_ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ ____

УДК 544.35

ОБЪЕМНЫЕ СВОЙСТВА РАСТВОРОВ В СИСТЕМАХ ВОДА—МЕТАНСУЛЬФОНОВАЯ КИСЛОТА—МЕТАНСУЛЬФОНАТ НИКЕЛЯ (КОБАЛЬТА)

© 2022 г. Е. В. Белова^{*a*,*}, Ю. Д. Шакирова^{*a*,*b*}, В. В. Епишев^{*a*}

^а Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, 119991, Россия ^b Московский государственный университет имени М.В. Ломоносова, Факультет наук о материалах, Москва, 119991, Россия *e-mail: catrine2@mail.ru Поступила в редакцию 11.11.2021 г.

После доработки 11.11.2021 г. Принята к публикации 15.11.2021 г.

Методом вибрационной денситометрии определены плотности жидкой фазы при 288.15, 298.15 и 308.15 К в двухкомпонентных системах $H_2O-Ni(CH_3SO_3)_2$, $H_2O-Co(CH_3SO_3)_2$ и в соответствующих трехкомпонентных системах с метансульфоновой кислотой. В системе $H_2O-CH_3SO_3H$ измерения плотностей проводились только при 288.15 и 308.15 К. На основании данных для двухкомпонентных систем определены параметры модели Лалиберте для описания кажущегося объема жидкой фазы. Оценена предсказательная способность полученных параметров для описания свойств растворов трехкомпонентных систем.

Ключевые слова: метансульфоновая кислота, метансульфонаты, плотности, модель Лалиберте **DOI:** 10.31857/S0044453722070081

Системы вода-кислота-соль являются базовыми с точки зрения построения физико-химических моделей большинства гидрометаллургических процессов. К ним относятся, например, выщелачивание при переработке руд и отходов [1-5] и гальванопластика [6-8]. В связи с ужесточением требований по экологичности разрабатываемых технологий в последние десятилетия стали рассматривать возможность применения более дорогих, но менее вредных для окружающей среды реагентов. Одним из таких реактивов "зеленой химии" является метансульфоновая кислота CH_3SO_3H [1-8]. Применение ее при обработке техногенных отходов, содержащих 3*d*-металлы (в частности, кобальт и никель) с последующей их регенерацией позволяет решить сразу две проблемы – понизить себестоимость целевых продуктов и уменьшить экологические риски.

Несмотря на перспективы использования CH₃SO₃H, сама кислота, ее водные растворы и растворы солей изучены недостаточно полно. Так, плотность чистой метансульфоновой кислоты приведена только в одной работе [9] в температурном диапазоне от 273 до 360 К. Плотности водных растворов метансульфоновой кислоты также изучались в работе Teng и Lenzi [10], хотя и в широком концентрационном диапазоне при трех

температурах — 293.15, 298.15 и 308.15 К. Объемные свойства двухкомпонентных растворов метансульфонатов 3*d*-металлов известны только для цинка и меди [11], но отсутствуют для других представителей этого ряда металлов.

В этой связи целью настоящей работы было измерение плотностей растворов систем водаметансульфонат кобальта (никеля), вода-метансульфоновая кислота, вода-метансульфоновая кислота-метансульфонат кобальта (никеля) в температурном интервале 288.15–308.15 К с последующим моделированием объемных свойств жидкой фазы этих систем с помощью инкрементной схемы Лалиберте [12, 13]. Полученные наборы параметров могут быть использованы при предсказании плотностей многокомпонентных растворов, применяемых в гидрометаллургических процессах с участием CH₃SO₃H и ее солей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. Все опыты проводились с дистиллированной водой, электропроводность которой при 25°С составляла 4.5 мкСм/см. В табл. 1 приведены остальные реактивы, использованные в настоящей работе. Метансульфонаты никеля и кобальта синтезированы обменной реакцией

ОБЪЕМНЫЕ СВОЙСТВА РАСТВОРОВ

Реактив	CAS	Производитель	Чистота
CH ₃ SO ₃ H	75-75-2	Alfa Aesar	98.0%, по паспорту реактива
Ba(OH) ₂ ·8H ₂ O	12230-71-6	Лабтех	"ч.д.а.", 98.0%, по паспорту реактива
NiSO ₄ ·7H ₂ O	10101-98-1	Реахим	"х.ч.", 98.0% (примесей металлов, хлора, азота суммарно менее 0.1%), по паспорту реактива
CoSO ₄ ·7H ₂ O	10026-24-1	Реахим	"ч.д.а.", 98.0% (примесей металлов, хлора, азота суммарно менее 0.1%), по паспорту реактива
Ni(CH ₃ SO ₃) ₂ ·6H ₂ O		наст. работа	99.9%
Co(CH ₃ SO ₃) ₂ ·6H ₂ O		наст. работа	99.9%

Таблица 1. Характеристики использованных реактивов

между сульфатом соответствующего металла и раствором метансульфоната бария, полученного смешением эквивалентных количеств гидроксида бария и метансульфоновой кислоты. Образовавшийся сульфат бария удалялся из раствора. Осадок низкотемпературного кристаллогидрата соответствующего металла выделялся из концентрированного раствора при 0°С на стеклянном пористом фильтре, после чего грелся до полного плавления. Затем вещество оставляли остывать до комнатной температуры. Выделившийся осадок отфильтровывали и использовали для приготовления концентрированных растворов: содержание в нем примесных металлов проверяли методом ICP OES. По результатам химического анализа, полученные таким способом соли содержали менее 0.1% примесей. Состав кристаллогидратов уточняли по данным термогравиметрии и PCA.

В связи с тем, что кристаллогидраты склонны к выветриванию и не являются весовыми формами, были приготовлены концентрированные растворы, состав которых далее уточняли методом комплексонометрического титрования 0.0500 М ЭДТА в аммиачном буфере в присутствии мурексида. Погрешность при расчете содержания метансульфоната никеля и кобальта в таких растворах определялась как погрешность титрования исходных концентрированных растворов.

Аналогично готовили и растворы метансульфоновой кислоты, которая в твердом состоянии представляла собой сильно гигроскопичное вещество. Концентрацию полученного раствора уточняли непосредственно перед приготовлением изучаемых смесей методом кислотно-основного титрования, для чего использовали свежий раствор 0.1 М NaOH, стандартизованный по 0.1000 М раствору азотной кислоты (готовился из стандарт-титра). Измерения проводили с помощью автотитратора с потенциометрическим детектированием.

Измерения плотности водных растворов проводили на вибрационным плотномере "ВИП-2M". Принцип работы плотномера основан на регистрации собственных колебаний U-образной трубки, заполненной жидкостью, которая является измерительной ячейкой [11, 14, 15]. Прибор калибровали перед каждой серией измерений при атмосферном давлении, измеряя период колебаний для воздуха и кипяченой дистиллированной воды при 308.15 К, плотность которых известна в широком диапазоне давлений и температур. При 288.15 и 298.15 К для уточнения калибровочных прямых также использовали стандартные растворы РЭП-7 и РЭП-12 (производства ФГУП ВНИ-ИМ им. Д.И. Менделеева), для которых известны поверенные значения плотности при этих температурах. Погрешности температуры и давления составляли 0.1 К и 1 кПа, погрешность измерения плотности конкретного раствора оценивали по калибровочной зависимости; она не превышала 0.2 кг/м³ при 288.15 и 298.15 К и 0.4 кг/м³ при 308.15 К. Однако, с учетом неопределенности оценки состава раствора, погрешность определяемой величины плотности выше и составляет около 3-5 кг/м³ (см. обсуждение результатов, где приводится оценка этой величины).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Обработка результатов измерений. Для описания объемных свойств жидкой фазы выбрана модель Лалиберте—Купера [12, 13] (далее — Лалиберте). Эта модель относится к классу эмпирических, но при этом работает в широком концентрационном диапазоне и вполне удовлетворительно описывает плотности широкого круга разнообразных систем. Именно по этой причине ее удобно использовать при моделировании объектов, интересных для реальных технологических процессов. Параметризацию термодинамической модели жидкой фазы проводили в среде MATLAB (с помощью встроенной функции lsqnonlin). Для этого минимизировали целевую функцию вида:

$$F(X_1,...,X_n,\theta_1,...,\theta_k) =$$

= $\sum_{x} \sum_{i=1...n} \left(X_i^{\exp} - X_i^{calc}(\theta_1,...,\theta_k) \right)^2,$ (1)

где X_i^{exp} — измеренные значения плотности (объема), $X_i^{calc}(\theta_1,...,\theta_k)$ — значения свойств, рассчитанные с помощью модели, $\theta_1,...,\theta_k$ — оптимизируемые параметры. Для всех параметров рассчитаны их доверительные интервалы для 95% вероятности с помощью встроенной функции nl-parci.

При оценке параметров модели Лалиберте в качестве *X* выбран кажущийся объем; чтобы снизить корреляцию между параметрами, выражение для кажущегося объема было преобразовано к виду:

$$V_{\rm app} = \left(\frac{1}{p(1)} + \frac{p(3) + p(4)t}{p(1)w + p(2)}\right) / e^{(0.00001(t-25)^2)}, \qquad (2)$$

где w — массовая доля; t — температура в градусах Цельсия; p(1), p(2) и p(4) соответствуют оригинальным параметрам c_0 , c_1 и c_3 соответственно; p(3) соответствует комбинации параметров (c_2 — $-c_1/c_0$); c_4 в оригинальной формуле фиксирован и равен —25.

При расчете параметров использованы экспериментальные данные из настоящей работы и плотности метансульфоновой кислоты, приведенные в литературе [12, 13]. С помощью полученных значений параметров оценена предсказательная способность модели Лалиберте в трехкомпонентных системах.

В табл. 2 приведены экспериментальные значения плотностей двухкомпонентных растворов при 288.15, 298.15 и 308.15 К. Эти данные были использованы в дальнейшем для параметризации модели плотности водно-солевых систем. Объемные свойства растворов метансульфоновой кислоты при 298.15 К и 308.15 К приведены в литературе [9, 10]. Для проверки согласованности этих результатов с данными, полученными нами с помощью вибрационного плотномера, в настоящей работе поставлены контрольные измерения свойств растворов СН₃SO₃H при 308.15 К, а также получены новые данные при 288.15 К.

В табл. 3 приведены параметры модели Лалиберте, полученные на основе данных табл. 2 для растворов метансульфонатов никеля и кобальта. Параметры взаимодействия для системы водаметансульфоновая кислота оптимизировались по результатам настоящей работы при 288.15 и 308.15 К и данным из источников [16, 17] при 298.15 К.

В предпоследнем столбце табл. 4 и 5 перечислены экспериментальные значения плотностей в трехкомпонентных системах при трех температурах измерений (288.15, 298.15 и 308.15 К). Эти данные были использованы в дальнейшем для проверки предсказательной способности модели Лалиберте.

Сопоставление экспериментальных данных и результатов расчета плотности водных растворов метансульфоновой кислоты при 308.1 К с помощью модели Лалиберте представлено на рис. 1а. Видно, что с помощью параметров, приведенных в табл. 3, удается получить адекватное описание результатов измерений плотности в системе H₂O -СН₃SO₃Н вплоть до сильно концентрированных растворов (85%). Можно отметить, что для данной системы все параметры получились значимыми. При этом, как можно видеть из рис. 16, наблюдается случайный разброс отклонений расчетных от измеренных значений *d* для растворов разного состава при 288.15 и 308.15 К вплоть до 85 мас. %. Выше этой концентрации модель Лалиберте систематически завышает плотность растворов кислоты, причем отклонение растет с концентрацией. Все отклонения при массовой доле кислоты до 0.85 попадают в коридор ошибок эксперимента (отмечено пунктиром), т.е. не превышают заявленную экспериментальную погрешность.

Плотности растворов кислоты, полученные в настоящей работе, не использовались при параметризации модели, они служили для оценки ее прогнозирующей способности. При 288.15 К отклонения расчетных значений от экспериментальных укладываются в коридор экспериментальных ошибок до 85 мас. %. При 308.15 К отклонения расчетных значений от экспериментальных незначительно выше экспериментальных ошибок вплоть до 85 мас. %.

Аналогичные зависимости построены для систем вода-метансульфонат никеля и кобальта (см. рис. 2а,б). Как и в случае с водными растворами кислоты, не наблюдается значительных систематических отклонений от нулевой линии, соответствующей совпадению расчетных и измеренных значений. Видно, что в случае растворов кобальта (см. рис. 26 и 36) описание плотности несколько хуже, чем для растворов никеля (см. рис. 2а и 3а), в том числе и из-за большей погрешности определения состава. При этом большинство параметров (табл. 3) для системы с метансульфонатом никеля получились значимыми, в отличие от системы вода-метансульфонат кобальта.

ОБЪЕМНЫЕ СВОЙСТВА РАСТВОРОВ

ω ^{a,b,c} , мас. %	т, моль/кг	<i>T</i> ^d , K	<i>d</i> ^e , кг/м ³	ω ^{а,b,c} , мас. %	т, моль/кг	<i>T</i> ^d , K	<i>d</i> ^e , кг/м ³
$H_2O - CH_3SO_3H$							
97.3	373	288.15	1485.9	97.3	373	308.15	1465.8
83.4	52.1		1442.4	82.8	50.2		1402.2
62.8	17.6		1314.0	68.1	22.2		1338.5
54.7	12.5		1270.9	58.2	14.5		1282.7
47.5	9.43		1237.0	47.4	9.38		1226.3
			$H_2O - Ni$	(CH ₃ SO ₃) ₂			
30.3	1.75	288.15	1255.3	24.6	1.31	298.15	1185.9
27.1	1.50		1222.8	19.7	0.984		1143.1
24.0	1.27		1194.0	19.1	0.949		1136.1
21.2	1.08		1168.2	14.7	0.695		1108.9
17.5	0.854		1135.6	13.7	0.640		1072.3
15.2	0.718		1115.4	43.52	3.10	308.15	1373.0
12.1	0.553		1090.1	39.02	2.57		1323.5
9.08	0.401		1006.1	34.65	2.13		1278.6
41.3	2.83	298.15	1350.2	30.38	1.75		1234.2
37.6	2.42		1313.7	26.13	1.421		1197.2
34.4	2.11		1278.9	21.59	1.106		1157.1
33.3	2.01		1268.4	17.33	0.842		1121.4
29.5	1.68		1230.2	13.05	0.603		1087.3
26.3	1.44		1179.8	8.65	0.381		1054.2
			$H_2O - Co$	$(CH_3SO_3)_2$			
43.8	3.13	288.15	1393.5	28.1	1.57	298.15	1214.2
39.4	2.61		1343.7	25.5	1.38		1192.2
34.9	2.16		1295.0	22.3	1.154		1164.4
30.6	1.77		1251.2	19.0	0.942		1136.5
26.3	1.43		1209.5	16.2	0.779		1114.5
21.8	1.121		1169.7	12.0	0.545		1076.7
17.4	0.846		1131.5	33.4	2.01	308.15	1276.2
13.1	0.603		1095.7	30.4	1.75		1242.4
8.76	0.385		1062.1	26.7	1.46		1212.1
43.8	3.13		1393.5	23.4	1.23		1181.4
39.4	2.61		1343.7	20.0	1.007		1147.3
46.8	3.53	298.15	1406.9	16.7	0.803		1121.3
43.0	3.03		1376.0	13.3	0.618		1095.1
37.4	2.40		1304.7	9.68	0.430		1062.0
32.8	1.96		1258.9	6.68	0.287		1039.8
29.4	1.67		1215.4	3.34	0.139		1020.0

Таблица 2. Плотности растворов в системах H₂O – CH₃SO₃H, H₂O – Ni(CH₃SO₃)₂ и H₂O – Co(CH₃SO₃)₂ при 288.15, 298.15 и 308.15 К

Обозначения: ^a $u_r(\omega_{CH_3SO_3H}) = 0.002$, ^b $u_r(\omega_{Ni(CH_3SO_3)_2}) = 0.003$, ^c $u_r(\omega_{Co(CH_3SO_3)_2}) = 0.005$, ^d u(T) = 0.01 K, ^e $u_r(d) = 0.005$.

Система	c_0	<i>c</i> ₁ <i>c</i> ₂		<i>c</i> ₃	c_4				
Параметры									
H ₂ O–CH ₃ SO ₃ H	1290.146	1818.878	0.984835	0.001425	-25				
H ₂ O-Ni(CH ₃ SO ₃) ₂	2371.189	1019.102	0.243306	0.002439	-25				
H ₂ O-Co(CH ₃ SO ₃) ₂	-596.078	158693	55.8426	0.08355	-25				
	Доверительные интервалы*								
H ₂ O–CH ₃ SO ₃ H	1156	966	-0.77	0.0023	фиксированный				
	1424	2672	-0.08	0.0006					
H ₂ O-Ni(CH ₃ SO ₃) ₂	1618.042	-1401.31	-0.66731	-0.00123	фиксированный				
	3124.336	3439.518	0.294353	0.006108					
H ₂ O-Co(CH ₃ SO ₃) ₂	Доверт	фиксированный							

Таблица 3. Параметры модели Лалиберте для систем H₂O-CH₃SO₃H, H₂O-Ni(CH₃SO₃)₂ и H₂O-Co(CH₃SO₃)₂, оптимизированные в настоящей работе

* Вместо интервала для c_2 приведен интервал для оптимизируемой комбинации $c_2 - c_1/c_0$.

Таблица 4.	Плотности растворов в	системе Н ₂ О-	CH ₃ SO ₃ H–Ni	(CH ₃ SO ₃) ₂ при	288.15, 298.15 и 308.15 K
------------	-----------------------	---------------------------	--------------------------------------	---	---------------------------

CH ₃ SO ₃ H ^a	Ni(CH ₃ SO ₃) ₂ ^b	m _{CH₃SO₃H}	$m_{\rm Ni(CH_3SO_3)_2}$	d ^{эксп, d}	d ^{расч, L}	Δd			
мас. %		моль/кг		кг/м ³					
$T^{c} = 288.15 \text{ K}$									
48.7	12.3	12.97	1.267	1348.8	1357.3	8.5			
30.7	15.6	5.96	1.166	1290.0	1283.9	-6.1			
16.4	18.9	2.632	1.177	1238.1	1234.6	-3.5			
27.7	7.01	4.42	0.431	1177.6	1186.7	9.1			
15.3	7.77	2.072	0.406	1132.3	1130.3	-2			
7.86	9.09	0.984	0.440	1103.8	1104.6	0.8			
	$T^{\rm c} = 298.15 {\rm K}$								
48.7	12.3	12.97	1.267	1343.7	1348.7	5			
30.7	15.6	5.96	1.166	1284.4	1276.1	-8.3			
16.4	18.9	2.632	1.177	1232.6	1227.2	-5.4			
27.7	7.01	4.42	0.431	1171.6	1181.0	9.4			
15.3	7.77	2.072	0.406	1127.6	1125.4	-2.2			
7.86	9.09	0.984	0.440	1100.5	1099.9	-0.6			
$T^{\rm c} = 308.15 {\rm K}$									
48.7	12.3	12.97	1.267	1337.0	1339.6	2.6			
30.7	15.6	5.96	1.166	1279.3	1267.7	-11.6			
16.4	18.9	2.632	1.177	1228.2	1219.0	-9.2			
27.7	7.01	4.42	0.431	1168.1	1174.6	6.5			
15.3	7.77	2.072	0.406	1123.7	1119.7	—4			
7.86	9.09	0.984	0.440	1097.1	1094.4	-2.7			

Обозначения: ^a $u_r(\omega_{CH_3SO_3H}) = 0.002$, ^b $u_r(\omega_{Ni(CH_3SO_3)_2}) = 0.003$, ^c u(T) = 0.01 K, ^d $u_r(d) = 0.005$

ОБЪЕМНЫЕ СВОЙСТВА РАСТВОРОВ

CH ₃ SO ₃ H ^a	Co(CH ₃ SO ₃) ₂ ^b	m _{CH₃SO₃H}	$m_{\rm Co(CH_3SO_3)_2}$	<i>d</i> ^{эксп, d}	d^{pacy}	Δd		
мас. %		моль/кг		кг/м ³				
$T^{\rm c} = 288.15 {\rm K}$								
10.43	27.5	1.750	1.780	1291.1	1278.6	-12.5		
38.71	11.7	8.13	0.950	1299.8	1290.7	-9.1		
5.34	14.1	0.689	0.701	1133.5	1126.4	-7.1		
18.9	10.2	2.781	0.576	1172.6	1165.8	-6.8		
18.2	5.53	2.491	0.291	1128.9	1124.0	-4.9		
12.43	12.04	1.71	0.64	1155.4	1146.9	-8.5		
	$T^{\rm c} = 298.15 \; {\rm K}$							
10.4	27.5	1.750	1.780	1285.4	1273.1	-12.3		
38.7	11.7	8.13	0.950	1293.6	1284.3	-9.3		
5.34	14.1	0.689	0.701	1130.0	1122.9	-7.1		
18.9	10.2	2.781	0.576	1168.0	1161.4	-6.6		
18.2	5.53	2.491	0.291	1123.8	1120.1	-3.7		
$T^{c} = 308.15 \text{ K}$								
10.4	27.5	1.750	1.780	1281.5	1266.7	-14.8		
36.1	19.4	8.44	1.748	1355.1	1342.2	-12.9		
38.7	11.7	8.13	0.950	1288.8	1277.2	-11.6		
5.34	14.1	0.689	0.701	1126.9	1118.4	-8.5		
18.9	10.2	2.781	0.576	1164.1	1156.1	-8		
18.2	5.53	2.491	0.291	1120.2	1115.4	-4.8		

Таблица 5. Плотности растворов в системе H₂O-CH₃SO₃H-Co(CH₃SO₃)₂ при 288.15, 298.15 и 308.15 К

Обозначения: ^a $u_r(\omega_{CH_3SO_3H}) = 0.002$, ^b $u_r(\omega_{Co(CH_3SO_3)_2}) = 0.005$, ^c u(T) = 0.01 K, ^d $u_r(d) = 0.005$, Δd – разность между расчетным и измеренным значениями.

Следует отметить, что в целом для модели Лалиберте характерна высокая корреляция между параметрами. Так, ранее в рамках этой модели были успешно описаны объемные свойства в системе вода—метансульфонат цинка [14] и спрогнозированы плотности в трехкомпонентной системе вода—две соли с одноименным катионом и разными анионами—хлоридом и метансульфонатом. Два из пяти параметров модели в случае системы вода—метансульфонат цинка оказались незначимыми и были приняты равными нулю [14], что не приводило к ухудшению описания. В случае системы вода—метансульфонат кобальта фиксация параметров приводила к ухудшению описания. Так как параметры модели Лалиберте рассчитывали на основании результатов измерений настоящей работы, приведенные графики иллюстрируют только качество аппроксимации. О прогнозирующих свойствах предложенных параметров можно судить по табл. 4 и 5 — отклонения расчетных значений (Δd) носят случайный характер и не превышают отклонений, полученных при описании плотностей двухкомпонентных систем.

Таким образом, плотности растворов в системах вода—метансульфоновая кислота можно прогнозировать с помощью эмпирической модели Лалиберте вплоть до концентрированных растворов (~85 мас. %). При этом плотности растворов в

Рис. 1. Результаты измерений и моделирования плотности водных растворов метансульфоновой кислоты: а) плотность растворов при 308.15 К (символы – эксперимент, линия – расчет); б) отклонения расчетных плотностей (кг/м³) от экспериментальных в зависимости от концентрации (мас. %) в системе вода–метансульфоновая кислота (данные из работы [10] обозначены • при 293.15 К, • при 298.15 К, • при 308.15 К, а символами *, * – результаты настоящей работы при 288.15 и 308.15 К соответственно)

Рис. 2. Экспериментальные (•) и расчетные (сплошная линия) плотности растворов (кг/м³) при 298.15 К в зависимости от концентрации (мас. %) в системе а) вода – метансульфонат никеля, б) метансульфонат кобальта.

системах вода—метансульфонат 3*d*-металла удовлетворительно описываются моделью Лалиберте вплоть до насыщенных растворов.

Инкрементная схема Лалиберте позволяет предсказывать плотности растворов без введения каких-либо тройных параметров в системах метансульфонат 3*d*-металла–метансульфоновая кислота с ошибкой, не превышающей отклонения измеренных и расчетных величин при параметризации моделей соответствующих двухкомпонентных систем.

Работа выполнена при поддержке гранта РНФ 21–73–00039. Авторы выражают признательность Михееву Ивану Владимировичу и Аналитическому центру МГУ за оценку содержания примесных металлов в синтезированных соединениях.

Рис. 3. Отклонения расчетных плотностей (кг/м³) от экспериментальных при 288.15 К (•), 298.15 К (•) и 308.15 К(•) в зависимости от концентрации (мас. %) в системе а) вода—метансульфонат никеля, б) вода—метансульфонат кобальта. Пунктирная горизонтальная линия соответствует доверительному интервалу 3 от.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gernon M., Wu M., Buszta T. et al. // Green Chem. 1999. T. 1. № 3. C. 127.
- 2. Rodriguez Rodriguez N., Onghena B., Binnemans K. // ACS Sustainable Chem. Eng. 2019. T. 7. № 19807.
- 3. *Palden T., Onghena B., Regadío M. et al.* // Green Chem. 2019. T. 21. № 19. C. 5394.
- Peng C., Liu F., Aji A. T. et al. // Waste Management. 2019. T. 95. C. 604.
- Tran T.T., Moon H.S., Lee M.S. // Miner. Process. Extr. Metall. Rev. 2020. C. 1–13.
- Sknar Y.E., Savchuk O.O., Sknar I.V. // Appl. Surf. Sci. 2017. T. 423. C. 340.
- 7. *Danilov F.I., Samofalov V.N., Sknar et al.* // Prot. Met. Phys. Chem. Surf. 2015. T. 51. № 5. C. 812.

- 8. Danilov F.I., Sknar Y.E., Tkach I.G. et al. // Russ. J. Electrochem. 2015. T. 51. № 4. C. 294.
- Berthoud A. // Helv. Chim. Acta. 1929. T. 12. № 1. C. 859.
- *Teng T.T., Lenzi F.* // J. Chem. Eng. Data. 1975. T. 20. № 4. C. 432.
- 11. Belova E.V., Krasnov V.S., Ilyukhin A.B. et al. // Thermochim. Acta. 2018. T. 668. C. 46.
- Laliberte M., Cooper W.E. // J. Chem. Eng. Data. 2004. T. 49. № 5. C. 1141.
- 13. Laliberte M. // Ibid. 2009. T. 54. № 6. C. 1725.
- 14. Novikov A.A., Belova E.V., Uspenskaya I.A. // Ibid. 2019. T. 64. № 10. C. 4230.
- 15. Belova E.V., Brusinski N.A., Mamontov M.N. et al. // Ibid. 2017. T. 62. № 4. C. 1544.