ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2022, том 96, № 6, с. 911–916

— ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 66.061.35

ЭКСТРАКЦИЯ ИТТРИЯ, ЛАНТАНА И ЕВРОПИЯ ФОСФИНОКСИДАМИ ГЕКСИЛ-ОКТИЛОВОГО РЯДА

© 2022 г. В. В. Туманов^{а,*}, П. А. Стороженко^а, К. Д. Магдеев^а, В. И. Ширяев^а

^аГНЦ РФ АО "Государственный научно-исследовательский институт химии и технологии элементоорганических соединений", Москва, Россия

*e-mail: neijivlad@mail.ru Поступила в редакцию 08.11.2021 г. После доработки 08.11.2021 г. Принята к публикации 15.11.2021 г.

Методом Гриньяра синтезированы образцы моно- и разнорадикальных фосфиноксидов гексил-октилового ряда и определен их состав. Из азотнокислых сред изучена экстракция иттрия, лантана и европия как индивидуально, так и при совместном присутствии. Получен ряд изменения экстракционных свойств алкилфосфиноксидов для индивидуальных редкоземельных металлов (P3M). Обнаружено, что наибольшая степень извлечения P3M достигается при концентрации азотной кислоты в водной фазе ~0.5 М. Определена степень извлечения индивидуальных P3M при данных условиях: 90–97 (для иттрия), 75–91 (для лантана) и 93–98% (для европия); при совместном присутствии соответственно 68–82, 45–62 и 80–88%. На основании полученных данных сделан вывод о возможности отделения P3M иттриевой подгруппы от цериевой, что может быть применено в технологии получения чистых P3M.

Ключевые слова: фосфиноксид, алкилфосфиноксид, P3M, жидкостная экстракция, азотная кислота **DOI:** 10.31857/S0044453722060280

В настоящее время существует проблема острого дефицита редкоземельных металлов (P3M) на мировом рынке, а также монополия Китая в данной области. В связи с этим во многих странах активно ведутся исследования в области поиска методов выделения, концентрирования, переработки и получения чистых P3M. На данный момент одни из наиболее широко применяемых экстрагентов в данной области – фосфорорганические соединения (трибутилфосфат, фосфиноксиды, органофосфорные, фосфониевые, фосфоновые кислоты и т.д.), используемые в промышленных экстракционных процессах.

Наиболее перспективными экстрагентами можно считать алкилфосфиноксиды, исследования которых снова становятся актуальными, и создание отечественного производства этих соединений приобретает всё большее значение. Один из возможных процессов получения фосфиноксидов – окисление триалкилфосфинов пероксидом водорода [1], однако данный способ нашел крайне ограниченное применение в промышленности по причине многостадийности, длительности процесса, низкой эффективностью (~57%). Известен также способ получения триалкилфосфиноксидов, основанный на гидрофосфорилировании олефина с последующим окислением триалкилфосфина пероксидом водорода [2]. Высокая пожаровзрывоопасность процесса, а также крайне высокая токсичность реакционной массы не позволили рассматривать его как промышленно осуществимый.

Кроме описанных выше, возможным промышленным способом получения алкилфосфиноксидов служит синтез по методу Гриньяра, позволяющий получать моно- [3] или разнорадикальные [4] алкильные группы при атоме фосфора. Данный способ и был выбран нами для получения образцов фосфиноксидов с целью изучения экстракции ими редкоземельных металлов.

Фосфиноксиды широко применяются в экстракционных процессах, однако их перечень крайне мал. В основном работы последних лет посвящены исследованиям экстракции металлов импортными коммерческими экстрагентами Суапех 921 (триоктилфосфиноксид), Суапех 923 (смесь разнорадикальных фосфиноксидов гексил-октилового ряда)и Суапех 925 (смесь R₃PO, R₂R'PO, RR'₂PO и R'₃PO, где R = [CH₃(CH₂)₇], R' = [CH₃(CH₂)₅]) компании СҮТЕС [5].

Был изучен процесс экстракции редкоземельных металлов с использованием Cyanex 925 в нитратной среде [6]. Эффективность экстракции растет с увеличением атомного номера элемента, а также четко прослеживается "тетрадный эффект". Факторы разделения указывают на возможность использования данной смеси для отделения иттриевой подгруппы РЗМ от цериевой.

Исследовалась возможность экстракции церия (III), европия (III) и тулия (III) пикролоновой кислотой (HPA) с добавкой трибутилфосфиноксида (ТБФО, ТВРО) в хлороформе [7]. Обнаружен синергетический эффект при экстракции P3M при pH < 2. Данная экстракционная система показала высокую селективность по отношению к P3M в присутствии большинства моно-, ди-, три-, и четырехвалентных ионов металлов, за исключением Zn(II) и Zr(IV), которые совместно экстрагируются в органическую фазу (21.3 и 43.8% соответственно) [7].

Большое количество работ также посвящено экстракции различных металлов фосфиноксидами [8–17]. Однако все они представлены или однорадикальными (ТОФО, ТБФО) фосфиноксидами, или же непосредственно Суапех 923, в то время как в литературе практически нет информации о других экстракционных смесях на основе фосфиноксидов и отсутствуют данные о влиянии радикального состава на экстракцию компонентов.

Во многих работах указывается, что при экстракции алкилфосфиноксидами [18, 19] практически не экстрагируются примесные компоненты, такие как железо, алюминий, кальций, магний. Данный факт позволяет расценивать алкилфосфиноксиды как перспективные экстрагенты и синергики для переработки промышленных отходов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза алкилфосфиноксидов по методу Гриньяра использовали хлороксид фосфора (PO-Cl₃) для синтеза (Марка А), магний порошок МГС-99 (ГОСТ 804-93), 1-хлороктан pure (Sigma-Aldrich), 1-хлоргексан pure(Sigma-Aldrich), тетрагидрофуран (ТГФ) "х.ч.", диэтиловый эфир "х.ч.".

Синтез алкилфосфиноксидов проводили следующим образом. В четырехгорлую колбу объемом 2 л, снабженную холодильником, мешалкой, термометром и капельной воронкой засыпали заданное количество магния и заливали до покрытия слоя магния смесью $T\Gamma\Phi$ – толуол. Затравливали реакцию одним кристалликом йода и 4.5 мл 1,2-дибромэтана. После затравки реакции прикапывали смесь (RX – хлористый октан, хлористый *н*-гексан или их смесь в требуемых соотношениях, $T\Gamma\Phi$, толуол ($T\Gamma\Phi/RX = 1.5$)).

Толуолом смесь доводили до 2 л (чтобы концентрация магнийорганического соединения в растворе составляла ~2 моль/л). Перед прикапыванием $POCl_3$ реакционную смесь охлаждали до $18-20^{\circ}$ С. После введения $POCl_3$ смесь выдерживали не менее 1 ч. Контроль прохождения реакции осуществляли по температуре. Падение температуры свидетельствовало о том, что реакция образования магнийорганического соединения прошла.

Анализ состава полученных моно- и смесей разнорадикальных фосфиноксидов проводили методом ГЖХ на хроматографе "Кристалл 2000" на колонках из нержавеющей стали длиной 1 м, внутренним диаметром 3 мм, наполненных 5% SE-30 на хроматоне N-AW-DMCS (0.25–0.315 мм). Газ-носитель – гелий, детектор – катарометр.

В ходе исследований экстракции использовали азотную кислоту (HNO₃) марки "ос.ч." 18–4 (ГОСТ 11125-84), нефрас C2 80/120 (высший сорт) (ГОСТ 443-76), оксид иттрия (Y₂O₃) Sigma-Aldrich 99.99%, оксид лантана (La₂O₃) Sigma-Aldrich 99.99%, оксид европия (Eu₂O₃) Sigma-Aldrich 99.99%. Для экстракции индивидуальных P3M использовали их азотнокислые растворы с $C(P3M) = 10^{-4}$ M и раствор экстрагента в нефрасе C(экстрагента) – 0.5 М. Для экстракции суммы P3M использовали азотнокислые растворы с $C(P3M) = 10^{-3}$ M каждого и раствор экстрагента в нефрасе C(экстрагента) = 0.25 М.

Процесс экстракции проводили следующим образом. Эквивалентные количества водной и органической фаз контактировали до установления равновесия в системе (5 мин). Содержание РЗМ в растворе до и после экстракции определяли методом масс-спектрометрии с индуктивно связанной плазмой (ICP-MS) на приборе ICP-MSAgilent 7900. Количество РЗМ в органической фазе рассчитывали дифференциальным методом.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Синтез алкилфосфиноксидов

В ходе процесса периодического синтеза были получены требуемые образцы фосфиноксидов. Название образцов и основные соотношения приведены в табл. 1.

Полученные образцы фосфиноксидов (кроме индивидуальных тригексил- и триоктилфосфиноксидов) представляют собой смеси всех четырех фосфиноксидов в разном соотношении, как и Суапех 923, аналог которого – ГОФО. Состав образцов приведен в табл. 2.

Полученные данные свидетельствуют о том, что данным методом можно получать индивидуальные монорадикальные фосфиноксиды, а также смеси фосфиноксидов гексил-октилового ряда с заданным соотношением.

Образец	α	Основной продукт в смеси
1. ΤΓΦΟ	1:0	тригексилфосфиноксид ТГФО (Hex ₃ PO)
2. ДГОФО	2:1	дигексилоктилфосфиноксид ДГОФО (Hex ₂ OctPO)
3. ГОФО	1:1	дигексилоктилфосфиноксид ДГОФО (Hex ₂ OctPO) гексилдиоктилфосфиноксид ГДОФО (HexOct ₂ PO)
4. ГДОФО	1:2	гексилдиоктилфосфиноксид ГДОФО (HexOct ₂ PO)
5. ТОФО	0:1	триоктилфосфиноксид ТОФО (Oct ₃ PO)

Таблица 1. Характеристики синтезированных образцов (α – соотношение радикалов *n*-Hex/*n*-Oct)

Экстракция индивидуальных иттрия, лантана и европия

В ходе работы нами были получены данные по экстракции индивидуальных иттрия, лантана и европия. Изотермы экстракции приведены на рис. 1–5.

Алкилфосфиноксиды представляют собой типичные сольватные экстрагенты. Данный факт подтверждается тем, что с увеличением концентрации азотной кислоты в водной фазе происходит резкое снижение экстракционной способности.

Как видно из изотерм экстракции, наилучшие коэффициенты распределения (а также эффективность экстракции) достигаются при начальной концентрации азотной кислоты 0.5 М в водной фазе. Коэффициенты распределения и эффективности экстракции при концентрации азотной кислоты 0.5 М приведены в табл. 3. На основании полученных данных построен следующий ряд эффективности экстракции для индивидуальных РЗМ: ДГОФО < ГОФО < ГДОФО < ТО-ФО < ТГФО.

Видно, что монорадикальные фосфиноксиды обладают более выраженными экстракционными свойствами. Данный факт можно объяснить отсутствием конкурирующих реакций между компонентами органической фазы, а также более прочными комплексами между экстрагентом, азотной кислотой и металлом вследствие пространственной доступности фосфорильной группы P=O однорадикальных фосфиноксидов гексил-октилового ряда; кроме того, равномерное распределение энергии фосфорильной группы способствует образованию более прочных и стабильных комплексов.

Экстракция иттрия, лантана и европия при совместном присутствии

Были проведены эксперименты по экстракции иттрия, лантана и европия при их совместном присутствии в растворе. Концентрация экстрагента в органической фазе была снижена до 0.25 М, концентрация РЗМ увеличена на порядок (0.003 М суммы или 0.001 М каждого) для изучения возможности работы с более концентрированными растворами, концентрации кислоты составляли 0.5, 1.0 и 2.0 М, что было выбрано рабочим диапазоном для алкилфосфиноксидов из предыдущих экспериментов. Результаты приведены в табл. 4.

При экстракции иттрия, лантана и европия наблюдается изменение ряда эффективности экстрагентов в отношении иттриевой подгруппы P3M в следующем порядке: ТОФО > ГОФО > ТГ-ФО > ГДОФО > ДГОФО. Данный факт может быть объяснен изменением формирования в органической фазе разных по прочности комплексов между фосфиноксидами и редкоземельными металлами. Образец ГОФО, благодаря наличию в составе всех описанных выше фосфиноксидов, предположительно образует устойчивые комплексы со всеми РЗМ, но при этом снижается селективность в отношении среднетяжелой подгруппы. Наибольшие факторы разделения и селективность проявляют ТГФО и ТОФО. Это

Образец	(Hex) ₃ PO	(Hex) ₂ (Oct)PO	(Hex)(Oct) ₂ PO	(Oct) ₃ PO	<i>М</i> _{ср} , г/моль
ΤΓΦΟ	96.6	_	_	_	302.50
ДГОФО	27.3	38.2	21.2	5.4	331.96
ГОФО	10.8	33.0	33.9	11.6	345.10
ГДОФО	2.9	17.8	38.6	28.6	360.22
ΤΟΦΟ	—	—	—	89.3	386.64
Cyanex 923 [65]	8.5	30.4	37.4	16.1	354.16

Таблица 2. Средний состав (мас. %) синтезированных образцов экстракционных смесей фосфиноксидов

Рис. 1. Изотермы экстракции иттрия, лантана и европия $\Gamma\Gamma\PhiO(0.5 \text{ M в нефрасе}; C(P3M(кажд.)) = 10^{-4} \text{ M}.$

Рис. 3. Изотермы экстракции иттрия, лантана и европия ГОФО 0.5 М в нефрасе; C (РЗМ(кажд.)) = 10^{-4} М.

обусловлено симметричностью молекул индивидуальных фосфиноксидов, что было отмечено выше, и является положительным фактором при

Таблица 3. Коэффициенты распределения (D_i) и эффективность экстракции $(E_i, \%)$ при экстракции иттрия, лантана и европия

Образец	D _Y	D _{La}	D _{Eu}	E _Y	E _{La}	E _{Eu}
τγφο	29.13	6.61	47.74	96.68	86.87	97.95
ДГОФО	9.20	3.06	14.17	90.20	75.38	93.41
ΓΟΦΟ	9.49	2.95	16.51	90.46	74.70	94.29
ГДОФО	25.10	10.29	41.06	96.17	91.14	97.62
ΤΟΦΟ	28.10	9.07	41.88	96.56	90.07	97.67

Примечание: $C(\text{HNO}_3) = 0.5\text{M}$, C (экстрагента) = 0.5 M в нефрасе, C (РЗМ(кажд.)) = 10^{-4} М.

Рис. 2. Изотермы экстракции иттрия, лантана и европия $ДГО\PhiO 0.5 \text{ M}$ в нефрасе; $C(P3M(кажд.)) = 10^{-4} \text{ M}.$

Рис. 4. Изотермы экстракции иттрия, лантана и европия ГДОФО 0.5 М в нефрасе; $C(P3M(кажд.)) = 10^{-4}$ М.

экстракции по сольватному механизму индивидуальных элементов, с которыми проявляют большее сродство.

Полученные данные указывают на то, что уже при концентрации азотной кислоты 1.0 М в равновесной водной фазе происходит резкое снижение экстракции лантана, что в свою очередь указывает на возможность отделения цериевой подгруппы РЗМ от иттриевой, при незначительном снижении экстракции последней. Указанный факт подтверждается данными табл. 4.

ЗАКЛЮЧЕНИЕ

Лабораторным путем получены моно- и разнорадикальные алкилфосфиноксиды гексил-октилового ряда. Показано, что синтез алкилфосфи-

Образец	HNO ₃ , M	$D_{\rm Y}$	D _{La}	D _{Eu}	SF _(Eu/La)	SF _(Y/La)	SF _(Eu/Y)	$E_{\rm Y}$	E _{La}	E _{Eu}
ΤΓΦΟ	0.5	3.65	0.87	6.68	7.66	4.18	1.83	79	47	87
	1.0	1.69	0.18	2.26	12.60	9.42	1.34	63	15	70
	2.0	0.57	0.01	0.44	41.20	53.69	1.30	37	1	31
ДГОФО	0.5	2.14	0.80	3.82	4.76	2.67	1.78	68	45	80
	1.0	1.58	0.34	1.94	5.66	4.61	1.23	61	26	66
	2.0	0.76	0.13	0.52	3.93	5.79	0.68	43	12	34
ΓΟΦΟ	0.5	4.40	1.49	6.89	4.63	2.95	1.57	82	60	88
	1.0	2.36	0.46	2.73	5.95	5.14	1.16	70	31	73
	2.0	0.98	0.14	0.69	4.95	7.10	1.43	50	12	41
ГДОФО	0.5	4.00	1.62	7.00	4.33	2.48	1.75	80	62	88
	1.0	2.25	0.56	2.82	5.07	4.06	1.25	70	36	74
	2.0	1.00	0.18	0.74	4.13	5.60	0.74	50	15	43
ΤΟΦΟ	0.5	4.32	1.01	5.69	5.62	4.27	1.32	82	50	85
	1.0	1.78	0.22	1.82	8.36	8.18	1.02	64	18	65
	2.0	0.56	10-3	0.35	249.38	392.89	1.58	36	0.14	26

Таблица 4. Коэффициенты распределения (D_i), факторы разделения (SF) и эффективность экстракции (E_i , %) при экстракции иттрия, лантана и европия при совместном присутствии

Примечание: C (экстрагента) = 0.25 М в нефрасе, C (РЗМ(кажд.)) = 10^{-3} М.

ноксидов магнийорганическим способом позволяет получать требуемые соединения с высокой степенью эффективности при снижении, как стоимости процесса, так и опасности для людей и окружающей среды. В ходе исследования получены не только изотермы экстракции индивидуальных иттрия, лантана и европия, на и данные по экстракции при их совместном присутствии, определены их факторы разделения для каждой

Рис. 5. Изотермы экстракции иттрия, лантана и европия ТОФО 0.5 М в нефрасе; C (РЗМ(кажд.)) = 10^{-4} М.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 6 2022

экстракционной системы, в том числе и для неисследованных ранее ДГОФО, ГДОФО и ГОФО. Установлена зависимость увеличения экстракционных свойств экстрагентов в ряду ТОФО > ТГ-ФО > ГОФО > ГДОФО > ДГОФО. Наилучшими экстракционными свойствами в условиях экспериментов обладают монорадикальные ГОФО и ТОФО. Обнаружено, что в первую очередь в значительной степени экстрагируются иттрий и европий.

Найдено, что фосфинкосиды могут быть использованы как для получения черновых концентратов РЗМ, так и для выделения среднетяжелой подгруппы РЗМ.

На основании изложенного можно предположить, что получение фосфиноксидов магнийорганическим способом может обеспечить промышленность отечественными недорогими и перспективными экстрагентами для селективного извлечения ценных компонентов при переработке РЗМ, ценных редкометалльных отходов и в циклах переработки отработанного ядерного топлива.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Фещенко Н.Г., Иродионова Л.Ф., Король О.И. и др. //* Журн. общ. химии. 1970. Т. 40. № 4. С. 773.
- Rickelton W.A., Robertson A.J. Process for Solvent Extraction Using Phosphine Oxide Mixtures. US4909939A USA // 1990. Int. Cl. B01D 11/04.

- 3. *Etienne R. De G., Jean-Claude M.* Process for the Preparation of Phosphine Oxides and Sulphides. GB1376028A United Kingdom // 1972. Int. Cl. C07F9/5345.
- Жукова Н.Г., Сокальская Л.И., Пастухова И.В. и др. Способ получения окисей третичных фосфинов. RU2032691 Российская Федерация // 1995. МПК C07F9/53.
- Dziwinski E., Szymanowski J. // Solvent Extraction and Ion Exchange.1998. V. 16. № 6. P. 1515. https://doi.org/10.1080/07366299808934592
- Li W., Wang X., Zhang H. et al. // J. Chem. Technology & Biotechnology. 2007. V. 82. № 4. P. 376. https://doi.org/10.1002/jctb.1680
- 7. *Ali A.* // Radiochim. Acta. 2004. V. 92. № 12. P. 925. https://doi.org/10.1524/ract.92.12.925.55102
- Gupta B., Malik P., Deep A. // Solvent Extraction and Ion Exchange. 2003. V. 21. № 2. P. 239. https://doi.org/10.1081/SEI-120018948
- 9. *Padhan E., Sarangi K.* // Mineral Processing and Extractive Metallurgy. 2017. V. 128. № 3. P. 168. https://doi.org/10.1080/03719553.2017.1381815
- Kulyako Y., Malikov D., Trofimov T. et al. // J. Nuclear Science and Technology. 2002. V. 39. Sup 3. P. 302. https://doi.org/10.1080/00223131.2002.10875468
- Fleitlikh I.Y., Grigorieva N.A., Nikiforova L.K. et al. // Hydrometallurgy. 2017.V. 169. P. 585. https://doi.org/10.1016/j.hydromet.2017.04.004

 Fleitlikh I.Yu., Grigorieva N.A., Nikiforova L.K. et al. // Separation Science and Technology. 2017. V. 59. № 5. P. 1521. https://doi.org/10.1080/01496395.2017.1291682

 Shafer J.C., Sulakova J., Ogden M.D. et al. // Separation and Purification Technology. 2018. V. 202. P. 157. https://doi.org/10.1016/j.seppur.2018.03.029

 Аунг П.П., Веселова О.А., Трошкина И.Д. // Изв. вузов. Химия и хим. технология. 2017. Т. 60. № 8. Р. 28. https://doi.org/10.6060/tcct.2017608.5646

15. Haghighi H.K., Irannajad M., Fortuny A. et al. // Hydrometallurgy. 2018. V. 175. P. 164.

- https://doi.org/10.1016/j.hydromet.2017.11.006
- 16. *Alguacil F.J., Alonso M., Lopez F.A. et al.* // Solvent Extraction and Ion Exchange. 2012. V. 30. № 1. P. 54. https://doi.org/10.1080/07366299.2011.609369
- Kaŝpárek F., Trávnicek Z., Posolda M. et al. // J. Coord. Chem. 1998. V. 44. № 1–2. P. 61. https://doi.org/10.1080/00958979808022880
- 18. *Tunsu C., Ekberg C., Foreman M. et al.* // Solvent Extraction and Ion Exchange. 2014. V. 32, № 6. P. 650. https://doi.org/10.1080/07366299.2014.925297
- Fulford G.D., Lever G., Sato T. Recovery of Rare Earth Elements from Bayer Process Red Mud. US5030424A USA / 1991. Int. Cl. C01F 17/0/