# ФИЗИЧЕСКАЯ ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ

УДК 544.726

# СОРБЦИЯ НИКОТИНОВОЙ И ИЗОНИКОТИНОВОЙ КИСЛОТ Аg-СОДЕРЖАЩИМ СУЛЬФОКАТИОНИТОМ КУ-2–4

© 2022 г. Г. Н. Альтшулер<sup>*a*,\*</sup>, Г. Ю. Шкуренко<sup>*a*</sup>, В. Н. Некрасов<sup>*a*</sup>, О. Г. Альтшулер<sup>*a*,*b*</sup>

<sup>а</sup>Федеральный исследовательский центр угля и углехимии Сибирского отделения РАН, Кемерово, Россия <sup>b</sup>Кемеровский государственный университет, Кемерово, Россия

> \**e-mail: altshulerh@gmail.com* Поступила в редакцию 08.11.2021 г. После доработки 08.11.2021 г. Принята к публикации 20.11.2021 г.

Экспериментально исследовано равновесное распределение катионов между сульфокатионитом KУ-2–4 и водными растворами, содержащими никотиновую или изоникотиновую кислоты, Ag<sup>+</sup>, H<sup>+</sup>. Показано, что противоионный состав сульфокатионита может быть рассчитан решением системы уравнений для коэффициентов селективности бинарных ионных обменов и уравнения материального баланса; среднее абсолютное отклонение по массиву расчетных величин не превышает величину абсолютной погрешности при экспериментальном определении эквивалентной доли компонентов в полимере. Сделан вывод, что возможность достижения высоких концентраций и заданных соотношений биологически активных катионов пиридинкарбоновых кислот и серебра в катионите KУ-2–4 представляет физико-химическую основу получения новых биологически активных препаратов.

*Ключевые слова:* сульфокатионит КУ-2–4, никотиновая кислота, изоникотиновая кислота, катионы серебра (I), сорбция

DOI: 10.31857/S0044453722070032

Производные пиридинкарбоновых кислот обладают высокой биологической активностью. Наиболее широко исследована никотиновая (3пиридинкарбоновая) кислота в связи с той радикальной ролью, которую она играет в обмене веществ в организме человека. Мировой спрос на никотиновую кислоту и ее производные неуклонно растет: от 8500 т в год в 1980-х годах до 22000 т в 1990-х годах и 35000-40000 т в 2000-х годах [1-3], прогноз [4] 2020 г. – 100000 т.

Изоникотиновая (4-пиридинкарбоновая) кислота, структурный изомер никотиновой кислоты, используется в производстве антидепрессантов (ипрониазида, ниаламида), в качестве сырья для получения противотуберкулезных препаратов (изониазида, метазида, салюзида, фтивазида). Туберкулез является причиной смерти ~2–3 миллионов человек ежегодно [5]. Существует острая необходимость в разработке новых терапевтических средств для борьбы с этим заболеванием, чтобы обеспечить более эффективное лечение [6].

Показано [7–10], что комплексы металлов, таких как серебро, медь и железо, — эффективные противотуберкулезные препараты. Комплексы серебра, например, являются антибактериальными агентами и используются в качестве терапевтических соединений [11, 12]. Соединения серебра и N- или О-донорных лигандов представляют особый биологический интерес [13, 14]. Получены и зарегистрированы кристаллографические данные никотинатов и изоникотинатов серебра(I) [15–17].

В медицине и фармакологии все большую актуальность приобретает метод направленного транспорта лекарственных средств, позволяющий увеличить их концентрацию в определенном месте и блокировать или сильно ограничить накопление в здоровых органах и тканях. Для адресной доставки лекарственных средств перспективно применение наноконтейнеров [18], которые помогают реализовать желаемую фармакокинетику. При этом возникают практически неограниченные возможности для консервации и хранения лекарственных форм, достигается "векторная" доставка к очагу заболевания. В настоящее время ведутся исследования по созданию наноконтейнеров на матрицах сетчатых полимеров [19]. Показано [20, 21], что элементарное звено сульфированного сополимера стирола с дивинилбензолом служит наноконтейнером для никотиновой кислоты (рис. 1).



**Рис. 1.** Структура наноконтейнера (элементарного звена сульфированного сополимера стирола с дивинилбензолом), содержащего никотиновую кислоту [20], минимизированная по внутренней энергии в рамках программы МОРАС 2016.

Ранее нами выполнена инкапсуляция пиридинкарбоновых кислот в наноконтейнеры на основе катионита КУ-2-8 [22] и анионита AB-17-8 [23, 24], исследовано [25] равновесное распределение пиридинкарбоновых кислот и протонов между сульфокатионитом КУ-2-4 и водными растворами, изучена сорбция никотиновой кислоты Fe-содержащим сульфокатионитом КУ-2-4 [26].

Термодинамические характеристики сорбционных процессов во многом определяются типом ионизации никотиновой и изоникотиновой кислот. По данным [27], пиридинкарбоновые кислоты в бинарном водном растворе существуют преимущественно в виде цвиттер-ионов. Константы диссоциации пиридинкарбоновых кислот в воде приведены в табл. 1.

Методами материального баланса процесса ионного обмена, ИК-, <sup>13</sup>С ЯМР-спектроскопии

Таблица 1. Константы диссоциации пиридинкарбоновых кислот

| Кислота (HL)        | $K_1 \times 10^5$ | $-\lg K_1$ | $K_{2} \times 10^{2}$ | $-\lg K_2$ |
|---------------------|-------------------|------------|-----------------------|------------|
| Никотиновая [28]    | 1.90              | 4.72       | 1.02                  | 1.99       |
| Изоникотиновая [29] | 1.29              | 4.89       | 1.99                  | 1.7        |

Обозначения:  $K_1$  – константа диссоциации пиридинкарбоновой кислоты,  $K_1 = \frac{[\text{H}]^+[\text{L}]^-}{[\text{HL}]}$ ;  $K_2$  – константа диссоциации катиона  $[\text{H}_2\text{L}]^+$  протонированной пиридинкарбоновой кис-

лоты, 
$$K_2 = \frac{[H]^+[HL]}{[H_2L]^+}$$
.

показано [22, 30], что никотиновая и изоникотиновая кислоты в сульфокатионите КУ-2–4 представлены протонированной H<sub>2</sub>L-формой.

Цель данной работы — по константам образования комплексов и коэффициентам селективности бинарных ионных обменов провести предрасчет равновесных составов сульфокатионита КУ-2—4 и водных растворов, содержащих никотиновую или изоникотиновую кислоту и серебро(I); сравнить результаты расчетов с экспериментальными данными по равновесному распределению компонентов между сульфокатионитом КУ-2—4 и водными растворами.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

*Материалы*. Сильнокислотный катионит КУ-2-4 – сульфированный сополимер стирола с 4% дивинилбензола, содержит SO<sub>3</sub>H-группы, имеет полную ионообменную емкость – 5.0 мэкв на 1 г Н-формы сухого полимера. Никотиновая кислота соответствовала требованиям Международной фармакопеи [31], содержала не менее 99.0% основного вещества. Изоникотиновая кислота содержала 99.0% 4-пиридинкарбоновой кислоты. Растворы электролитов готовили из AgNO<sub>3</sub> квалификации "ч.д.а.", HNO<sub>3</sub>, RbNO<sub>3</sub> – квалификации "х.ч.".

Методики. Равновесное распределение компонентов между водными растворами пиридинкарбоновых кислот, AgNO3, HNO3 и сульфокатионитом КУ-2-4 изучали динамическим методом при температуре 298 К. Через ионообменную колонку, обернутую светонепроницаемой бумагой и заполненную H- или Ад-формой полимера, пропускали водные растворы до совпадения составов исходного раствора и фильтрата. При исследовании равновесий с участием никотиновой кислоты концентрация никотиновой кислоты в растворе составляла 0.012 моль/л, нитрата серебра – 0.0009 моль/л. При исследовании равновесий с участием изоникотиновой кислоты концентрация изоникотиновой кислоты в растворе составляла 0.01 моль/л, нитрата серебра – 0.001 моль/л. рН растворов в интервале 1.7-3.50 поддерживали добавлением HNO<sub>3</sub>. После достижения состояния равновесия проводили десорбцию пиридинкарбоновой кислоты дистиллированной водой, затем – десорбцию ионов серебра 0.1 M раствором RbNO<sub>3</sub>.

Концентрацию никотиновой или изоникотиновой кислоты в растворах определяли с помощью спектрофотометра СФ-46 при  $\lambda = 262.7$  нм и рН 6.86.

Концентрации индивидуальных компонентов  $([H_2L]^+, HL, L^-, Ag^+, AgL, H^+)$  в растворе при 298 К рассчитывали по компьютерной программе HySS 2009 (Hyperquad Simulation and Speciation) [32].

#### АЛЬТШУЛЕР и др.

| Раствор (эксперимент)       |             | Раствор (расчет по HySS) |                                  |                     | Катионит КУ-2-4 (эксперимент) |                                  |                       |                |  |  |  |
|-----------------------------|-------------|--------------------------|----------------------------------|---------------------|-------------------------------|----------------------------------|-----------------------|----------------|--|--|--|
| pH                          | $C_{ m HL}$ | $C_{\mathrm{AgNO}_3}$    | $C_{[\mathrm{H}_2\mathrm{L}]^+}$ | $C_{\mathrm{Ag}^+}$ | $C_{\mathrm{H}^{+}}$          | $C_{[\mathrm{H}_2\mathrm{L}]^+}$ | $C_{\mathrm{Ag}^{+}}$ | $C_{{ m H}^+}$ |  |  |  |
| HL – никотиновая кислота    |             |                          |                                  |                     |                               |                                  |                       |                |  |  |  |
| 2.93                        | 0.0120      | 0.00092                  | 0.00121                          | 0.00088             | 0.00118                       | 1.11                             | 0.50                  | 0.39           |  |  |  |
| 3.02                        | 0.0123      | 0.00088                  | 0.00103                          | 0.00084             | 0.00096                       | 1.06                             | 0.62                  | 0.32           |  |  |  |
| 3.27                        | 0.0121      | 0.00088                  | 0.00058                          | 0.00080             | 0.00054                       | 0.86                             | 0.83                  | 0.31           |  |  |  |
| 3.40                        | 0.0120      | 0.00090                  | 0.00043                          | 0.00080             | 0.00040                       | 0.77                             | 1.00                  | 0.23           |  |  |  |
| 3.54                        | 0.0120      | 0.00088                  | 0.00031                          | 0.00075             | 0.00029                       | 0.62                             | 1.08                  | 0.20           |  |  |  |
| HL – изоникотиновая кислота |             |                          |                                  |                     |                               |                                  |                       |                |  |  |  |
| 1.71                        | 0.0099      | 0.0010                   | 0.0054                           | 0.0010              | 0.0195                        | 0.94                             | 0.124                 | 0.94           |  |  |  |
| 2.04                        | 0.0100      | 0.0010                   | 0.0035                           | 0.0010              | 0.0091                        | 0.99                             | 0.274                 | 0.74           |  |  |  |
| 2.51                        | 0.0099      | 0.0010                   | 0.0016                           | 0.0010              | 0.0031                        | 1.03                             | 0.382                 | 0.59           |  |  |  |
| 2.82                        | 0.0100      | 0.0010                   | 0.0008                           | 0.0010              | 0.0015                        | 0.80                             | 0.78                  | 0.42           |  |  |  |
| 3.19                        | 0.0100      | 0.0010                   | 0.0004                           | 0.0010              | 0.00065                       | 0.61                             | 1.17                  | 0.22           |  |  |  |
| 3.54                        | 0.0099      | 0.0010                   | 0.0002                           | 0.0009              | 0.00029                       | 0.44                             | 1.47                  | 0.09           |  |  |  |

**Таблица 2.** Равновесные составы водных растворов ( $C_i$ , моль/л) содержащих никотиновую или изоникотиновую кислоты, катионы  $[H_2L]^+$ ,  $Ag^+$ ,  $H^+$ , и катионита КУ-2–4

Долю катионов в растворе  $x_i$  рассчитывали как отношение концентрации катиона *i* к суммарной концентрации катионов ( $[H_2L]^+$ , Ag<sup>+</sup>, H<sup>+</sup>) в растворе.

Концентрацию компонентов в полимере рассчитывали в молях на литр собственного объема фазы набухшего ионита. Эквивалентную долю компонента в полимере  $\overline{x}_i$  рассчитывали как отношение количества компонента *i* к общему содержанию противоионов в сульфокатионите. Величину абсолютной погрешности определения доли компонентов в растворе рассчитывали с доверительной вероятностью 0.95. Равновесные составы фаз приведены в табл. 2.

### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как видно из табл. 2, выбранные составы растворов позволяют получить широкий интервал равновесных концентраций всех компонентов в катионите. Эквимолярное содержание катионов пиридинкарбоновых кислот и серебра в сульфокатионите достигается для никотиновой кислоты при рН раствора, равном 3.27, для изоникотиновой кислоты — при рН 2.82.

Концентрация никотиновой, изоникотиновой кислот и серебра в полимерной фазе во много раз превышает их концентрацию в водном растворе. Коэффициенты распределения индивидуальных компонентов между полимерной фазой и растворами находятся в интервалах: для пиридинкарбоновых кислот от 50 до 100, для серебра — от 100 до 1500.

Изучим механизм возникновения высоких коэффициентов распределения.

Определим состав раствора. Пиридинкарбоновая кислота в водном растворе вступает в реакции протонирования, депротонирования (табл. 1) и комплексообразования. В исследуемом растворе протекают следующие реакции:

$$\mathrm{HL} + \mathrm{H}^{+} \to [\mathrm{H}_{2}\mathrm{L}]^{+}, \qquad (1)$$

$$\mathrm{HL} \to \mathrm{L}^{-} + \mathrm{H}^{+}, \qquad (2)$$

$$L^{-} + Ag^{+} \to AgL.$$
 (3)

Составы водных растворов, рассчитанные по программе HySS, приведены на рис. 2. Из рис. 2 видно, что относительно высокая концентрация катионов никотиновой кислоты ≈6 × 10<sup>-3</sup> моль/л (рис. 2а, кривая 1) может быть получена при рН 2, такая же концентрация катионов изоникотиновой кислоты достигается в более кислых растворах при рН 1.5 (рис. 26, кривая 1). Расчет показывает (рис. 2а), что для растворов никотиновой кислоты при рН ≈ 3.0 концентрации всех катионов  $H^+$ ,  $Ag^+$ ,  $[H_2L]^+$  сопоставимы и составляют ~0.001 моль/л. Расчетная концентрации нейтральных комплексов AgL мала (4 ×  $10^{-5}$  моль/л). Для изоникотиновой кислоты (рис. 2б) в кислых средах 1.5 < pH < 3.5 расчетные концентрации протонов значительно превышают концентрации  $Ag^+$ ,  $[H_2L]^+$ . Расчетная концентрации нейтральных комплексов AgL стремится к нулю. Таким образом, в исследуемых водных растворах находятся катионы  $[H_2L]^+$ ,  $Ag^+$ ,  $H^+$ .

Далее определим равновесный противоионный состав катионита. В гетерогенной системе,



**Рис. 2.** Зависимости концентрации компонентов в водном растворе 0.012 моль/л никотиновой кислоты и 0.00088 моль/л AgNO<sub>3</sub> (а), в водном растворе 0.01 моль/л изоникотиновой кислоты и 0.001 моль/л Ag-NO<sub>3</sub> (б) от pH;  $[H_2L]^+$  (1); HL (2);  $L^-$  (3); Ag<sup>+</sup> (4); AgL (5); H<sup>+</sup> (6).

содержащей сульфокатионит КУ-2—4, водный раствор пиридинкарбоновой кислоты и нитрата серебра (I), будут протекать независимые реакции ионного обмена:

$$\overline{Ag^{+}} + [H_{2}L]^{+} \rightarrow Ag^{+} + \overline{[H_{2}L]^{+}}, \qquad (4)$$

$$\overline{\mathrm{H}^{+}} + [\mathrm{H}_{2}\mathrm{L}]^{+} \to \mathrm{H}^{+} + \overline{[\mathrm{H}_{2}\mathrm{L}]^{+}}.$$
 (5)

Здесь и далее черта означает принадлежность к полимерной фазе.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 7 2022

Показано [33], что для многоионного обмена равнозарядных ионов коэффициенты селективности бинарного обмена  $k_{1/n}$  связаны с эквивалентной долей ионов в полимере  $\overline{x}_i$  следующей

функциональной зависимостью:

$$\ln k_{1/n} = A_{1/n} + \sum_{i=1}^{n} B_{i/n} \overline{x}_{i}, \qquad (6)$$

где

$$k_{1/n} = \frac{\overline{x}_1 x_n}{\overline{x}_n x_1},\tag{7}$$

 $A_{1/n}; B_{1/n}$  — постоянные величины, n — номер (место) иона в ряду уменьшения селективности ионита:

$$k_{1/n} > k_{2/n} > \dots k_{i/n} \dots > 1.$$
 (8)

С учетом экспериментальных данных [22, 34] селективность КУ-2–4 к исследуемым катионам уменьшается в последовательности:

$$[H_2L]^+ > Ag^+ > H^+.$$
(9)

Запишем уравнения (6) для трех обменивающихся ионов с учетом селективности ионита

$$\ln k_{[H_{2}L]^{+}/Ag^{+}} = A_{[H_{2}L]^{+}/Ag^{+}} + B_{[H_{2}L]^{+}/Ag^{+}} \overline{x}_{[H_{2}L]^{+}},$$
  

$$\ln k_{[H_{2}L]^{+}/H^{+}} = A_{[H_{2}L]^{+}/H^{+}} + B_{[H_{2}L]^{+}/H^{+}} \overline{x}_{[H_{2}L]^{+}} + (10)$$
  

$$+ B_{Ag^{+}/H^{+}} \overline{x}_{Ag^{+}}.$$

Постоянные  $A_{[H_2L]^+/Ag^+}$ ,  $A_{[H_2L]^+/H^+}$ ,  $B_{[H_2L]^+/Ag^+}$ ,  $B_{[H_2L]^+/Ag^+}$ ,  $B_{[H_2L]^+/H^+}$ ,  $B_{Ag^+/H^+}$  находим на основе линейной аппроксимации  $\ln k_{i/k}(\bar{x}_i)$  экспериментальных данных [22, 34] по равновесию обмена для независимых бинарных обменов  $k_{[H_2L]^+/H^+}(\bar{x}_{[H_2L]^+})$ ,  $k_{Ag^+/H^+}(\bar{x}_{Ag^+})$  с учетом соотношения  $k_{i/k} = \frac{k_{i/j}}{k_{k/j}}$  [35].

Для расчета равновесий ионного обмена с участием трех обменивающихся ионов ( $[H_2L]^+$ , Ag<sup>+</sup>, H<sup>+</sup>) на КУ-2–4 из уравнения (10) и следующего уравнения:

$$\sum_{i=1}^{m} \overline{x} = 1, \tag{11}$$

а также двух уравнений (7) для  $k_{1/n}$  получим системы

для никотиновой кислоты:

$$\begin{cases} \ln k_{[\mathrm{H}_{2}\mathrm{L}]^{+}/\mathrm{Ag}^{+}} = 0.92 - 1.29 \overline{x}_{[\mathrm{H}_{2}\mathrm{L}]^{+}}, \\ \ln k_{[\mathrm{H}_{2}\mathrm{L}]^{+}/\mathrm{H}^{+}} = 1.834 - 1.29 \overline{x}_{[\mathrm{H}_{2}\mathrm{L}]^{+}}, \\ k_{[\mathrm{H}_{2}\mathrm{L}]^{+}/\mathrm{Ag}^{+}} = \frac{\overline{x}_{[\mathrm{H}_{2}\mathrm{L}]^{+}} x_{\mathrm{Ag}^{+}}}{\overline{x}_{\mathrm{Ag}^{+}} x_{[\mathrm{H}_{2}\mathrm{L}]^{+}}}, \\ k_{[\mathrm{H}_{2}\mathrm{L}]^{+}/\mathrm{H}^{+}} = \frac{\overline{x}_{[\mathrm{H}_{2}\mathrm{L}]^{+}} x_{\mathrm{H}^{+}}}{\overline{x}_{\mathrm{H}^{+}} x_{[\mathrm{H}_{2}\mathrm{L}]^{+}}}, \\ \overline{x}_{[\mathrm{H}_{2}\mathrm{L}]^{+}} + \overline{x}_{\mathrm{Ag}^{+}} + \overline{x}_{\mathrm{H}^{+}} = 1, \end{cases}$$

$$(12)$$

и для изоникотиновой кислоты:

$$\ln k_{[H_{2}L]^{+}/Ag^{+}} = 0.579 - 0.276 \overline{x}_{[H_{2}L]^{+}},$$

$$\ln k_{[H_{2}L]^{+}/H^{+}} = 1.495 - 0.276 \overline{x}_{[H_{2}L]^{+}},$$

$$k_{[H_{2}L]^{+}/Ag^{+}} = \frac{\overline{x}_{[H_{2}L]^{+}} x_{Ag^{+}}}{\overline{x}_{Ag^{+}} x_{[H_{2}L]^{+}}},$$

$$k_{[H_{2}L]^{+}/H^{+}} = \frac{\overline{x}_{[H_{2}L]^{+}} x_{H^{+}}}{\overline{x}_{H^{+}} x_{[H_{2}L]^{+}}},$$

$$(13)$$

$$k_{[H_{2}L]^{+}/H^{+}} = \frac{\overline{x}_{[H_{2}L]^{+}} x_{H^{+}}}{\overline{x}_{H^{+}} x_{[H_{2}L]^{+}}},$$

$$(\overline{x}_{[H_{2}L]^{+}} + \overline{x}_{Ag^{+}} + \overline{x}_{H^{+}} = 1.$$

На рис. 3 приведены зависимости эквивалентной доли катионов в полимере от их доли в водном растворе. Как видно, расчетные и экспериментальные значения эквивалентной доли катионов в полимере практически совпадают для всех обменивающихся катионов ( $[H_2L]^+$ ,  $Ag^+$ ,  $H^+$ ) во всем интервале равновесных составов как для раствора никотиновой кислоты (рис. 3а), так и для раствора изоникотиновой кислоты (рис. 3б). Это означает, что в многокомпонентной гетерофазной системе действительно протекают равновесные реакции (1)–(5). Пиридинкарбоновые кислоты в сульфокатионите KУ-2–4 представлены протонированной  $H_2L$ -формой.

Таким образом, по константам образования комплексов и коэффициентам селективности бинарных ионных обменов можно провести предрасчет равновесных ионных составов раствора и сульфокатионита КУ-2-4, получить высокую концентрацию и любое заданное соотношение биологически активных катионов пиридинкарбоновых кислот и серебра в полимере.

Для характеристики метода расчета найдем среднее абсолютное отклонение по массиву по формуле [35]:

$$\Delta \overline{x} = \frac{\sum_{i=1}^{n} \sum_{r=1}^{s} \left| \left( \overline{x}_{ir \ \mathsf{skcn}} - \overline{x}_{ir \ \mathsf{pacy}} \right) \right|}{ns}, \tag{14}$$



**Рис. 3.** Зависимости эквивалентной доли противоионов в катионите KУ-2–4 от эквивалентной доли катионов в растворе никотиновой кислоты (а), изоникотиновой кислоты (б):  $[H_2L]^+$  (*1*), Ag<sup>+</sup> (*2*), H<sup>+</sup> (*3*) – экспериментальные данные;  $[H_2L]^+$  (*1*), Ag<sup>+</sup> (*2*), H<sup>+</sup> (*3*) – расчет по системе уравнений (12) или (13).

где *n* — число обменивающихся ионов; *s* — число экспериментальных точек.

Обработка данных рис. 3 по формуле (14) для ионного обмена с участием никотиновой кислоты дает  $\Delta \bar{x} = 0.021$ , с участием изоникотиновой кислоты  $\Delta \bar{x} = 0.027$ . Среднее абсолютное отклонение по массиву не превышает величину абсолютной погрешности при экспериментальном определении эквивалентной доли компонентов в полимере. В этой связи мы считаем, что предложенный метод расчета ионного состава фазы сорбента может иметь практическое применение.

Большие коэффициенты распределения компонентов между полимерной фазой и водным раствором позволяют концентрировать никотиновую, изоникотиновую кислоты и серебро в сульфокатионите КУ-2–4. Возможность достижения высоких концентраций и заданных соот-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 7 2022

ношений биологически активных катионов пиридинкарбоновых кислот и серебра в катионите KУ-2–4, на наш взгляд, представляет физико-химическую основу получения новых биологически активных препаратов.

Работа выполнена в рамках государственного задания Института углехимии и химического материаловедения Федерального исследовательского центра угля и углехимии Сибирского отделения Российской академии наук (проект № 121031500194-5).

## СПИСОК ЛИТЕРАТУРЫ

 Shimizu S. Vitamins and Related Compounds: Microbial Production, in Biotechnology: 2nd completely rev. ed. /Ed. H.-J. Rehm, G. Reed. Weinheim: Wiley-VCH, 2001. P. 318.
 https://doi.org/10.1002/0782527620000.ch11k

https://doi.org/10.1002/9783527620999.ch11k.

- 2. *Weissermel K., Arpe H.-J.* Industrial Organic Chemistry, 4th ed. Weinheim: Wiley-VCH, 2003. 491 p.
- Cantarella M., Cantarella L., Gallifuoco A. et al. // Enzyme Microb. Technol. 2008. V. 42. P. 222. https://doi.org/10.1016/j.enzmictec.2007.09.012
- Goncalves Elsa M., Bernardes Carlos E.S., Diogo Hermi'nio P. et al. // J. Phys. Chem. B. 2010. V. 114. P. 5475.
  - https://doi.org/10.1021/jp101490b
- 5. Global Alliance for TB Drug Development.www.tballiance.org [accessed 21.10.21].
- Lourenço M.C.S., Ferreira M.L., Souza M.V. et al. // Eur. J. Med. Chem. 2008. V. 43. P. 1344. https://doi.org/10.1016/j.ejmech.2007.08.003
- Sandbhor U., Padhye D., Billington D. et al. // J. Inorg. Biochem. 2002. V. 90. P. 127. https://doi.org/10.1016/S0162-0134(02)00406-3
- Cuin A., Neves A., Szpoganicz B. et al. // J. Inorg. Biochem. 2007. V. 101. P. 291. https://doi.org/10.1016/j.jinorgbio.2006.10.001
- Oliveira J.S., Sousa E.H.S., Basso L.A. et al. // Chem. Commun. 2004. V. 3. P. 312. https://doi.org/10.1039/B313592F
- Cavicchioli M., Leite C.Q.F., Sato D.N. et al. // Arch. Pharm. 2007. V. 340. P. 538.
- Klasen H.J. // Burns. 2000. V. 26. P. 117. https://doi.org/10.1016/S0305-4179(99)00108-4
- Klasen H.J. // Burns. 2000. V. 26. P. 131. https://doi.org/10.1016/S0305-4179(99)00116-3
- Nomiya K., Tsuda K., Sudoh T. J. et al. // J. Inorg. Biochem. 1997. V. 68. P. 39. https://doi.org/10.1016/S0162-0134(97)00006-8
- Nomiya K., Tsuda K., Tanabe Y. et al. // J. Inorg. Biochem. 1998. V. 69. P. 9. https://doi.org/10.1016/S0162-0134(97)10003-4
- Jaber F., Charbonnier F., Fauer R. et al. // Z. Kristallogr. 1994. V. 209. P. 536. https://doi.org/10.1524/zkri.1994.209.6.536
- 16. Smith G., Reddy A.N., Byriet K.A. et al. // Polyhedron. 1994. V. 13. P. 2425. https://doi.org/10.1016/S0277-5387(00)88156-5
  - ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 7 2022

- Per-Olov K., Jekabs G., Mats F. et al. // Polyhedron. 2001. V. 20. P. 2747. https://doi.org/10.1016/S0277-5387(01)00883-X
- Тараховский Ю.С. Интеллектуальные липидные наноконтейнеры в адресной доставке лекарственных веществ. М.: ЛКИ, 2011. 280 с.
- Cram D.J., Karbach S.K., Hye-Eyn Kim. et al. //J. Am. Chem. Soc. 1988. V. 110. P. 2229. https://doi.org/10.1021/ja00215a037
- 20. *Altshuler H., Ostapova E., Altshuler O. et al.* // ADMET and DMPK. 2019. V. 7. № 1. P. 76. https://doi.org/10.5599/admet.626
- 21. Альтиулер Г.Н., Остапова Е.В., Альтиулер О.Г. и др. // ЖПХ. 2019. Т. 92. № 4. С. 484. https://doi.org/10.1134/S004446181904008X
- 22. Альтиулер Г.Н., Шкуренко Г.Ю., Остапова Е.В. и др. // Изв. АН. Сер. хим. 2017. № 7. С. 1177.
- 23. Альтиулер Г.Н., Остапова Е.В., Малышенко Н.В. и др. // Изв. АН. Сер. хим. 2017. № 10. С. 1854 [Altshuler H.N., Ostapova E.V., Malyshenko N.V. et al.] // Russ. Chem. Bull. (Int. Ed.). 2017. V. 66. Р. 1854. https://doi.org/10.1007/s11172-017-1957-7
- 24. Альтиулер Г.Н., Остапова Е.В., Альтиулер О.Г. // Журн. физ. химии. 2019. Т. 93. № 4. С. 579. https://doi.org/10.1134/S0036024419040034
- 25. Остапова Е.В., Лырщиков С.Ю., Альтиулер Г.Н. // Бутлеровские сообщения. 2020. Т. 64. № 10. С. 55. https://doi.org/10.37952/ROI-jbc-01/20-64-10-55
- 26. Альтиулер Г.Н., Остапова Е.В., Альтиулер О.Г. // Журн. физ. химии. 2021. Т. 95. № 8. С. 1194. https://doi.org/10.1134/S0036024421080045
- 27. Wang F, Berglund K.A. //Ind. Eng. Chem. Res. 2000. V. 39. P. 2101. https://doi.org/10.1021/ie9901426
- 28. The IUPAC Stability Constants Database; http://www.acadsoft.co.uk/scdbase/scdbase.htm.
- 29. Альтиулер Г.Н., Альтиулер О.Г., Исмагилов З.Р. Нанореакторный синтез пиридинкарбоновых кислот: Номер регистрации (свидетельства): 2014621264 // РОСПАТЕНТ. 2014. № 10. С. 96. https://www1.fips.ru/Archive/EVM/2014/2014.10.20/ DOC/RUNW/000/002/014/621/264/DOCU-MENT.PDF.
- Остапова Е.В., Шкуренко Г.Ю., Лырщиков С.Ю. и др. // Бутлеровские сообщения. 2016. Т. 48. № 10. С. 37.
  - https://doi.org/10.37952/ROI-jbc-01/16-48-10-37
- 31. The International Pharmacopoeia, Fifth Edition, Available at: http://apps.who.int/phint/en/p/docf.
- 32. HySS 2009. Hyperquad Simulation and Speciation, Protonic Software, Leeds (UK), Universita di Firenze, Firenze (Italy), 2009. http://www.hyperquad.co.uk/hyss.htm.
- 33. Альтиулер Г.Н., Альтиулер О.Г. // Журн. физ. химии. 2001. Т. 75. № 12. С. 2237.
- 34. Valslow F., Boyd G.E. //J. Phys. Chem. 1966. V. 70. P. 2295. https://doi.org/10.1021/j100879a035
- Altshuler O.H., Altshuler H.N. // Comput. Mater. Sci. 2006. V. 36. P. 207. https://doi.org/10.1016/j.commatsci.2004.12.081