервале 2–35 К: *1* – релаксационная, *2* – адиабатическая калориметрия, *3* – *C_p* = 0.000726*T*³ (3); на врезке – область 2 – 310 К.

Найденное оценочное значение решеточной теплоемкости показано на рис. 2, кривая *3*, однако определить достоверность, как этой оценки, так и полного вклада низкотемпературных превращений в энтропию (в интервале 0–26 К) при отсутствии экспериментальных данных ниже 2 К не представляется возможным. По этой причине дальнейшие расчеты сглаженных величин термодинамических функций выполнены без учета аномального поведения теплоемкости ниже 2 К.

Молярная теплоемкость в области температур 300-1350 К измерена методом дифференциальной сканирующей калориметрии, рис. 3, точки 1. На врезке рис. 3 показан переход от данных адиабатической к результатам дифференциальной сканирующей калориметрии, и видно их удовлетворительное согласование. Для сравнения на рис. 3 приведен результат расчета теплоемкости по Нейману-Коппу (2) на основе теплоемкостей простых оксидов C-Gd₂O₃ [27] и β-Ta₂O₅ [28]. Максимальная разница 2.5–3.6%, превышающая экспериментальную погрешность метода ДСК в 2.5%, наблюдается на участке 300-500 К, затем уменьшается, однако при экстраполяции данных выше 1400 К снова начинает возрастать, что может привести к ошибочному результату при расчетах высокотемпературных равновесий. Уместно отметить, что расчет по Нейману-Коппу может дать только приблизительный результат уже по причине несовпадения кристаллических структур оксидов и самого танталата гадолиния [29].

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

Т, К	<i>С_p</i> , Дж/(моль К)	Т, К	<i>С_p</i> , Дж/(моль К)	<i>Т</i> , К	<i>С_p</i> , Дж/(моль К)		
Релаксационная калориметрия, масса образца 0.01595 г							
2.038	17.997	5.431	6.5614	14.513	4.0139		
2.242	17.362	5.988	5.7018	15.997	4.7384		
2.478	16.699	6.605	5.0812	17.642	5.7452		
2.730	14.067	7.284	4.4597	19.444	7.0624		
3.011	13.120	8.033	3.9695	21.435	8.8097		
3.322	11.486	8.906	3.5677	23.653	10.9963		
3.666	11.038	9.827	3.3308	26.054	13.0735		
4.045	9.5660	10.836	3.2419	28.657	16.6579		
4.457	8.4206	11.945	3.3142	31.758	20.4187		
4.922	7.4661	13.159	3.5527	34.967	24.7637		
	Адиабати	ческая калоримет	рия, масса образца	2.12686 г	•		
5.95	5.580	66.71	66.10	151.7	151.9		
6.32	5.600	68.37	68.05	155.0	154.6		
6.92	5.110	70.04	69.91	158.3	157.2		
7.75	4.550	71.89	72.09	161.6	159.9		
8.76	4.030	73.95	74.55	164.9	162.6		
9.76	3.720	76.01	77.16	168.2	165.1		
10.72	3.596	78.07	79.78	171.6	167.6		
11.64	3.612	80.13	82.35	174.9	170.0		
12.55	3.728	82.20	84.54	178.2	172.0		
13.45	3.906	84.27	86.29	181.5	174.1		
14.41	4.140	86.34	88.54	184.8	176.0		
15.30	4.430	87.33	89.18	188.1	177.7		
16.19	4.862	88.41	91.67	191.4	179.4		
17.05	5.353	89.37	91.86	194.7	181.3		
17.91	5.854	90.48	93.68	198.0	183.1		
18.77	6.521	91.41	94.09	201.3	184.9		
19.63	7.247	92.55	95.83	205.1	186.9		
20.98	8.368	93.45	96.34	209.1	189.0		
22.58	9.889	94.62	97.87	213.2	191.0		
24.18	11.60	95.49	98.54	217.2	192.9		
25.78	13.34	96.70	100.2	221.2	194.5		
27.39	15.13	97.54	100.8	225.2	196.7		
29.00	17.08	98.77	102.6	229.1	198.2		
30.61	19.24	99.58	103.1	233.0	199.9		
32.22	21.36	100.9	104.5	237.0	201.4		
33.83	23.43	102.3	105.3	241.0	203.0		
35.46	25.36	103.6	107.4	244.8	204.1		
37.08	27.72	105.5	108.9	248.7	205.2		
38.70	29.97	106.9	110.7	252.5	206.5		
40.33	32.10	108.8	112.3	256.3	207.9		
41.97	34.20	110.2	114.0	260.0	208.8		
43.60	36.31	112.1	115.7	263.7	210.1		
45.24	38.50	113.6	117.2	267.3	211.4		

Таблица 1. Экспериментальная теплоемкость Gd₃TaO₇ в области 2–345 К, *М* = 764.69368 г/моль, *p* = 101.3 кПа

Т, К	<i>С_p</i> , Дж/(моль К)	Т, К	<i>С_p</i> , Дж/(моль К)	Т, К	<i>С_p</i> , Дж/(моль К)
46.90	40.72	115.4	119.0	270.9	212.5
48.54	42.92	116.9	120.5	274.5	213.8
50.18	45.10	118.7	121.7	278.0	214.9
51.83	47.29	122.0	124.9	281.5	215.7
53.48	49.40	125.3	128.1	284.9	216.8
55.13	51.45	128.6	131.0	287.8	217.4
56.78	53.56	131.9	134.0	291.2	218.8
58.44	55.67	135.2	137.0	294.5	219.6
60.09	57.78	138.5	140.0	297.7	220.5
61.75	59.89	141.8	143.1	300.9	221.8
63.40	62.03	145.1	146.1	303.9	222.5
65.06	64.07	148.4	148.9	309.4	224.1

Таблица 1. Окончание

Полученные данные в области температур 310–1350 К могут быть удовлетворительно описаны уравнением Майера–Келли [30]:

$$C_p (Дж моль^{-1} K^{-1}) = 238.51 + 0.0531564 \times$$

× $T - 2970157.7/T^2, R^2 = 0.99997.$ (4)

Температурная зависимость теплоемкости в области 300–800 К удовлетворительно согласуется с данными работы [15] (1), рис. 3 (кривая *3*).

Сглаживание экспериментальных данных по теплоемкости танталата гадолиния во всем интервале экспериментально охваченных температур выполнено с использованием полинома шестой степени для интервала 2-38 К и с помощью программы CpFit [31, 32] в области 30-1350 К. Стыковка полиномов проведена в области 30-38 К. Коэффициенты полиномов приведены в табл. 2. Термодинамические функции в низкотемпературной области вычислены, исходя из найденного полинома $C_p = \sum a_i T^i$ (*i* = 0,...,6) без учета вклада аномальной теплоемкости в области 0-2 К. Мы полагаем, что учет вклада низкотемпературой аномалии ниже 2 К может увеличить молярную энтропию танталата гадолиния при 298.15 К до 304.5 Дж моль⁻¹ К⁻¹. Для более высоких температур расчет функций выполнен с помощью программы CpFit, табл. 3.

Как отмечено выше, в работе [14] методом сброса в расплав молибдата натрия определена энтальпия растворения при 1073 К и рассчитана энтальпия образования Gd₃TaO₇ из оксидов ($\Delta_{\rm f} H_{\rm ox}^{\circ}$ (298.15 K) = -135.45 ± 4.87 кДж/моль. Необходимая для модельных расчетов величина стандартной энтальпии образования танталата гадолиния из простых веществ может быть рассчитана с использованием величин энтальпий образования оксидов: Gd₂O₃ ($\Delta_{\rm f} H^{\circ}$ (298.15 K) = -1819.7 ±

 ± 3.6 кДж/моль [27] и Ta₂O₅($\Delta_{\rm f} H^{\circ}(298.15 \text{ K}) = -2047.231 \pm 1.673$ кДж/моль [28]) по реакции

$$3/2Gd_2O_3 + 1/2Ta_2O_5 = Gd_3TaO_7$$
 (5)

и составит $\Delta_f H^{\circ}$ (Gd₃TaO₇, 298.15 K) = -3888.6 ± 4.9 кДж/моль. Энергию Гиббса образования Gd₃TaO₇ из простых веществ при стандартных условиях можно рассчитать по уравнению

$$\Delta_{\rm f} G^{\circ}({\rm Gd}_{3}{\rm TaO}_{7}) = \Delta_{\rm f} H^{\circ}({\rm Gd}_{3}{\rm TaO}_{7}) -$$

- 298.15[$S^{\circ}({\rm Gd}_{3}{\rm TaO}_{7}) - 3S^{\circ}({\rm Gd}) - S^{\circ}({\rm Ta}) -$ (6)
- 3.5 $S^{\circ}({\rm O}_{2})$] = -3681.8 кДж/моль.

Рис. 3. Молярная теплоемкость танталата гадолиния в области температур 300–1350 К: 1 – экспериментальные данные, 2 – расчет по Нейману–Коппу, 3 – работа [15]. На врезке – стыковка данных адиабатической (1) и дифференциальной сканирующей (2) калориметрии.

2-38 K30-1350 K $C_p = \sum a_i T^i$ $C_p = \sum \alpha_i C_{\rm En} (\theta_i / T)$ 033.084i α_i θ_i

Таблица 2. Коэффициенты сглаживающих полиномов

0	33.084	i	α_i	Θ_i
1	-9.6183	1	3.468503	5527.821
2	1.25	2	1.225999	2036.580
3	-0.08477	3	1.330071	91.32325
4	0.003197	4	3.543486	228.9503
5	-6.1536×10^{-5}	5	5.566297	579.8480
6	4.7085×10^{-7}			

Примечание. $C_p = \sum_{i=1}^k \alpha_i C_{\text{En}} \left(\frac{\theta_i}{T} \right)$, где $C_{\text{En}}(T) = 3Rx^2 \times$

 $\times \frac{\exp(x)}{[\exp(x)-1]^2}$; и $x = \frac{\theta}{T}$, k – число членов разложения (программа CpFit [29, 30]).

Необходимые для расчета значения стандартной энтропии простых веществ содержатся в [33].

Перспективы использования танталата гадолиния Gd₃TaO₇ в качестве высокотемпературного материала определяют необходимость оценки его стабильности по отношению к составляющим оксидам, которая может быть выполнена расчетом энергии Гиббса образования из оксидов в интервале от комнатной до температуры фазового перехода (1800 K). Для этого необходимы энтальпия образования Gd₃TaO₇ $\Delta_f H^\circ = -135.45 \pm 4.87$ кДж/моль из оксидов при стандартных условиях [14], а также величины энтропий и изменений энтальпий, которые могут быть рассчитаны из температурных зависимостей теплоемкости Gd₃TaO₇, Gd₂O₃ и Ta₂O₅, табл. 4.

Рис. 4. Температурная зависимость стандартной энергии Гиббса образования танталата гадолиния (5) в области высоких температур.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 6 2022

Изменение энергии Гиббса в интервале 300-1800 К получено из уравнения:

$$\Delta G_{\text{ox}}(298.15 - 1800 \text{ K}) = \Delta_{\text{f}} G_{\text{ox}}(\text{Gd}_{3}\text{TaO}_{7},$$

$$298.15 \text{ K}) + [\Delta G(\text{Gd}_{3}\text{TaO}_{7}) - (7) - (3/2)\Delta G(\text{Gd}_{2}\text{O}_{3}) - (1/2)\Delta G(\text{Ta}_{2}\text{O}_{5})].$$
(7)

Температурная зависимость энергии Гиббса образования Gd_3TaO_7 приведена на рис. 4. Как видно, высокие отрицательные значения $\Delta_f G_{ox}(Gd_3TaO_7)$ свидетельствуют о том, что реакция распада на оксиды в интервале температур 300—1800 К невозможна.

Представляет интерес также оценка вероятности протекания реакции образования Gd_3TaO_7 из ортотанталата гадолиния $GdTaO_4$ и сексвиоксида гадолиния по реакции

$$Gd_2O_3 + GdTaO_4 = Gd_3TaO_7.$$
 (8)

В работе [34] имеются данные по теплоте образования GdTaO₄ из оксидов $\Delta Q = +38.5 \pm 1.5$ ккал/моль (161.1 \pm 6.2 кДж/моль) и рассчитанная величина энтальпии образования из элементов –954.8 ккал/моль (-3994.88 кДж/моль), для вычисления которой авторы использовали энтальпию образования Gd₂O₃ из [35]. Проверка указанных величин показала, что величина энтальпии образования GdTaO₄ из элементов оценена неверно.

Использование величины энтальпии образования из оксидов и данные по энтальпиям образования оксидов гадолиния ($-1819.7 \pm 3.6 \text{ кДж/моль}$ [27]) и тантала ($\Delta_{\rm f} H^{\circ}(298.15 \text{ K}) = -2047.231 \pm 1.673 \text{ кДж/моль}$ [28]) дает величину $\Delta_{\rm f} H^{\circ}(\text{GdTaO}_4, 298 \text{ K}) = -2047.23 \text{ кДж/моль}$, в то время как в работе [34] приведена почти в два раза бо́льшая величина. В связи с этим, мы полагаем, что на основании литературных данных [34] достоверно оценить вероятность распада Gd₃TaO₇ не представляется возможным.

Таким образом, на синтезированном и охарактеризованном образце танталата гадолиния Gd₃TaO₇ методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии выполнены измерения молярной теплоемкости в интервале температур 2-1350 К. В области низких температур обнаружено существование минимума теплоемкости при 10.8 К. Рост теплоемкости с понижением температуры обусловлен магнитным превращением и взаимодействием 4fэлектронной оболочки с электрическим полем кристалла Gd₃TaO₇. Следствием этого процесса является аномальный вклад в энтропию танталата гадолиния. Выполнено сглаживание экспериментальных данных и рассчитаны термодинамические функции Gd₃TaO₇ без учета вклада аномальной области 0-2 К. Полученные результаты могут быть использованы в термодинамических

Таблица 3. Сглаженная теплоемкость и термодинамические функции Gd_3TaO_7 , p = 101.3 кПа

	C	S(T) = S(2 K)	H(T) = H(2 K)	$\Phi(T)$
Т, К	<i>ср,</i> Лж/(моль К)	З(1) З(2 К), Дж/(моль К)	Л(1) Л(2 К), Дж/моль	⊈(1), Дж/(моль К)
2	18.22	0	0	0
2	13.44	6 434	15 71	1 198
4	0 043	9 793	27.30	2 968
5	7 460	11 73	35.93	2.908
5	5 752	12.03	33.93 12.48	5.848
0 7	1.629	12.95	47.63	6.020
/ 0	4.028	13.72	47.03	0.920
8	3.940	14.29	55 61	7.808
9	3.308	14.75	50.00	0.333
10	3.423	15.10	59.09	9.190
12	3.578	15.73	66.01	10.23
14	4.101	16.32	/3.64	11.06
16	4.892	16.91	82.59	11.75
18	5.961	17.55	93.39	12.36
20	7.353	18.25	106.7	12.91
22	9.097	19.02	123.0	13.43
24	11.17	19.90	143.3	13.93
26	13.51	20.89	167.9	14.43
28	15.99	21.98	197.4	14.93
30	18.55	23.17	231.9	15.44
32	21.00	24.45	271.6	15.96
34	23.47	25.80	316.2	16.50
36	26.11	27.22	365.9	17.06
38	28.74	28.70	420.7	17.63
40	31.40	30.24	480.9	18.22
50	44.90	38.70	862.4	21.45
60	57.90	48.05	1377	25.10
70	70.06	57.90	2018	29.08
80	81.54	68.01	2776	33.31
90	92.60	78.26	3647	37.73
100	103.3	88.57	4627	42.30
110	113.7	98.91	5712	46.98
120	123.7	109.2	6900	51.73
130	133.2	119.5	8185	56.55
140	142.2	129.7	9562	61.42
150	150.6	139.8	11027	66.31
160	158.4	149.8	12572	71.21
170	165.6	159.6	14192	76.12
180	172.3	169.3	15882	81.03
190	178.4	178.7	17636	85.93
200	184.0	188.0	19448	90.80
220	194.0	206.1	23231	100.5
240	202.4	223.3	27 198	110.0
260	209.7	239.8	31 321	119.3
280	215.9	255.6	35579	128.5

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 6 2022

Таблица 3. Окончание

ТК	С _р ,	$S(T) - S(2 \mathrm{K}),$	$H(T)-H(2 \mathrm{K}),$	$\Phi(T),$
1,11	Дж/(моль К)	Дж/(моль К)	Дж/моль	Дж/(моль К)
298.15	220.9	269.3	39543	136.7
300	221.4	270.7	39953	137.5
320	226.2	285.1	44429	146.3
340	230.4	299.0	48996	154.9
350	232.4	305.7	51 310	159.1
400	240.9	337.3	63150	179.4
450	247.7	366.1	75370	198.6
500	253.3	392.4	87900	216.6
550	258.1	416.8	100689	233.8
600	262.4	439.5	113703	250.0
650	266.2	460.6	126917	265.4
700	269.7	480.5	140314	280.0
750	273.0	499.2	153883	294.0
800	276.3	516.9	167617	307.4
850	279.4	533.8	181 510	320.2
900	282.5	549.8	195559	332.5
950	285.6	565.2	209763	344.4
1000	288.7	579.9	224120	355.8
1050	291.6	594.1	238628	366.8
1100	294.6	607.7	253284	377.4
1150	297.5	620.9	268087	387.7
1200	300.3	633.6	283034	397.7
1250	303.1	645.9	298 120	407.4
1300	305.8	657.8	313 344	416.8
1350	308.4	669.4	328701	426.0

Таблица 4. Температурные зависимости теплоемкости Gd_3TaO_7 , Gd_2O_3 [27] и Ta_2O_5 [28] $C_p = A + BT - C/T^2 - DT^2$

Вещество	<i>А,</i> Дж/(моль К)	<i>B</i> × 10 ⁻³ , Дж/моль	<i>С,</i> Дж/(моль К ³)	D × 10 ⁻⁶ , Дж К/моль	ΔT , K	Источник
Gd ₃ TaO ₇	238.51	53.1564	2970158	0	300-1350	Эта работа
Gd_2O_3	114.6104	15.2344	1 249 170	0	300-1500	[27]
Ta_2O_5	142.29	55.45	1975090	14.8944	300-1593	[28]

расчетах высокотемпературных фазовых равновесий с участием Gd₃TaO₇. Полученные результаты использованы для расчета энтальпии образования Gd₃TaO₇ из простых веществ и энергии Гиббса образования танталата гадолиния из оксидов и из простых веществ.

Исследование выполнено за счет гранта Российского научного фонда № 18-13-00025, https://rscf.ru/project/18-13-00025, с использованием оборудования ЦКП ИОНХ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Timofeeva N.I., Mordovin O.A. // Russ. J. Inorg. Chem. 1970. V. 15. P. 440.
- 2. Portnoi K.I., Timofeeva N.I., Salibekov S.E. // Izv. AN SSSR. Inorgan. mater. 1975. V. 11. P. 384 (on Russian).

- Yokogama Y., Ishzawa N., Somiya S., Yoshimura M. // J. Am. Ceram. Soc. 1991. V. 74. P. 2073. https://doi.org/10.1111/j.1151-2916.1991.tb08261.x
- Chen C.-F., Synowicky R.A., Brand M. et al. // J. Am. Ceram. Soc. 2018. V. 101. P. 1847. https://doi.org/10.111/jace.15359
- Preux N., Rolle A., Merlin C. et al. // C. R. Chimie. 2010. V. 13. P. 1351. https://doi.org/10.1016/j.crci.2010.07.009
- Wu F, Wu P., Chen L., Feng J. // J. Europ. Ceram. Soc. 2019. https://doi.org/10.1016/j.jeurceramsoc.2019.02.002
- Xue Z., Ma Y. Guo H. // J. Alloys Compd. 2017. V. 723. P. 759. https://doi.org/10.1016/j.jallcom.2017.10.266
- Pan W., Phillpot S.R., Wan C. et al. // MRS Bulletin. 2012. V. 37. P. 917. https://doi.org/10.1557/mrs.2012.234
- 9. Cao X.Q., Vassen R., Stoever D. // J. Europ. Ceram. Soc. 2004. V. 24. 1. https://doi.org/10.1016/s0955-2219(03)00129-8
- 10. Fergus J.W. // Metall. Mater. Trans. 2014. V. E 1. P. 118. https://doi.org/10.1007/s40553-014-0012-y
- 11. *Li D., Jiang P., Gao R. et al.* // J. Adv. Ceram. 2021. V. 10. P. 551.
 - https://doi.org/10.1007/s40145-021-0457-2
- Nieto A., Agrawal R., Bravo L. et al. // International Materials Reviews. 2020. P. 1. https://doi.org/10.1080/09506608.2020.1824414
- Poerschke D.L., Jackson R.W., Levi C.G. // Ann. Rev. Mater. Res. 2017. V. 47. P. 297. https://doi.org/10.1146/annurev-matsci-010917-105000
- 14. Subramani T., Navrotsky A. // Inorg. Chem. 2019. V. 58. P. 16126.
- https://doi.org/10.1021/acs.inorgchem.9b02675
 15. Klimenko A.N., Sergeev V.S., Sirotinkin V.P. // Izv. AN SSSR. Inorg. mater. 1988. V. 24. P.1052 (on Russian).
- 16. *Tyurin A.V., Khoroshilov A.V., Guskov V.N. et al.* // Russ. J. Inorgan. Chem. 2018. V. 63. P. 1599. https://doi.org/010.1134/S0036023618120215
- Guskov A.V., Gagarin P.G. Guskov V.N. et al. // Ibid. 2021. V. 66. P. 1512. https://doi.org/10.1134/S0036023621100077
- 18. https://www.qdusa.com/products/ppms.html.

- Wieser M.E. // Pure Appl. Chem. 2006. V. 78. 2051. https://doi.org/10.1351/pac200678112051
- 20. Data base PDF Number 00-038-1409.
- Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 2892._ https://doi.org/10.1016/j.ceramint.2020.09072
- 22. *Ryumin M.A., Sazonov E.G., Guskov V.N. et al.* // Inorg. Mater. 2017. V. 53. P. 728. https://doi.org/10.1134/S00201685170701147
- 23. Lutique S., Javorsky P., Konings R.J.M. et al. // J. Chem. Thermodyn. 2004. V. 36. P. 609. https://doi.org/10.1016/j.jct.2004.03.017
- 24. *Guskov V.N., Tyurin A.V., Guskov A.V. et al.* //Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/J.ceramint.2020.02.052
- Chirico R.D., Westrum E.F. Ir. // J. Chem. Thermodyn. 1980. V. 12. P. 71. https://doi.org/10.1016/0021-9614(80)90118-4
- 26. Westrum E.F. Ir. //J. Thermal Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/bf01914288
- Konings R.J.M., Beneš O., Kovács A. et al. //J. Phys. Chem. Refer. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
- Jacob K.T., Shekhar C., Waseda Y. // J. Chem. Thermodyn. 2009. V. 41. P. 748. https://doi.org/10.1016/j.jct.2008.12.006
- 29. Leitner J., Chuchvalec P., Sedmidubský et al. // Thermochim. Acta. 2003. V. 395. P. 27. https://doi.org/10.1016/S0040-6031(02)00177-6
- 30. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. //J. Chem. Eng. Data. 2013.
 V. 58. P. 2083. https://doi.org/10.1021/je400316m
- 33. http://www.chem.msu.su/cgi-bin/tkv.pl.
- 34. *Панова Т.И., Исупова К.И., Келер Э.К.* // Неорган. материалы. 1978. Т. 14. С. 781.
- 35. *Глушкова В.Б.* Полиморфизм окислов редкоземельных элементов // Л.: Наука. 1967. 133 с.