ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2022, том 96, № 7, с. 1023–1030

_ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК 544.31:547'1.186

ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРПОЛИМЕРА МОНООКСИДА УГЛЕРОДА—ЭТИЛЕН—БУТЕН-1 С МОЛЬНОЙ ДОЛЕЙ БУТАНОВЫХ ФРАГМЕНТОВ 35% В ОБЛАСТИ ОТ $T \rightarrow 0$ до 525 к

© 2022 г. Н. В. Абарбанель^{*a*}, Н. Н. Смирнова^{*a*}, С. С. Сологубов^{*a*}, Л. В. Колесникова^{*a*}, А. В. Маркин^{*a*,*}

^аНациональный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского,

Нижний Новгород, Россия *e-mail: markin@chem.unn.ru Поступила в редакцию 12.10.2021 г. После доработки 25.12.2021 г. Принята к публикации 27.12.2021 г.

Методами прецизионной адиабатической вакуумной и дифференциальной сканирующей калориметрии в области 6–525 К изучены термодинамические свойства терполимера монооксида углерода с этиленом и бутеном-1 с содержанием бутановых звеньев 35 мол. %: температурная зависимость теплоемкости в области 6–350 К, термодинамические характеристики расстеклования, температуры и энтальпии плавления. По полученным данным вычислены стандартные термодинамические функции: C_p° , $H^\circ(T)-H^\circ(0)$, $S^\circ(T)-S^\circ(0)$ и $G^\circ(T)-H^\circ(0)$ в области от $T \to 0$ до 350 К. На основе мультифрактальной модели обработки низкотемпературной теплоемкости сделаны некоторые заключения о топологической структуре терполимера. Полученные данные сопоставлены с имеющимися литературными значениями термодинамических свойств аналогичных терполимеров других составов.

Ключевые слова: адиабатическая калориметрия, дифференциальная сканирующая калориметрия, теплоемкость, термодинамические функции, теплофизические свойства, сополимеры **DOI:** 10.31857/S0044453722070020

Терполимеры, полученные в результате сополимеризации монооксида углерода и разных олефинов относятся к классу поликетонов [1]. Это относительно новый класс полимеров, имеющий значительный научный и практический интерес, вызванный комплексом их ценных свойств. Например, благодаря высокой химической стойкости к кислотам и щелочам, а также различного рода растворителям, их можно использовать как защитные покрытия для химических контейнеров, труб и шлангов [2, 3]. С целью улучшения такой технологической характеристики, как прочность, они могут использоваться в качестве компонентов модификации резин и резиновых смесей [4]. Благодаря низкой газопроницаемости [5], а также стойкости к УФ- и γ-излучениям [6], из этих полимеров изготавливают детали медицинских принадлежностей.

Значительным преимуществом данного типа полимеров является их способность к фото- и биодеградации [7, 8]. Кроме того, их производство способствует утилизации весьма токсичного газа — монооксида углерода, который является сырьем для синтеза поликетонов [9].

Карбонильная группа, входящая в состав поликетонов, обладает высокой химической активностью. что способствует получению многочисленных химических соединений на их основе, например, полипирролов, полиспиртов, полиаминов и полифенолов, которые обычно демонстрируют новые свойства в отношении исходных поликетонов [10]. Введение в полимерную цепь третьего сомономера способствует улучшению их перерабатываемости [11]. Например, введение 5-10 мол. % пропиленовых или бутеновых звеньев в основную цепь приводит к заметному понижению температуры и энтальпии плавления, уменьшению кристалличности и повышению эластичности материала [12, 13]. Однако термодинамика терполимеров монооксида углерода с различными олефинами остается малоизученной, большая часть данных получена методом дифференциальной сканирующей калориметрии (ДСК) и носит скорее качественный, а не количественный характер. В предыдущих наших работах методами адиабатической вакуумной (АВК) и ДСК были изучены термодинамические свойства терполимеров монооксида углерода с этиленом и бутеном-1 с содержанием бутановых звеньев 10.7, 14.6 и 46 мол. % [14—17]. Данная работа является продолжением исследований термодинамических свойств терполимеров на основе монооксида углерода, этилена и бутена-1.

Целью данной работы являлось изучение термодинамических характеристик терполимера с мольной долей бутановых фрагментов 35.0 мол. % в области 6–525 К: методом адиабатической вакуумной калориметрии изучение температурной зависимости теплоемкости в области от 6 до 350 К и расчет стандартных термодинамических функций C_p° , $H^{\circ}(T)-H^{\circ}(0)$, $S^{\circ}(T)-S^{\circ}(0)$ и $G^{\circ}(T)-H^{\circ}(0)$; методом дифференциальной сканирующей калориметрии определение термодинамических характеристик стеклования и плавления. Сопоставление полученных термодинамических свойств изученного терполимера с имеющимися литературными характеристиками терполимеров других составов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец терполимера "монооксид углерода– этилен–бутен-1" (СОЭБ) с мольной долей бутановых фрагментов 35.0 мол. % от общего числа мономерных звеньев был синтезирован и охарактеризован в Институте проблем химической физики РАН (г. Черноголовка, Московская область). Методики синтеза описаны в работах [18, 19].

Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре "AVANCE III Bruker BioSpin" (500 и 125.76 МГц соответственно) при комнатной температуре, растворитель CDCl₃, внутренний стандарт – CDCl₃ (сигналы 7.26 м.д. для ¹Н ЯМР и 77.16 м.д. для ¹³С ЯМР).

Для количественных определений долей функциональных групп использовали спектр ¹³С ЯМР. Было установлено, что в макромолекулах имеются протяженные фрагменты – (этан– $CO)_n$ –, а также фрагменты–(бутан– $CO)_m$ – гораздо меньшие по размерам. В работах [16–18] было показано, что бутен внедряется в полимер разным способом, например –C(O)– $CH(CH_2$ – CH_3)– CH_2 –C(O)–, –C(O)– $CH(CH_3)$ – CH_2 –C(O)–, при этом звенья третьего компонента могут встраиваться в кристаллическую решетку в качестве дефектов [20, 21], причем можно выделить фрагменты с большим и меньшим их содержанием.

Брутто-формула СОЭБ $-[C_{3.70}H_{5.40}O]-$, молекулярная масса мономерного звена M == 65.825 г/моль. Молекулярно-массовые характеристики СОЭБ были определены методом гельпроникающей хроматографии при T = 313 К на жидкостном хроматографе Waters GPCV-2000 (элюент – гексафторизопропанол, скорость подачи элюента 1 мл/мин), дополнительно снабженном детектором светорассеяния DAWN HE-LEOS II (фирмы Wyatt), с колонкой PLgel 5 мм MIXED-C. Установлено, что среднечисловая молекулярная масса полимера составила 8100, полидисперсность – 1.5.

Термическая устойчивость образца СОЭБ была изучена с использованием термомикровесов TG209 *F*1 Iris производства фирмы Netzsch Gerätebau, Германия. Было показано, что в инертной среде образец устойчив до температуры 520 K.

Аппаратура и методика измерений. Теплоемкость СОЭБ в области 6-350 К измерена по известной методике [22] с использованием автоматизированного адиабатического вакуумного калориметра БКТ-3, сконструированного и изготовленного в АОЗТ "Термис" (пос. Менделеево Московской области) [23]. Все измерения автоматизированы и управляются компьютерноизмерительной системой, включающей персональный компьютер, аналого-цифровой и цифроаналоговый преобразователи, а также коммутатор напряжений. Подробное описание конструккалориметра и методики измерений шии опубликованы, например, в работах [22, 23].

Надежность работы калориметра была проверена измерением теплоемкости эталонных веществ – бензойной кислоты марки "К-3" и α -сапфира в области 6–360 К. Отклонения значений C_p° от паспортных значений не превышают ±1.5% в интервале 6–15 К, ±0.5% в области 15–80 К и ±0.3% в области 80–350 К. Таким образом, использованная нами калориметрическая установка и методика измерений позволяют определять теплоемкости веществ с относительной стандартной неопределенностью $u_r(C_p^{\circ}) = 0.02$ в области температур 6–15 К, $u_r(C_p^{\circ}) = 0.005$ в интервале температур 15–40 К, $u_r(C_p^{\circ}) = 0.002$ в температурной области 40–350 К; стандартная неопределенность u(T) = 0.01 К.

В калориметрическую ампулу ABK было помещено 0.4128 г образца терполимера. Теплоемкость образца составляла от 20 до 45% от теплоемкости всей калориметрической системы. Сглаживание экспериментальных точек C_p° проводили с помощью степенных и полулогарифмических полиномов по специальным компьютерным программам так, чтобы среднеквадратичное отклонение их от сглаженной кривой $C_p^{\circ} = f(T)$ не превышало погрешности измерений теплоемкости.

Для исследования теплофизических свойств терполимера СОЭБ в области температур от 220 до 525 К использовали дифференциальный сканирующий калориметр DSC 204 *F*1 Phoenix (Netzsch Gerätebau, Германия) [24]. Конструкция калориметра и методика работы описаны в рабо-

	/										
<i>Т</i> , К	$C_{ m p}^{ m o}$	<i>Т</i> , К	$C_{ m p}^{ m o}$	<i>Т</i> , К	$C_{ m p}^{ m o}$	<i>Т</i> , К	$C_{ m p}^{ m o}$	<i>Т</i> , К	$C_{ m p}^{ m o}$	<i>Т</i> , К	$C_{ m p}^{ m o}$
Cep	ия 1	35.98	14.81	99.29	39.18	197.58	67.57	294.44	123.9	265.38	101.5
6.31	0.576	38.41	16.02	102.33	40.09	201.09	68.60	297.84	125.3	268.77	108.3
6.88	0.709	40.86	17.21	106.36	41.28	204.59	69.63	297.84	125.3	272.18	112.9
7.53	0.863	43.31	18.37	109.90	42.32	208.08	70.66	301.21	126.6	275.6	115.7
8.17	1.04	45.75	19.52	113.44	43.34	211.56	71.68	304.57	128.3	279.04	117.7
8.82	1.24	48.21	20.64	116.97	44.36	215.06	72.7	307.9	130.3	282.47	119.4
9.49	1.46	50.66	21.73	120.51	45.37	218.55	73.71	311.13	133.1	285.9	120.7
10.16	1.71	53.11	22.80	124.04	46.37	222.04	74.72	314.37	139.2	289.33	122
10.86	1.99	55.58	23.85	127.57	47.38	225.52	75.72	317.59	142.8	292.74	123.3
11.58	2.29	58.04	24.88	131.12	48.38	229.01	76.71	320.85	144.1	296.14	124.6
12.33	2.62	60.51	25.88	134.63	49.37	232.48	77.69	324.12	145.5	297.84	125.3
13.06	2.96	62.98	26.86	138.17	50.37	235.96	78.67	327.38	146.7	299.52	126.0
13.77	3.3	65.44	27.81	141.71	51.37	239.44	79.63	330.64	147.8	302.89	127.4
14.48	3.64	67.91	28.75	144.83	52.26	242.91	80.58	333.92	148.8	306.24	129.3
15.24	4.021	70.37	29.66	148.54	53.32	246.39	81.52	337.21	149.8	309.52	131.7
15.93	4.371	72.83	30.55	152.05	54.32	249.86	82.44	340.51	150.7	312.75	136.2
16.61	4.723	75.29	31.42	155.56	55.32	256.81	86.82	343.8	151.6	315.98	141
17.29	5.074	77.75	32.28	159.07	56.33	260.27	90.38	347.1	152.5	319.22	143.4
17.97	5.426	80.21	33.12	162.58	57.34	263.68	97.6	350.4	153.5	322.49	144.8
18.64	5.777	82.57	33.84	166.08	58.35	267.07	105.5	Cep	ия 3	325.75	146.1
19.31	6.129	Cep	ия 2	169.59	59.37	270.47	111.1	237.70	79.15	329.01	147.3
19.97	6.48	82.67	33.94	173.09	60.38	273.89	114.6	241.18	80.11	332.28	148.3
21.54	7.311	85.12	34.75	176.60	61.41	277.32	116.9	244.65	81.05	335.56	149.3
23.92	8.571	87.59	35.55	180.11	62.43	280.76	118.5	248.13	81.98	338.86	150.2
26.31	9.834	90.05	36.33	183.60	63.46	284.19	120.2	253.34	84.63	342.16	151.1
28.72	11.09	92.21	37.01	187.11	64.48	287.62	121.3	258.54	88.6	345.45	152.1
31.13	12.35	94.97	37.86	190.60	65.51	291.04	122.7	261.97	93.99	348.75	153.0
33.55	13.58	97.43	38.61	194.09	66.54						

Таблица 1. Экспериментальные значения теплоемкости (Дж/(К моль)) терполимера СОЭБ $[C_{3.70}H_{5.40}O]_n$, (M = 65.825 г/моль)

тах [24, 25]. Калибровка калориметра осуществлялась посредством измерений термодинамических характеристик плавления *н*-гептана, ртути, индия, олова, свинца, висмута и цинка. Стандартная неопределенность u(T) = 0.5 К. При измерениях скорость нагревания ампулы с веществом составляла 5 К/мин, в качестве газа использовали высокочистый аргон, скорость потока газа составляла 25 мл/мин.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теплоемкость. Изначально загруженный образец СОЭБ был охлажден от комнатной температуры до температуры начала измерений (6 K) и, в процессе нагревания до 350 K, была измерена его теплоемкость (табл. 1). Экспериментальные значения теплоемкости в расчете на моль условного повторяющегося звена терполимера и сглаженная кривая представлены на рис. 1. В процессе нагревания от 6 до 249 К (участок AB, рис. 1), 284–297 К (участок CG, рис. 1) и 324–350 К (участок DH, рис. 1) теплоемкость плавно возрастает с ростом температуры, в интервалах 249–284 К (участок BC, рис. 1) и 297–324 К (участок GD, рис. 1) наблюдается более быстрый рост теплоемкости, связанный с расстеклованием двух областей терполимера. В работах [14–20] для образцов СОЭБ было также выявлено по два интервала расстеклования и плавления, которые авторы этих работ связали с разными свойствами двух областей макромолекул СОЭБ, различающимися количеством дефектов.

На рис. 2 представлены ДСК-кривые, полученные в области температур от 220 до 525 К.

Рис. 1. Температурная зависимость теплоемкости терполимера СОЭБ: AB – стеклообразное состояние, CG – высокоэластическое + стеклообразное состояние, DH – высокоэластическое состояние; BC и GD – теплоемкость в интервалах расстеклования участков макроцепей с разной микроструктурой, EI, NM – увеличение теплоемкости при расстекловании терполимера.

В табл. 2 приведены результаты ДСК-исследования как среднее значения двух независимых экспериментов. При первом нагреве (кривая *I*), как и на зависимости $C_p^{\circ} = f(T)$ (рис. 1), наблюдаются две аномальные области изменения теплоемкости (ВС и GD, рис. 2), связанные с расстеклованием аморфной части СОЭБ. Далее, начиная с температуры 320 К, наблюдается экзо-эффект,

Рис. 2. ДСК-кривые терполимера СОЭБ: *1* – первый нагрев, *2* – второй нагрев после изотермической кристаллизации при *T* = 373 К.

связанный, предположительно, с начавшейся кристаллизацией терполимера (участок DE, рис. 2), переходящей затем в плавление образовавшихся кристаллов в интервале 375—462 К (участок HFM, рис. 2). Температуры, максимального отклонения ДСК-кривых в интервале плавления $T_{\text{fus},1}^{\circ} = 408 \text{ K и } T_{\text{fus},2}^{\circ} = 421 \text{ K}$. Наличие двух пиков плавления на данной кривой можно отнести к плавлению двух разных видов кристаллов с различными степенями дефектности [20, 21]. Значения энтальпии $\Delta_{\text{fus}}H^{0}$ и энтропии $\Delta_{\text{fus}}S^{0}$ плавления не представлялось возможным определить из-за одновременного протекания процессов кристаллизации и плавления.

Для более подробного изучения природы экзо-эффекта новый образец СОЭБ нагрели до температуры T = 373 К и изотермически выдержали при ней в течение 2 ч, после чего отожженый образец (СОЭБ*) охладили до T = 240 К и провели повторные ДСК-исследования, результаты которого также представлены на рис. 2 (кривая 2). Видно, что для СОЭБ* температура первого расстеклования практически не изменяется (табл. 2),

так же, как и увеличение теплоемкости $\Delta C_p^o(T_g^o)$ при этой температуре, температура второго расстеклования $\Delta C_p^o(T_g^o)$ также уменьшается, что вы-

стеклования $\Delta C_p^o(T_g^o)$ также уменьшается, что вызвано, вероятно, кристаллизацией ответственных за него фрагментов макромолекул. Кроме этого,

Образец	ΔT , K	$T_{\rm g}^{ m o} \pm 1, { m K}$	$\Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o})$	$S_{ m conf}^{ m o}$	Метод
A V	,		Дж/(К моль)		
СОЭБ	249-284	265	30	11	ABK
	297-324	313	14		
	268-271	266	25	11	ДСК
	318-326	322	17		
СОЭБ*	265-272	268	25	7	
	304-321	312	4		
СОЭБ-1 [14]	244-278	264	8	5	АВК, ДСК
	310-341	327	11		
СОЭБ-2 [15]	247-282	263	14	6	АВК, ДСК
	303-335	317	11		
СОЭБ-3 [17]	240-285	263	34	13	АВК, ДСК
	297-330	311	17		
СОЭБ-3* [17]	247-276	264	25	8	ДСК
	310-370	335	6		

Таблица 2. Стандартные термодинамические характеристики стеклования и стеклообразного состояния изученных терполимеров СОЭБ

Таблица 3. Стандартные термодинамические характеристики плавления изученных терполимеров и соответствующих им двойных сополимеров

Образец	$\Delta_{ m fus}T^0$, K	$T_{\rm fus}^{\rm o} \pm 1, { m K}$	$\Delta_{ m fus} H^0,$ кДж/моль	$\Delta_{ m fus}S^0,$ Дж/(К моль)	α, %
СОЭ [19]	500-570	507	7.79 ± 0.08	15.4 ± 0.15	100
СОЭБ*	375-450	405	1.11 ± 0.06	2.6 ± 0.3	14
		425			
СОЭБ-1 [14]	420-452	448	4.30 ± 0.09	9.60 ± 0.20	55
	452-486	468			
СОЭБ-2 [15]	414-438	426	1.56 ± 0.07	3.60 ± 0.15	20
	438-454	441			

по данным ДСК суммарное значение $\Delta C_p^o(T_g^o)$ отожженного терполимера на 13 Дж/(К моль) меньше, чем исходного, что также подтверждает предположение о его частичной кристаллизации. Поскольку процесс кристаллизации при отжиге полностью завершается, нами были определены значения энтальпии и энтропии плавления СО-ЭБ* (табл. 3).

Сравнение характера зависимости теплоемкости от температуры изученного в настоящей работе СОЭБ и изученных ранее СОЭБ-1 [14] СО-ЭБ-2 [15] и СОЭБ-3 [17] и сополимера монооксида углерода с этиленом СОЭ [26], показало, что он одинаков для всех изученных сополимеров до температуры их расстеклования. Полученные нами значения теплоемкости СОЭБ и данные работ [14–17] позволили выявить линейные зависимо-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 7 2022

сти изотерм их теплоемкости от содержания в них бутановых фрагментов (*n*) ниже температур расстеклования, так изотерма теплоемкости при T =100 К с погрешностью $\pm 2\%$ описывается уравнением прямой

$$C_{\rm p}^{\rm o} = 0.1725n + 33.112,\tag{1}$$

а при T = 200 К с погрешностью $\pm 1.5\%$ – уравнением

$$C_{\rm p}^{\rm o} = 0.357n + 54.86,\tag{2}$$

где *n* — мольная доля бутановых фрагментов.

Необходимо отметить, что все рассмотренные терполимеры были разной степени кристалличности, однако сравнение теплоемкостей полимеров в разном кристаллическом состоянии возможно, так как было ранее показано, что до температуры расстеклования значения теплоемкости аморфных, кристаллических и частично кристаллических полимеров в пределах погрешности измерений совпадают между собой [27].

Мультифрактальная обработка низкотемпературной теплоемкости. Используя экспериментальные данные о низкотемпературной зависимости теплоемкости для СОЭБ, оценили значение фрактальной размерности D [28, 29]. Фрактальная размерность D – показатель степени при температуре в основном уравнении фрактальной модели обработки низкотемпературной теплоемкости. Значения D позволяют делать некие заключения о типе топологии структуры твердых тел. Принимая, что экспериментальные значения без заметной погрешности для $T \le 50 \text{ K}$ можно принять равными C_{ν} , используя соответствующие экспериментальные данные о теплоемкости для интервала 25-50 К для СОЭБ получили D = 1.8, характеристическая температура $\theta_{\text{max}} = 272.2$ К. Согласно этой модели, D = 1 соответствует телам цепочечной структуры, D = 2 - 2слоистой структуры и D = 3 - пространственнойструктуры. Полученное нами значение D указывает на слоисто-цепочечную топологию структуры терполимера.

Стандартные термодинамические характеристики расстеклования и стеклообразного состояния. В табл. 2 представлены термодинамические характеристики расстеклования и стеклообразного состояния СОЭБ, СОЭБ*, СОЭБ-1 [14], СО-ЭБ-2 [15] и СОЭБ-3 [17].

Для СОЭБ при изучении C_p^o в адиабатическом вакуумном калориметре температуру стеклования T_g^o определяли по точке перегиба графика $S^o(T)-S^o(0) = f(T)$ в интервале стеклования по методу Алфорда и Дола [30]. Погрешность определения T_g^o этим методом обычно не превышает ± 1 К. Температурные интервалы расстеклования и увеличения теплоемкости при расстекловании $\Delta C_p^o(T_g^o)$ найдены графически. Конфигурационную энтропию S_{conf}^o рассчитывали по предложенному в работе [31] уравнению (3):

$$S_{\rm conf}^{\rm o} = \Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o}) \ln T_{\rm g}^{\rm o}/T_2, \qquad (3)$$

где T_2 – температура Кауцмана [32], а отношение $T_g^o/T_2 = 1.29 \pm 0.14$ [31]. Так как значение S_{conf}^o приблизительно равно $S^o(0)$, это дает возможность оценки абсолютных значений энтропий по третьему началу термодинамики с учетом нулевой энтропии [27].

Во всех изученных терполимерах наблюдается проявление двух расстеклований, связанных с переходом их макроцепей с двумя различными сте-

пенями дефектности из стеклообразного состояния в высокоэластическое состояние [20]. В случае терполимеров СОЭБ с ростом концентрации бутановых фрагментов степень кристалличности

уменьшается. Значение $T_{g,1}^{o}$ терполимеров СОЭБ с ростом содержания бутановых фрагментов оста-

ется неизменным, в то время как $T_{g,2}^{o}$ уменьшается.

Стандартные термодинамические характеристики плавления. Авторы работы [20] при изучении аналогичных сополимеров с содержанием бутановых звеньев до 12 мол. % показали, что до достижения некоторой концентрации боковых групп кетоны кристаллизуются с включением заместителей (третьего компонента) в решетку, а выше этой концентрации решетка уже не включает боковые группы. Подтверждено также, что температура плавления и степень кристалличности понижаются с увеличением содержания боковых групп. На ДСК-кривых сополимеров выявлено по два пика плавления, наличие которых авторы [20] связали с двумя популяциями кристаллов в изучаемых образцах, нарушенной кристаллической в-фазы сополимера монооксида vrлерода с этиленом (СОЭ) [26]. На основании этих данных можно сделать вывод, что наблюдаемое нами наличие двойного пика в интервале 420-486 К на кривой температурной зависимости теплоемкости также обусловлено плавлением двух кристаллических фаз СОЭБ. Термодинамические характеристики плавления были определены для СОЭБ*. Поскольку имеет место наложение неразделимых в условиях нашего эксперимента двух процессов плавления, не представлялось возможным по-отдельности определить термодинамические характеристики их плавления.

Энтальпию плавления отожженного образца СОЭБ вычисляли по полученным ДСК-кривым с использованием пакета специальных программ Netzsch Proteus.

Плавление происходит в два этапа, разделить которые в условиях эксперимента не удалось. Поэтому была определена суммарная энтальпия плавления. По результатам трех опытов (1.15, 1.11 и 1.08 кДж/моль) $\Delta_{\rm fus} H^0 = 1.11 \pm 0.02$ кДж/моль. Энтропию плавления $\Delta_{\rm fus} S^0 = 2.66 \pm 0.06$ Дж/(К моль) оценили по энтальпии и средней температуре плавления.

Полученные характеристики плавления СО-ЭБ*, СОЭ, СОЭБ-1, СОБ-2 представлены в табл. 3.

Наличие в литературе данных об энтальпии плавления β-фазы чередующегося сополимера этилена с СО 100%-ной кристалличности [19] позволило оценить степень кристалличности исследуемого СОЭБ* по уравнению (4)

$$\alpha = 100\Delta_{\text{fus}}H^0(\alpha)/[\Delta_{\text{fus}}H^0(\alpha = 100)], \qquad (4)$$

	· · · · · · · · · · · · · · · · · · ·	1, 1, 1, 1						
Т, К	С ^о _р (<i>T</i>), Дж/(К моль)	<i>Н</i> °(<i>T</i>)− <i>Н</i> °(0), кДж/моль	<i>S</i> °(<i>T</i>)- <i>S</i> °(0), Дж/(К моль)	-[<i>G</i> °(<i>T</i>)- <i>H</i> °(0)], кДж/моль				
Стеклообразное состояние								
5	0.264	0.000331	0.0883	0.00111				
10	1.65	0.00477	0.648	0.00171				
15	3.90	0.0184	1.72	0.00740				
20	6.494	0.04431	3.201	0.01971				
25	9.125	0.08342	4.931	0.03983				
50	21.44	0.4705	15.17	0.2879				
100	39.39	2.021	35.97	1.576				
150	53.73	4.352	54.68	3.850				
200	68.28	7.401	72.12	7.023				
250	82.82	11.17	88.89	11.05				
265	87.29	12.45	93.82	12.42				
Стеклообразное + высокоэластическое состояние								
265	117.3	12.45	93.82	12.42				
298.15	125.3	16.40	107.9	15.77				
300	126.0	16.63	108.7	15.92				
313	130.9	18.30	114.1	17.41				
Высокоэластическое состояние								
313	144.9	18.30	114.1	17.41				
350	153.4	23.77	130.6	21.94				

Таблица 4. Стандартные термодинамические функции терполимера СОЭБ; M = 65.825 г/моль; $p^0 = 0.1$ МПа

где $\Delta_{\rm fus} H^0(\alpha)$ — энтальпия плавления исследуемого образца терполимера на основе монооксида углерода, этилена и бутена-1 степени кристалличности α , а $\Delta_{fus} H^0 (\alpha = 100)$ – известная энтальпия плавления β -фазы основного чередующегося сополимера этилена с монооксидом углерода (СОЭ) 100%-ной кристалличности [17, 26]. Полученное данным методом оценочное значение $\alpha =$ $= (11 \pm 10)\%$. Исходя из литературных данных [14, 15], для рассмотренных терполимеров СОЭБ-1 и СОЭБ-2 полученное данным методом значение α в пределах погрешности определения совпадали со значением α, оцененным по скачкам теплоемкости при температурах расстеклования сополимера разной степени кристалличности. Полученные нами значения термодинамических свойств СОЭБ с содержанием 36 мол. % бутановых звеньев и ранее [13-15] еще раз показали, что с ростом концентрации бутановых фрагментов в терполимере максимальное значение энтальпии плавления и степень кристалличности уменьшается.

Стандартные термодинамические функции. Рассчитанные стандартные термодинамические функции терполимера СОЭБ представлены в табл. 4. Для их расчета температурную зависимость теплоемкости экстраполировали от температуры начала измерений к 0 К по закону Дебая [27, 33] уравнение (5):

$$C_{\rm p}^{\rm o} = n\mathbf{D}(\theta_{\rm D}/T),\tag{5}$$

где **D** – функция теплоемкости Дебая, n и $\theta_{\rm D}$ – специально подобранные параметры. При n = 1 и $\theta_{\rm D} = 68.62$ К уравнение (5) воспроизводит экспериментальные значения $C_{\rm p}^{\rm o}$ исследуемого образца в интервале 6–9 К с погрешностью ±2.1%. Энтальпию $H^{\circ}(T)-H^{\circ}(0)$ и энтропию $S^{\circ}(T)-S^{\circ}(0)$ нагрева-

ния вычисляли интегрированием зависимостей C_p^o от T и ln T соответственно, а энергию Гиббса — по значениям энтальпии и энтропии [27].

Полученные данные позволили нам построить зависимости стандартных термодинамических функций ($H^{\circ}(T) - H^{\circ}(0)$, $S^{\circ}(T)$ и –[$G^{\circ}(T) - H^{\circ}(0)$]) от мольного содержания третьего компонента. Эти зависимости, как и в случае теплоемкости, имеют линейный характер. При T = 100 К и T = 200 К уравнения приведены в табл. 5. Эти зависимости дают возможность рассчитать энтальпии, энтропии и энергии Гиббса нагревания терполимеров других составов при указанных температурах.

Таблица 5. Уравнения изотерм стандартных термодинамических функций терполимеров СОЭБ при температурах T = 100 K и T = 200 K; $p^0 = 0.1$ МПа

<i>Т</i> , К	$H^{\circ}(T)-H^{\circ}(0)$	$S^{\circ}(T)$	$-[G^{\circ}(T) - H^{\circ}(0)]$
100	0.0088n + 1.7185	0.4361n + 31.256	0.0348n + 1.4065
200	0.0356n + 6.1394	0.6144n + 61.026	0.0873n + 6.0659

По значениям энтропии СОЭБ (табл. 4) и абсолютной энтропии соответствующих простых веществ С(гр), $H_2(r)$, $O_2(r)$ [34, 35], при T = 298.15 К рассчитали стандартную энтропию образования СОЭБ

 $\Delta_{\rm f} S^{\circ}({\rm C}_{3.7}{\rm H}_{25.4}{\rm O},\ 298.15) = -(357.2\pm2.9)$ Дж/(К моль) соответствует уравнению реакции:

$$3.7C_{(rp)} + 2.7H_{2(r)} + 0.5O_{2(r)} \rightarrow C_{3.70}H_{5.40}O_{(a)},$$
 (6)

где (гр) – графит, (г) – газ, (а) – аморфное состояние.

Следует отметить, что при расчете значений абсолютной энтропии учитывали нулевую энтропию $S^{\circ}(0)$ СОЭБ.

Авторы благодарят сотрудника ИПХФ РАН к.х.н. О.М. Чуканову за предоставленный образец чередующегося тройного сополимера.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Госзадание № 0729-2020-0053).

СПИСОК ЛИТЕРАТУРЫ

- 1. Белов Г.П. // Успехи химии. 2004. Т. 73. № 3. С. 292.
- Wang H., Desilles N., Follain N. et al. // Eur. Polym. J. 2016. V. 85. P. 411.
- Lim M.Y., Oh J., Kim H.J. et al. // Ibid. 2015. V. 69. P. 156.
- Ворончихин В.Д., Ильин И.А., Ершов Д.В. и др. Способ модификации резиновых смесей и резин: патент РФ № 2 345 101. 2010.
- Ohsawa O., Lee K.H., Kim B.S. et al. // Polymer. 2010. V. 51. P. 2007.
- 6. Ольхов Ю.А., Аллаяров С.Р., Белов Г.П. // Химия высоких энергий. 2012. Т. 46. № 3. С. 192.
- 7. *Mu J., Fan W., Shan S. et al.* // Thermochim. Acta. 2014. V. 579. P. 74.
- Yang X.Q., Pan H., Du L.J. et al. // Mater. Lett. 2013. V. 102–103. P. 68.
- Youn S.J., Ali C., Taek S.H. // Polymer. 2018. V. 141. P. 102.
- Zehetmaier P.C., Vagin S.I., Rieger B. // MRS Bulletin. 2013. V. 38. P. 239.

- Анохин Д.В., Неверов В.М., Чвалун С.Н. и др. // Высокомолекуляр. соединения. Сер. А. 2004. Т. 46. № 1. С. 69.
- Lommerts B.J. PhD Thesis: University of Groningen, 1994. 139 p.
- Белов Г.П. // Высокомолек. соед. Сер. Б. 1998. Т. 40. № 3. С. 503.
- 14. Смирнова Н.Н., Голодков О.Н., Маркин А.В. и др. // Изв. Акад. наук. Сер. хим. 2015. № 12. С. 1451.
- 15. *Aphonin P.D., Smirnova N.N., Markin A.V. et al.* // Bulletin of the South Ural State University. Ser. Chemistry. 2016. V. 8. № 2. P. 29.
- Aphonin P.D., Smirnova N.N., Markin A.V. et al. // Ibid. 2016. V. 8. № 4. P. 45.
- 17. *Афонин П.Д., Смирнова Н.Н., Маркин А.В. и др. //* Журн. физ. химии. 2018. Т. 92. № 9. С. 1645.
- Алферов К.А., Чуканова О.М., Бубнова М.Л. и др. // Высокомолекуляр. соединения. Сер. А. 2013. Т. 55. № 12. С. 1402.
- 19. Белов Г.П., Чепайкин Е.Г., Безрученко А.П. и др. // Там же. 1993. Т. 35. № 10. С. 1585.
- Lommerts B.J., Klop E.A., Aerts J. // J. Polym. Sci. B: Polym. Phys. 1993. V. 31. P. 1319.
- 21. *Waddon A.J., Karttunen N.R.* // Macromolecules. 2002. V. 35. P. 4003.
- Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
- Малышев В.М., Мильнер Г.А., Соркин Е.Л. и др. // Приборы и техника эксперимента. 1985. Т. 6. С. 195.
- 24. Hohne G.W.H., Hemminger W.F., Flammersheim H.F. Differential Scanning Calorimetry. 2003. 299 p.
- 25. *Drebushchak V.A.* // J. Therm. Anal. Calorim. 2005. V. 79. P. 213.
- Лебедев Б.В., Жогова К.Б., Денисова Я.В. и др. // Изв. АН. Сер. хим. 1998. № 2. С. 284.
- 27. Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.
- 28. Якубов Т.С. // Докл. АН СССР. 1990. Т. 310. № 1. С.145.
- Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269. P. 109.
- 30. *Alford S., Dole M., Am J. //* Chem. Soc. 1955. V. 77. P. 4774.
- 31. Adam G., Gibbs J.U. // J. Chem. Phys. 1965. V. 43. P. 139.
- 32. Kauzmann W. // Chem. Rev. 1948. V. 43. P. 218.
- 33. *Rabinovich I.B., Nistratov V.P., Telnoy V.I., Sheiman M.S.* Thermochemical and thermodynamic properties of organometallic compounds. New York: Begell House, Inc. Publishers, 1999. 181 p.
- 34. Chase M.W. // J. Phys. Chem. Ref. Data: Monograph. 1998. № 9.
- Egan C.J., Kemp J.D. // J. Am. Chem. Soc. 1937. V. 59. P. 1264.