= ПАМЯТИ Г.А. МАРТЫНОВА =

УДК 554.032

СДВИГОВАЯ ВЯЗКОСТЬ И САМОДИФФУЗИЯ В ВОДЕ

© 2022 г. Н. П. Маломуж^{а,*}

^аОдесский национальный университет им. И.И. Мечникова, Одесса, 65082, Украина *e-mail: mnp@onu.edu.ua Поступила в редакцию 11.01.2022 г. После доработки 11.01.2022 г.

Принята к публикации 17.01.2022 г.

Представлен анализ двух важнейших процессов переноса в жидкой воде — кинематической сдвиговой вязкости и самодиффузии. Наш подход к сдвиговой вязкости основан на учете эффектов трения между двумя ближайшими молекулярными слоями, смещающимися друг относительно друга. В этом отношении характер сдвиговой вязкости в воде полностью аналогичен таковому в аргоне. Вклад, обусловленный перемещением молекул и импульса от одного слоя к другому, является пренебрежимо малым. Детально исследовано поведение кинематической сдвиговой вязкости воды для двух характерных ситуаций: на кривой сосуществования жидкость—пар и изотермах. Как и в аргоне, предполагается, что самодиффузия в воде формируется двумя основными факторами: переносом молекул наноскопическими вихревыми гидродинамическими модами и их коллективным перемешиванием на молекулярных масштабах. Механизм второго типа с приемлемой точностью описывается формулой Эйнштейна с фиксированным значением радиуса молекулы, определяемым из анализа сдвиговой вязкости воды.

Ключевые слова: кинематическая сдвиговая вязкость, коэффициент самодиффузии, вода **DOI:** 10.31857/S0044453722070226

введение

Вода демонстрирует множество необычных свойств, отличающих ее от аргона и других аргоноподобных жидкостей. Это связано, прежде всего с наличием водородных связей (Н-связей), которые стимулируют процессы кластеризации [1–7]. Однако кластеры имеют конечное время жизни, определяемое временем жизни водородных связей $\tau_{\rm H}$ [8–10]. Фактически, $\tau_{\rm H}$ пропорционально периоду вращательного движения молекул воды и может быть удовлетворительно оценено с помощью времени дипольной релаксации [1, 11–14].

Дипольное время релаксации в воде

Температурная зависимость времени дипольной релаксации τ_d представлена на рис. 1.

Как видим, поведение $\tilde{\tau}_d$ существенно отличается одно от другого в двух температурных интервалах: 1) $0.35 < \tilde{t} < 0.5$, $\tilde{t} = T/T_c$, где $\tilde{\tau}_d(t) > (>>)$ 1 и 2) $0.5 < \tilde{t} < 0.95$, где $\tilde{\tau}_d(t) \sim 1$. При этом, экспоненциальный рост τ_d соответствует случайным последовательностям кратковременных вращательных и колебательных изменений ориентаций молекул воды, что должно проявляться определенным образом и в поведении сдвиговой вязкости.

Необходимо отметить, что зависимость $\tilde{\tau}_d(t)$ от температуры в первом температурном интервале

Рис. 1. Температурная зависимость безразмерного времени дипольной релаксации: $\tilde{\tau}_d(t) = \tau_d(t)/\tau_r$, где τ_r – период вращения изолированной молекулы воды, $\tau_r = 2\pi/(k_{\rm B}T/I)^{1/2} \sim 5 \times 10^{-13}$ с, значения τ_d взяты из: [1] – *I*, [12] – *2*, [13] – *3*, [14] – *4*. Точки представляют интерполированные значения τ_d .

Рис. 2. Значения \tilde{v} в зависимости от \tilde{v} для воды и аргона: сплошная линия соответствует аргону, пунктирная – воде.

удовлетворительно аппроксимируется экспоненциальной функцией:

$$\tilde{\tau}_d = \tilde{\tau}_d^{(0)} \exp\left(\epsilon_{\rm H}/t\right), \quad \tau_d^{(0)} = 5.1 \times 10^{-4}, \quad (1)$$
$$\epsilon_{\rm H} = 4.71,$$

где $\varepsilon_{\rm H} = E_{\rm H}/k_{\rm B}T_c$, а энергия активации $E_{\rm H}$ вращательного движения практически совпадает с энергией H-связи [1, 15–19]. Этот вклад изображен пунктирной линией на рис. 1. По порядку величины: $\tau_{\rm H} \sim \tau_d$.

В температурном интервале: $0.5 < \tilde{t} < 0.95$ молекулы воды вращаются квазисвободно, поэтому можно сразу заключить, что основные термодинамические и кинетические свойства воды определяются усредненными потенциалами, имеющими аргоноподобный характер [20, 21]. Примером здесь могут служить уравнение состояния воды, а также ее статическая сдвиговая вязкость и коэффициент самодиффузии молекул. Они формируются сравнительно медленными процессами, для которых характерные времена $\tau_{conf} > \tau_d$ (τ_{conf} – время жизни типичных молекулярных конфигураций). Поскольку усредненный межчастичный потенциал взаимодействия в воде подобен таковому для аргона [20, 21], мы ожидаем, что физическая природа и основные свойства их статических кинематических сдвиговых вязкостей аналогичны друг другу.

При $\tilde{t} < 0.5$ период типичных колебаний кластеров $\tau_{cl} << \tau_d$, поэтому роль тепловых возбуждений кластеров существенно возрастает. Это обстоятельство отчетливо иллюстрируется поведением энтропии воды и ее теплоемкости.

Аргоноподобное поведение кинематической сдвиговой вязкости воды

Перейдем к переменным, используемым в случае аргона [16, 22, 23]: $\tilde{v} = v/v_R$ и комбинации: $\tilde{v} = \frac{v - v_{tr}}{v_R - v_{tr}}$, где v — кинематическая сдвиговая вязкость, v — удельный объем на одну молекулу. Индексы "tr" и "R" обозначают значения соответствующих величин на кривой сосуществования в тройной точке и точке регуляризации: $v_{tr} = v(T_{tr}), v_R = v(T_R)$ и $v_R = v(T_R)$. Температура регуляризации T_R — характеристическая температура, разделяющая состояния воды на два интервала, свойства которых определяются термодинамическими и масштабно-инвариантными флуктуациями, т.е. роль T_R эквивалентна температуре Гинзбурга [24].

Сравнительное поведение \tilde{v} в зависимости от \tilde{v} для воды и аргона представлено на рис. 2. Видно, что значения нормированных кинематических сдвиговых вязкостей для аргона и воды становятся отличными друг от друга только при $\tilde{v} < 0.3$, что соответствует $T/T_c < 0.5$, т.е. наблюдается в области, где время дипольной релаксации в воде становится экспоненциально возрастающим.

Использование более привычных переменных:

$$\tilde{\mathbf{v}} = \mathbf{v}/\mathbf{v}_R, \quad \tilde{t} = T/T_c \quad \mathbf{u} \quad \tilde{\mathbf{v}} = \frac{\mathbf{v}}{\mathbf{v}_R},$$
 (2)

соответствующих принципу подобия [21, 22, 25, 26], не приводит к столь впечатляющему сходству.

Вращательное движение небольших молекулярных групп

Небольшие смещения молекул в жидком состоянии, окружение которых образует подобие клетки, могут осуществляться как повороты небольших молекулярных групп на некоторые углы (см. рис. 3а).

Возможны и скачкообразные смещения, но их вклад в самодиффузию ожидается быть пренебрежимо малым, поскольку объемы флуктуационных пустот оказываются значительно меньшими по сравнению с объемом молекул. Только вблизи критической точки становится возможным трансляционное движение молекул (рис. 3б). Отметим, что подобная ситуация характерна и для передвижения людей в плотной толпе (в этом случае скачкообразные смещения отсутствуют!).

Таким образом, 1) тепловой дрейф молекул воды аналогичен таковому в аргоне и в обоих случаях не имеет активационного характера; 2) локальное перемешивание молекул обусловлено поворотами небольших молекулярных групп. Этот механизм самодиффузии был впервые сформулирован в [27–29]. Ниже мы покажем, что вклад описываемого механизма перемешивания в коэффициент самодиффузии описывается формулой Эйнштейна с фиксированным значением радиуса частицы.

Настоящая работа посвящается подробному описанию кинематической слвиговой вязкости и самодиффузии молекул в воде. Особое внимание обращается на их сходство с таковыми в случае аргона. Важное значение придается определению эффективного радиуса молекул воды. Этот вопрос очень важен для обеспечения самосогласованного воспроизведения кинематической сдвиговой вязкости и коэффициента самодиффузии воды. Обсуждаются значения радиусов молекул воды, полученные с помощью: 1) усредненного межчастичного потенциала; 2) исключенного объема, определяющего кинематическую сдвиговую вязкость воды и 3) бинарной корреляционной функции. Подробно обсуждается поведение кинематической сдвиговой вязкости воды на изотермах и изобарах. Учитывается, что коэффициент самодиффузии молекул воды должен рассматриваться как сумма двух вкладов:

$$D_s = D_c + D_r, \tag{3}$$

первый из которых вызван наноразмерными вихревыми гидродинамическими модами, а второй перемешиванием на молекулярных масштабах.

КИНЕМАТИЧЕСКАЯ СДВИГОВАЯ ВЯЗКОСТЬ ВОДЫ

В этом разделе основное внимание будет сосредоточено на поведении кинематической сдвиговой вязкости жидкой воды на кривой сосуществования жидкость—пар и изотермах, где сдвиговая вязкость рассматривается как функция давления. В обоих случаях наше рассмотрение основывается на представлениях, развитых в работе [22].

Кинематическая сдвиговая вязкость аргона

Начнем наше рассмотрение с кинематической сдвиговой вязкости простейшей жидкости – аргона. Далее будет учтено, что согласно [15, 16] вода относится к классу аргоноподобных жидкостей.

В соответствии с [20] кинематическая сдвиговая вязкость жидкого аргона на его кривой сосуществования описывается формулой:

$$v(v,t) = v_{tr} \frac{(v_{tr} - v_0)^{1/3}}{(v - v_0)^{1/3}},$$
(4)

где v_{tr} , v_{tr} – кинематическая сдвиговая вязкость и удельный объем, приходящийся на молекулу в

Рис. 3. Схематическое движение частиц вблизи точек плавления или тройных (а) и критической (б).

тройной точке, v_0 — исключенный объем. С высокой точностью

$$\upsilon_0 \approx \upsilon_{tr} \quad \mathbf{H} \quad \upsilon_{tr} > \upsilon_0. \tag{5}$$

Численные значения всех параметров, входящих в (4), равны:

$$v_{tr} = 0.2081 \times 10^{-2} \text{ cm}^2/\text{c}, \quad v_{tr} = 47.05 \text{ Å}^3,$$

 $v_0 = 46.10 \text{ Å}^3.$ (6)

Следует отметить, что формула (4) отличается от соответствующей формулы в [20] другим характером нормировки. Здесь используется нормировка удельного объема и кинематической сдвиговой вязкости на их значения в тройной точке, в то время как ранее, на их значения в точке регуляризации. Обе эти возможности полностью эквивалентны. Очень важно, что формула (4) успешно описывает кинематическую сдвиговую вязкость всех атомарных жидкостей (благородных газов) и тех низкомолекулярных жидкостей, для которых усредненные межчастичные потенциалы имеют аргоноподобную форму, т.е. описываются формулами типа Леннарда-Джонса [20].

Формула (4) также верна для описания зависимости кинематической сдвиговой вязкости аргона от давления на изотермах (см. рис. 4). Как видим, отличия расчетных и экспериментальных данных [30] не превышают экспериментальной ошибки.

Необходимо подчеркнуть, что исключенный объем аргона $v_0^{(Ar)}(p) = 43.62$ Å³ на изотерме T = 90 K чуть меньше, чем $v_0^{(Ar)} = 46.1$ Å³ на кривой сосуществования.

Весьма удивительно, но отклонения значений кинематической сдвиговой вязкости воды от таковых для аргона, обусловленные водородными связями, являются весьма незначительными.

Рис. 4. Кинематическая сдвиговая вязкость аргона в зависимости от давления при T = 90 K.

Рис. 5. Зависимость v/v_{tr} от v/v_0 для воды, где v_0 дается формулой (9): точки описывают экспериментальные значения, сплошная линия рассчитана по формуле (7).

Рис. 6. Исключенный объем $v_0(t)$ (в Å³) в зависимости от температуры.

Кинематическая сдвиговая вязкость воды на кривой сосуществования жидкость—пар

Аргоноподобное поведение межчастичных потенциалов и кинематической сдвиговой вязкости воды становится понятным, если принять во внимание вращательное движение молекул воды. В этом случае свойства воды, вызванные поступательными движениями молекул, изменяются медленнее по сравнению с вкладами вращательных движений. Следовательно, кривые сосуществования воды и аргона с вполне удовлетворительной точностью оказываются подобными одна другой [20, 21]. Такой же вывод необходимо сделать и по отношению к статическим значениям их кинематических сдвиговых вязкостей.

Как следствие, мы ожидаем, что кинематическая сдвиговая вязкость воды описывается формулой:

$$v_{w}(v,t) = v_{tr} \frac{(v_{tr} - v_{0}(t))^{1/3}}{(v - v_{0}(t))^{1/3}},$$
(7)

где

$$v_{tr} = 1.7916 \times 10^{-2} \text{ cm}^2/\text{c}, \quad v_{tr} = 29.88 \text{ Å}^3, \quad (8)$$

она отличается от таковой для аргона только слабой температурной зависимостью исключенного объема $\upsilon_0(t)$. При этом молекулы воды можно рассматривать как частицы сферической формы вследствие их вращательного движения. Вращение существенно проявляется при $t > t_{\rm H}, t_{\rm H} \approx 1.2$ (см. [31]), поэтому для интервала температур $t_{\rm H} < t < t_c, t_c = T_c/T_{tr} \approx 2.4$ мы ожидаем, что исключенный объем должен быть постоянным. Определяя его методом наименьших квадратов, получаем:

$$v_0 = 29.88 \text{ Å}^3.$$
 (9)

Согласие экспериментальных данных с рассчитанными по (7) показано на рис. 5.

В температурном интервале: $1 < t < t_H$ вращение молекул существенно замедляется [12–14], вследствие чего влияние водородных связей приводит к слабой зависимости v_0 от температуры. Непосредственно учесть это влияние довольно сложно, поэтому мы ограничиваемся здесь оценкой, основанной на экспериментальных значениях сдвиговой вязкости. В соответствии с (7) $v_0(t)$ должно удовлетворять уравнению:

$$\upsilon_0(t) = \frac{\upsilon_{tr} - (\nu(t)/\nu_{tr})^3 \,\upsilon(t)}{1 - (\nu(t)/\nu_{tr})^3},\tag{10}$$

приводящему к кривой на рис. 6.

Как видим, небольшие отклонения от $v_0 = 29.88 \text{ Å}^3$ наблюдаются только вблизи тройной точки и не превышают 3% (точность экспериментальных данных [32] составляет около 1%). При этом в его узкой окрестности профиль $v_0(t)$ напоминает поведение плотности воды слева от ее минимума при 4°C.

Радиус молекулы воды, определяемый из исключенного объема

Естественно предположить, что эффективный радиус молекулы воды [23] определяется выражением:

$$r^{(w)}(t) = \left(\frac{3}{16\pi}\upsilon_0(t)\right)^{1/3},\tag{11}$$

полученным в теории вириальных разложений. Соответствующая температурная зависимость

 $r^{(w)}(t)$ представлена на рис. 7.

Необходимо отметить, что значения исключенных объемов, определенные из кинематической сдвиговой вязкости и уравнения состояния Ван-дер-Ваальса, отличаются друг от друга [33]. Первый из них определяется в основном отталкивающей частью межчастичного потенциала, а второй — суммой отталкивающего и притягивающего потенциалов. Это означает, что $v_0(v) < v_0(vdW)$. Следует подчеркнуть, что точность определения $v_0(t)$ и $r^{(w)}(t)$ по значениям кинематической сдвиговой вязкости существенно выше.

Кинематическая сдвиговая вязкость воды на изотермах

В принципе, общий характер зависимости кинематической сдвиговой вязкости от нормированной температуры $t = T/T_{tr}$ и удельного объема υ , приходящегося на одну частицу, остается прежним. Однако следует учитывать зависимость основных параметров, входящих в (7), от давления:

$$v_w(t,p) = v_m(p) \frac{(v_m(p) - v_0(p))^{1/3}}{(v(t,p) - v_0(p))^{1/3}},$$
(12)

где $v_m(p)$ – удельный объем воды при температуре плавления $t_m(p)$, соответствующей давлению p, $t = T/T_m(p)$ – переопределенная безразмерная температура. При этом $t_m(p_{tr}) = 1$, $v_m(p_{tr}) = v_{tr}$.

Зависимость удельного объема от температуры и давления различна в области:

$$1 < t < 1.2, \quad p_{tr} < p < 150 \text{ M}\Pi a,$$
 (13)

и за ее пределами. В этой области удельный объем как функция температуры на изобарах уменьшается, что также приводит к уменьшению кинематической сдвиговой вязкости. Вне ее восстанавливается стандартное поведение, т.е. v уменьшается с увеличением давления, а v возрастает с увеличением давления.

Рассмотрим зависимость кинематической сдвиговой вязкости от давления для p > 150 МПа, где можно применить уравнение Тейта [34]:

Рис. 7. Температурная зависимость $r^{(w)}(t)$ (в Å) для воды.

$$\frac{\zeta_0 - \upsilon}{\zeta_0} = \frac{A(p - p_0)}{B + p - p_0},$$

где A, B и ζ_0, p_0 — константы. В соответствии с [35]

$$A = 0.14, \quad B = 276.3 \text{ M}\Pi a.$$

Значения $p_0 = 0.1 \text{ M}\Pi a$, $\zeta_0 = 29.88 \text{ Å}^3$ соответствуют удельному объему молекул воды в тройной точке при атмосферном давлении.

Исключенный объем v_0 можно оценить как предельное значение v для $p - p_0 >> (>)B$. Из уравнения Тейта получаем:

$$\frac{\mathbf{U}_0}{\boldsymbol{\zeta}_0} = 1 - A.$$

Как результат,

$$\frac{\upsilon(p,t)-\upsilon_0(p)}{\zeta_0}=\frac{AB}{B+p-p_0},$$

И

$$v_{w}(t,p) = v_{m}(p) \frac{\left(v_{m}(p) - v_{0}(p)\right)^{1/3}}{\left(AB\zeta_{0}\right)^{1/3}} \left(B + p - p_{0}\right)^{1/3}.$$
(14)

Чтобы найти разность $v_m(p) - v_0(p)$, в соответствии с вышеизложенным мы возьмем значение $v_m(p)$ вместо $v_0(p)$ и воспользуемся оценкой: $v_m(p) - v_0(p) = v_m(p) - v_m(2p)$, принимая 200 МПа < p < 400 МПа. Удивительно, что эта разность принимает такое же значение и при 0.1 МПа < p < 150 МПа. Значение $v_m(p) = 1.523 \times 10^{-2}$ см²/с предполагается равным сдвиговой вязкости при T = 278 К и p = 1 МПа.

Сравнение значений сдвиговой вязкости, рассчитанных по формуле (14), и экспериментальных данных представлено на рис. 8.

Как видим, области применимости уравнения Тейта и стандартной зависимости кинематической сдвиговой вязкости от давления согласуются друг с другом для p > 150 МПа.

Рис. 8. Кинематическая сдвиговая вязкость воды как функция давления на изотерме T = 283 К: светлые кружки — экспериментальные данные из [30], пунктирная линия — расчет по (14), тонкие черные линии обозначают коридор экспериментальных ошибок (5%).

Теперь рассмотрим особенности кинематической сдвиговой вязкости в пределах области, задаваемой неравенствами (13). В этом случае значения $v_m(p)$ определяются экспериментальными данными [30], а $v_0(p)$ – температурными зависимостями кинематической сдвиговой вязкости на каждой из изобар. В результате на изотерме T = 283 К находим:

$$\upsilon_m(p) - \upsilon_0(p) = 0.0161 + 0.00021p,$$

где *р* измеряется в МПа. Далее учитываем, что разность $\upsilon_m(p) - \upsilon_0(p)$ изменяется в небольших пределах, поэтому ее можно аппроксимировать линейной функцией давления. Используя экспериментальные значения $\upsilon(t, p)$ на каждой из изотерм и $\upsilon_0(p)$, определенные выше на той же изотерме, получаем:

$$v(t, p) - v_0(p) = 0.01581 + 0.00019 p.$$

Сравнение теоретических значений кинематической сдвиговой вязкости с соответствующими экспериментальными данными представлено на рис. 9.

Таблица 1. Значения параметров $\upsilon_0(v)$, $\upsilon_0(vdW)$ и υ_{tr} [33] (в Å³)

Образец	v_{tr}	$v_0(v)$	$\upsilon_0(vdW)$
Ar	47.05	46.50	53.47
Ne	26.93	26.04	28.19
Kr	56.91	56.16	66.13
H ₂ O	29.89	29.88	50.70
N_2	53.86	52.62	65.00
O ₂	40.67	39.81	52.61
В	145.09	153.35	191.69
NB	167.78	225.34	255.81

Рис. 9. Кинематическая сдвиговая вязкость воды в зависимости от давления на изотерме T = 283 К: светлые кружки — экспериментальные данные, пунктирная линия рассчитана по формуле (12) со значениями числителя и знаменателя, определенными выше.

Для $T_m(p) < T_{tr}$ и $p > p_{tr}$ ситуация, фактически, не изменяется.

ДРУГИЕ ОЦЕНКИ РАЗМЕРОВ МОЛЕКУЛ ВОДЫ

Существует несколько подходов к определению размеров молекул, основанных на использовании: 1) уравнения Ван-дер-Ваальса; 2) значений кинематической сдвиговой вязкости; 3) структурного фактора и 4) усредненных межчастичных потенциалов. Рассмотрим полученные с их помощью радиусы молекулы воды.

Значения исключенных объемов, которые используются для определения молекулярных радиусов в соответствии с (11), представлены в табл. 1. В ней $\upsilon_0(v)$ определяются по значениям кинематической сдвиговой вязкости и $\upsilon_0(vdW)$ — по уравнению состояния Ван-дер Вальса (vdW). Как видим, во всех случаях выполняется неравенство:

$$\upsilon_0(vdW) > \upsilon_0(v) \approx \upsilon_{tr}$$

Уточним здесь, что значения $v_0(vdW)$ получены по уравнению Ван-дер Вальса, применяемому к парообразной фазе воды. Еще одно неравенство

$$v_{tr} > v_0(v),$$

также имеет место, за исключением бензола (В) и нитробензола (NB).

Подчеркнем, что молекулы благородных газов Ar, Ne, Kr имеют сферическую форму, а небольшие молекулы воды и N_2 , O_2 становятся квазисферическими вследствие своего теплового вращения. В результате их значения $v_0(v)$ и v_{tr} оказываются близкими друг другу. Особенности вращения для более крупных несферических молекул B и NB приводят к нарушению этого условия.

Используя (11) и исключенные объемы из табл. 1, находим следующие значения молекулярных радиусов (табл. 2).

Сравнение $r_{\rm H_2O}^{(v)}$ с радиусом твердого кора молекулы воды свидетельствует об их полном совпадении:

$$r_{\rm H_2O}^{(v)} \approx r_{\rm H_2O}^{(hc)} \approx 1.21 \text{ Å}$$

Здесь радиус $r_{\rm H_2O}^{(hc)} \approx \frac{l}{2}$, где длина *l* пунктирного отрезка на рис. 10.

Обратим внимание, что значение $r^{(w)}$, соответствующее рис. 7, очень близко к $r_{H,\Omega}^{(hc)}$.

Полученные значения радиуса молекулы воды целесообразно сравнить с таковыми, следующими из уравнения:

$$r_{\rho}^{(w)}(t) = \left(\frac{3}{16\pi} \frac{m_{w}}{\rho_{w}(t)}\right)^{1/3},$$
(15)

где m_w — масса молекулы воды, $\rho_w(t)$ — массовая плотность воды. Численные значения $r_{\rho}^{(w)}$, рассчитанные согласно (15), представлены на рис. 11. Как видим, значения $r_{\rho}^{(w)}$ отклоняются от $r_{\rm H_2O}^{(v)}$ только далеко от тройной точки.

Усредненный межчастичный потенциал в жидкой воде и ее паре

По определению, усредненный межчастичный потенциал $U(r_{12})$, действующий между двумя молекулами воды, равен (см. [18, 20]):

$$\exp(-\beta U(r_{12})) = \oint_{\Omega_1 = 4\pi} \frac{d\Omega_1}{4\pi} \oint_{\Omega_2 = 4\pi} \frac{d\Omega_2}{4\pi} \times \exp(-\beta \Phi(1.2)),$$
(16)

где $\Phi(1.2) = \Phi(r_{12}, \Omega_1, \Omega_2)$ — микроскопический потенциал, зависящий от расстояния между ча-

Рис. 10. Бинарная корреляционная функция $g_{OO}(r)$ от *r* для жидкой воды при *T* = 296 K [36, 37].

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 7 2022

Таблица 2. Значения молекулярных радиусов (в Å), определенные по значениям кинематической сдвиговой вязкости и уравнению Ван-дер-Ваальса

Параметр	Ar	Ne	Kr	H ₂ O	N ₂	O ₂	В	NB
$r_i^{(v)}$	1.41	1.16	1.50	1.21	1.46	1.33	2.09	2.38
$r_i^{(vdW)}$	1.47	1.19	1.58	1.45	1.57	1.46	2.25	2.48

стицами r_{12} и двух углов Ω_1, Ω_2 , описывающих пространственную ориентацию молекул. Потенциал $\Phi(1.2)$ имеет структуру:

$$\Phi(r,\Omega) = \Phi_R(r,\Omega) + \Phi_D(r,\Omega) + + \Phi_F(r,\Omega) + \Phi_H(r,\Omega),$$
(17)

где $\Phi_R(r, \Omega)$, $\Phi_D(r, \Omega)$, $\Phi_E(r, \Omega)$, $\Phi_H(r, \Omega)$ – слагаемые, обусловленные вкладом отталкивающих, дисперсионных и электростатических взаимодействий, а также неприводимой составляющей водородных связей соответственно.

Определение (16) гарантирует выполнение фундаментальной связи между свободной энергией и конфигурационным интегралом в двухчастичном приближении:

$$F_2 = -T \ln Q_2,$$
 (18)

где

$$Q_{2} = \int_{V} d\vec{r}_{1} \int_{V} d\vec{r}_{2} \oint_{\Omega_{1}=4\pi} d\Omega_{1} \oint_{\Omega_{2}=4\pi} d\Omega_{2} \exp(-\beta \Phi(1.2)) =$$

= $\frac{(4\pi)^{2}}{2!} \int_{V} d\vec{r}_{1} \int_{V} d\vec{r}_{2} \exp(-\beta U(r_{12})).$

Компоненты $\Phi_R(r, \Omega)$, $\Phi_D(r, \Omega)$, $\Phi_E(r, \Omega)$ микроскопического потенциала будем моделировать

Рис. 11. Радиус воды $r_{\rho}^{(w)}$, рассчитанный по (15), в зависимости от температуры.

Параметр	SPC	TIPS	SPC/E	TIP3P
$\varepsilon_{\rm LJ}/(k_{\rm B}T_{tr})$	2.13	1.71	2.39	2.14
σ_{LJ} (Å)	2.70	2.73	2.68	2.69

Таблица 3. Параметры ϵ_{LJ} и σ_{LJ} , соответствующие $\epsilon_{\infty} = 2.4$

Таблица 4. Параметры ϵ_{LJ} и $\sigma_{LJ},$ соответствующие $\epsilon_{\infty}=3$

Параметр	SPC	TIPS	SPC/E	TIP3P
$\varepsilon_{\rm LJ}/(k_{\rm B}T_{tr})$	1.43	1.42	1.42	1.42
σ_{LJ} (Å)	2.78	2.78	2.77	2.77

соответствующими составляющими стандартных модельных потенциалов [38–42]:

$$\Phi_E = \begin{cases} \Phi_E^{(i)}, & i = SPC, TIPS, ..., \\ \Phi_M, & \text{multipole series.} \end{cases}$$
(19)

В жидкой воде, а также в достаточно плотной паровой фазе энергия электростатического взаимодействия между молекулами воды уменьшается вследствие влияния поляризационных эффектов. Последние учитываются простейшим образом:

$$\Phi_E(r,\Omega) \rightarrow \frac{1}{\varepsilon_{\infty}} \Phi_E(r,\Omega)$$
, где ε_{∞} – диэлектрическая

проницаемость на частотах $\omega \sim 1/\tau_r \approx 10^{-12} s$, соответствующих вращательному движению. В соответствии с экспериментальными работами [43, 44]: $\varepsilon_{\infty} = 2.4$. Численные значения $U(r_{12})$, рассчитанные с помощью (16), вполне удовлетворительно аппроксимируются выражением Леннарда-Джонса:

$$U(r) = 4\varepsilon_{LJ} \left[\left(\frac{\sigma_{LJ}}{r} \right)^{12} - \left(\frac{\sigma_{LJ}}{r} \right)^{6} \right].$$
(20)

Значения параметров ε_{LJ} и σ_{LJ} , полученные таким образом для $\varepsilon_{\infty} = 2.4, 3$, представлены в табл. 3 и табл. 4 соответственно.

Как видим, значения $\sigma_{LJ}/2$ для потенциалов SPC, SPC/E, TIPS и TIP3P удовлетворяют неравенству:

$$r_w^{(hc)} < \sigma_{LJ}/2 < l_{\rm H}/2,$$

где $l_{\rm H}$ — длина H-связи. По порядку величины: $l_{\rm H} \approx l + \Delta_{\rm H}$, где $\Delta_{\rm H}$ — уширение пика бинарной корреляционной функции (см. рис. 10). Для парообразных состояний значение $\sigma_{\rm LJ}$ сдвигается вправо, а для жидких — влево.

САМОДИФФУЗИЯ В ВОДЕ

Основное внимание в этом разделе уделяется анализу коэффициента самодиффузии D_s молекул воды на кривой сосуществования жидкость пар и изотермах, где D_s рассматривается как функция давления.

Самодиффузия молекул воды на кривой сосуществования

В соответствии с (3) мы предполагаем, что коэффициент самодиффузии молекул воды есть сумма двух коллективных составляющих:

$$D_c = \frac{k_{\rm B}T}{10\pi\eta\sqrt{\nu\tau_M}},\tag{21}$$

где τ_M — время максвелловской релаксации (MRT) для высокочастотных вязких напряжений, а коллективная составляющая другого типа:

$$D_r = \frac{k_{\rm B}T}{6\pi\eta r^{(\nu)}},\tag{22}$$

описывается формулой Эйнштейна с фиксированным эффективным радиусом, определенным по значениям кинематической сдвиговой вязкости воды.

Здесь необходимо сделать несколько важных замечаний. Оба эти вклада в коэффициент самодиффузии жидкой воды носят коллективный характер, т.е. они связаны с одновременным перемещением некоторых молекулярных групп.

Формула (21) отражает дрейф молекулы вместе с окружающей ее жидкой частицей в поле скоростей, порождаемых гидродинамическими флуктуациями. Размер этой жидкой частицы оценивается как гидродинамический радиус корреляции: $r_c = 2\sqrt{vt}$, соответствующий вихревым модам поля скоростей. Максимальный вклад в коэффициент самодиффузии вносят мельчайшие частицы жидкости, имеющие размер $r_L = 2\sqrt{v\tau_M}$. Такие частицы принято называть Лагранжевыми части-

частицы принято называть Лагранжевыми частицами. Их вклад в коэффициент самодиффузии подробно обсуждается в [26–28].

В то же время, осциллирующие продольные гидродинамические моды к систематическому переносу частиц не приводят.

Оценки MRT

MRT можно приблизительно оценить с помощью модификации формулы Максвелла:

$$\tau_M = \eta/G.$$

Поскольку $G/\rho = c_t^2$, где G – высокочастотный модуль сдвига, а c_t – скорость поперечного звука в жидкой воде, мы можем записать:

$$\tau_M = \nu/c_t^2 > \nu/c_l^2, \qquad (23)$$

где c_l — скорость продольного звука. Здесь нами используется неравенство: $c_l > c_t$ [23]. Фактически, неравенство (23) дает нам положение нижней границы для значений MRT.

В дальнейшем мы будем предполагать, что

$$\tau_M^{(a)} \approx (3/2) \nu / c_l^2,$$
 (24)

где предполагается, что объемный модуль упругости превышает модуль сдвига примерно в 3/2 раза (см. [22]).

Имеет место также следующее дополнительное неравенство:

$$\zeta >> (>)l, \quad \zeta = 2\sqrt{\nu \tau_M^{(a)}}/3r^{(w)},$$
 (25)

отражающее тот факт, что радиус Лагранжевой частицы должен превышать радиус водного комплекса, образованного дрейфующей молекулой и ее ближайшим мономолекулярным окружением.

Другие оценки MRT ($\tau_M^{(MS)}$) для воды были получены с помощью методов молекулярной динамики в [26, 45].

Значения τ_M , рассчитанные с помощью (24) и полученные в [45], приведены в табл. 5. Область применимости $\tau_M^{(a)}$ и $\tau_M^{(MS)}$, определяемая (23) и (25), ограничена температурой t < 1.3.

Как видим, коллективный дрейф в жидкой воде оказывается возможным только при температурах: t < 1.3.

В соответствии со сказанным выше, сквозное поступательное смещение молекул воды вблизи тройной точки невозможно. Из-за отсутствия пустот подходящего объема активационное движение также невозможно. Таким образом, основные вклады в самодиффузию воды возникают благодаря систематическому перемешиванию частиц на молекулярных масштабах. Как ни удивительно, но именно таким механизмом обусловлена самодиффузия и в твердых телах, как было показано в [29].

Обоснование формулы (22)

Из размерных соображений следует, что этот вклад имеет структуру:

$$D_r \sim \frac{k_{\rm B}T}{\eta r_p^{(\nu)}},$$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 7 2022

Таблица 5. Зависимости MRT от температуры, удовлетворяющие неравенствам (23) и (25)

$t = T/T_{tr}$	$\begin{matrix} \tau_M^{(a)} \times 10^{13}, \\ c \end{matrix}$	$ \begin{aligned} \tau_M^{(MD)} \times 10^{13}, \\ c \end{aligned} $	$D_c/D_{\rm exp}$	ζ
1.00	11.58	9.8	0.04	7.87
1.09	5.97	8.66	0.09	4.01
1.21	3.37		0.24	2.15
1.30	2.44	6.12	0.38	1.65
1.40	1.79	4.89	0.51	1.21

где комбинация $\frac{k_{\rm B}T}{\eta}$ отражает свойства жидко-

сти, а $r_p^{(v)}$ — свойства молекул, прежде всего неизменность их размеров. Это требование должно проявляться согласованным образом как при описании самодиффузии, так и при описании сдвиговой вязкости. Значения D_r в двухкомпонентной смеси должны удовлетворять соотношению подобия:

$$D_r(1)/D_r(2) \sim r_p^{(v)}(2)/r_p^{(v)}(1).$$

Так как для достаточно крупных частиц можно использовать формулу Эйнштейна:

$$D_r = \frac{k_{\rm B}T}{6\pi\eta r_{\rm B}},$$

то это сразу же приводит к выражению (22).

Рис. 12. Температурные зависимости экспериментальных значений коэффициента самодиффузии D_s (светлые кружки), составляющей D_r , описывающей перемешивание на молекулярных масштабах (крестики), и суммы $D_r + D_c$ (штриховая линия) в области применимости 1 < t < 1.2 вклада D_c . Нами используются $\tau_M^{(a)}(t)$ и $r^{(w)} = 1.21$ Å.

Рис. 13. Зависимость коэффициента самодиффузии D_s молекул воды от температуры при t > 1.25: светлые кружки — экспериментальные данные, сплошная линия — значения D_r , рассчитанные при $r_{\rm H_2O}^{(v)} = 1.21$ Å.

Сравнение с экспериментальными данными

Сравнение теоретических и экспериментальных результатов в области применимости MRT: $t_{tr} < t < t_{\zeta}$, $t_{\zeta} \approx 1.2$, представлено на рис. 12. Волновая линия изображает верхнюю границу применимости $\tau_M^{(a)}$.

Как видно из табл. 5, соотношение D_c/D_{exp} меняется в пределах: $0.04 < D_c(t)/D_{exp}(t) < 0.24$. При этом оценки, полученные с помощью $\tau_M^{(a)}$ и $\tau_M^{(MD)}$, отличаются друг от друга не более чем в 1.4/1.5 раза. При t > 1.25 коллективный перенос молекул воды, описываемый вкладом (21), становится невозможным, так как понятие Лагранжевой частицы теряет смысл и

$$D_s \rightarrow D_r$$
.

Степень согласия между рассчитанными по формуле (22) значениями коэффициента самодиффузии и их экспериментальными данными при t > 1.3 представлена на рис. 13.

Коэффициент самодиффузии молекул воды на изотермах

Общие формулы, определяющие поведение коэффициента самодиффузии молекул воды, остаются прежними. Здесь основное внимание уделяется немонотонной зависимости сдвиговой вязкости от давления для всех изотерм в температурном интервале: 273 К $< T_i < 323$ К [30]. В нем динамическая сдвиговая вязкость, как функция давления, уменьшается пока p < 2000 атм, достигает своего минимума и только после этого начи-

Рис. 14. Самодиффузия молекул воды как функция давления при разных температурах. Заполненные и незаполненные кружочки и треугольники описывают экспериментальные значения, пунктирные линии – значения D_r , сплошные линии – значения $D_r + D_c$. Вертикальные отрезки отмечают 5% экспериментальную ошибку.

нает увеличиваться аналогично вязкости простых жидкостей.

Поскольку основной вклад в коэффициент самодиффузии определяется вкладом D_r , описываемым формулой (22), предположим, что именно он определяет зависимость $D_r = D_r(p,T_i)$ от давления (см. рис. 14).

Как видим, степень отклонения рассчитанных по формулам (3), (21) и (22) значений коэффициентов самодиффузии от экспериментальных значений не превышает экспериментальных ошибок (5%).

Радиус Лагранжевой частицы при p = 0.1 МПа и T = 333 К равен 7.7 Å и практически не меняется с ростом давления.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Разносторонний анализ теплового движения молекул в воде приводит к выводу, что ее коэффициенты — кинематическая сдвиговая вязкость и самодиффузии имеют аргоноподобный характер. Последнее характерно также для большинства низкомолекулярных жидкостей. Это означает, что сдвиговая вязкость в воде возникает благодаря эффектам трения, возникающим между молекулярными слоями, смещающимися друг относительно друга. Подобие между аргоном и водой возникает вследствие вращательного движения молекул последней. В результате молекулы волы проявляются эффективно как квазисферические частицы. В обобщенных термодинамических переменных сдвиговая вязкость воды отличается от таковой для аргона на их кривых сосушествования жидкость-пар только слабой температурной зависимостью ее исключенного объема. Этот эффект проявляется только вблизи тройной точки, где наблюдается и аномальное поведение плотности. Необходимо подчеркнуть, что особенности поведения кинематической сдвиговой вязкости воды согласованно проявляются также в поведении удельного объема, рассматриваемого как функция давления и температуры, изменяющихся в пределах: 1 < t < 1.2, $p_{tr} .$

Очень важно, что сдвиговая вязкость и самодиффузия в воде не имеют активационного характера как и прямого отношения к ее кластерной структуре. Размеры молекул воды, проявляющиеся в этих важнейших кинетических процессах, одинаковы, и этот размер сводится к радиусу твердого кора молекулы воды. Он заметно отличается от значений, определяемых по усредненному межчастичному потенциалу И **у**равнениям состояния.

В то же время, калорические и поляризационные свойства воды, прежде всего энтропия, теплоемкость и поляризуемость молекул, определяются, главным образом, тепловыми возбуждениями кластеров [46, 47]. Кластерная структура проявляется также в поведении структурного фактора [36, 47].

Расстояние между ближайшими оксигенами в кластерах превышает то, которое возникает между оксигенами вращающихся молекул в структурно-разупорядоченной жидкой воде. Вместе с тем. разрушение кластерной структуры связано также с уменьшением эффективного размера молекул воды (см. рис. 7).

Мы хотели бы выразить свое искреннее удовлетворение предоставлением возможности посвятить нашу статью доброй памяти крупного советского и российского ученого Г.А. Мартынова.

Сердечно благодарим М.Н. Родникову и Г.Г. Маленкова за очень заинтересованное обсуждение на семинарах и в многочисленных двусторонних письмах всех поднимаемых в статье вопросов. Хочется поблагодарить также Ю.К. Товбина за усилия по организации специального выпуска Журнала физической химии.

СПИСОК ЛИТЕРАТУРЫ

1. Эйзенберг Д., Кауцман В. Структура и свойства воды. Л.: Гидрометеоиздат, 1975. 280 с.

2. Franks F. Water: A Comprehensive Treatise. Plenum, New York, USA, 1982.

- 3. Magazu S., Maisano G., Migliardo P. // J. Chem. Phys. 1998. V. 109. P 1170. https://doi.org/10.1063/1.476662
- 4. *Magazù S., Villari V., Migliardo P. et al.* // J. Phys. Chem. B. 2001. V. 105. № 9. P. 1851. https://doi.org/10.1021/jp002155z
- 5. Magazù S., Migliardo F., Telling M.T.F. // Ibid. 2007. V. 36. P. 163. https://doi.org/10.1007/s00249-006-0108-0
- 6. Magazù S., Migliardo F., Telling M.T.F. // Food Chemistry. 2008. V. 106 (4). P. 1460. https://doi.org/10.1016/j.foodchem.2007.05.097
- 7. Magazù S., Migliardo F., Telling M.T.F. // European biophysics journal. 2007. V. 36 (2). P. 163. https://doi.org/10.1007/s00249-006-0108-0
- 8. Malenkov G.G. // Phys. A Stat. Mech. Its Appl. 2002. V. 314. P. 477.
- 9. Волошин В.П., Наберухин Ю.И. // Журн. структур. химии. 2009. Т. 50. № 1. С. 84.
- 10. Voloshin V.P., Naberukhin Y.I., Malenkov G.G. // Electron. J. "Structure Dyn. Mol. Syst." 2011. V. 10. P. 12. http://old.kpfu.ru/sdms/sod 10a 2011. htm.
- 11. Маломуж Н.П., Махлайчук В.Н., Махлайчук П.В. и др. // Журн. структур. химии. 2013. Т. 54. Supplement1. S24-S39.
- 12. Okada K., Yao M., Hiejima Y. et al. // J. Chem. Phys. 1999. V. 110. P. 3026.
- 13. Pruppacher H.R. // J. Chem. Phys. 1972. V. 56. P. 101. https://doi.org/10.1063/1.1676831
- 14. Simpson K., Karr M. // Phys. Rev. 1958, V. 111, P. 1201. https://doi.org/10.1103/PhysRev.111.1201
- 15. Булавин Л.А., Маломуж Н.П., Панкратов К.М. // Журн. структур. химии. 2006. Т. 47. № 1. С. 52.
- 16. Bulavin L.A., Fisenko A.I., Malomuz N.P. // Chem. Phys. Lett. 2008. V. 453. P. 183. https://doi.org/10.1016/j.cplett.2008.01.028
- 17. *Жиганюк І.В., Маломуж М.П.* // Український фізичний журнал. 2019. V. 60. № 9. С. 960. https://doi.org/10.15407/ujpe60.09.0960
- 18. *Тімофєєв М.В.* // Український фізичний журн. 2019. V. 61. № 10. С. 893. https://doi.org/10.15407/ujpe61.10.0893
- 19. Malomuzh N.P., Zhyganiuk I.V., Timofeev M.V. // J. Mol. Liq. 2017. V. 242. P. 175. https://doi.org/. 127. https://doi.org/10.1016/j.molliq.2017.06
- 20. Makhlaichuk P.V., Makhlaichuk V.N., Malomuzh N.P. // J. Mol. Liq. 2017. V. 225. P. 577. https://doi.org/10.1016/j.molliq.2016.11.101
- 21. Malomuzh N.P., Makhlaichuk V. N. // J. Mol. Lig. 2019. V. 295. P. 111729. https://doi.org/10.1016/j.molliq.2019.111729
- 22. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Физ. мат. лит., 1964. 447 с.
- 23. Маломуж Н.П., Олейник А.В. // Журн. структур. химии. 2008. Т. 49. № 6. С. 1093. https://doi.org/10.1007/s10947-008-0178-1

https://doi.org/10.1134/S0022476613080039

https://doi.org/10.1063/1.477897

977

- 24. Паташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. М.: Наука, 1982. 381 с.
- 25. *Фишер И.З.* Статистическая теория жидкостей. М.: Физ. мат. лит., 1961. 280 с.
- Маломуж Н.П., Шакун К.С. // Успехи физ. наук. 2021. Т. 191. С. 163. https://doi.org/10.3367/UFNe.2020.05.038759
- Локотош Т.В., Маломуж М.П., Панкратов К.М. и др. // Український фізичний журнал. 2019. Т. 60. № 8. С. 697. https://doi.org/10.15407/ujpe60.08.0697
- Bulavin L.A., Lokotosh T.V., Malomuzh N.P. // J. Mol. Liq. 2008. V. 137. P. 1. https://doi.org/10.1016/j.molliq.2007.05.003
- Belonoshko A., Lukinov T., Fu J. et al. // Nature Geosci 2017. V. 10. P. 312. https://doi.org/10.1038/ngeo2892
- NIST Chemistry WebBook. SRD 69. Thermophysical Properties of Fluid Systems https://webbook.nist.gov/chemistry/fluid/.
- Chechko V.E., Gotsulskiy V.Ya., Malomuzh N.P. // J. Mol. Liq. 2020. V. 318. P. 114096 https://doi.org/10.1016/j.molliq.2020.114096
- 32. IAPWS, Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance, International Association for the Properties of Water and Steam, Erlangen, Germany, 1997, 15, retrieved from http://www.iapws.org/relguide/visc.pdf.
- Никольский Б.П. Справочник химика (в 7 томах) Л.: Химия, 1971 г.
- Dymond J.H., Malhotra R. // International Journal of Thermophysics 1988. V. 9. № 6. P. 941. https://doi.org/10.1007/BF01133262
- Sotani T., Arabas J., Kubota H. et al. // High Temperatures – High Pressures. 2000. V. 32. P. 433. https://doi.org/10.1068/htwu318

- 36. Soper A.K., Benmore C.J. // Physical Review Letters. 2008. V. 101. P. 065502. https://doi.org/10.1103/PhysRevLett.101.065502
- Zheng L., Chen M., Sun Z. et al. // The J. of Chemical Physics. 2018. V. 148. P. 164505. https://doi.org/10.1063/1.5023611
- Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. Intermolecular Forces, edited by B. Pullman. Reidel, Dordrecht, 1981. 331 p.
- 39. Berendsen H.J.C., Grigera J.R., Straatsma T.P. // J. Phys. Chem. 1987. V. 91. P. 6269. https://doi.org/10.1021/j100308a038
- 40. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926. https://doi.org/10.1063/1.445869
- Vrabec J., Stoll J., Hasse H. // J. Phys. Chem. B. 2001.
 V. 105. № 48. P. 12126. https://doi.org/10.1021/jp0125420
- 42. Wilhelm E., Battino. // J. Chem. Phys. 1971. V. 55. P. 4012. http://dx.doi.org/. 1676694. https://doi.org/10.1063/1
- 43. *Beneduci A*. // J. Mol. Liq. 2007. V. 138. P. 55. https://doi.org/10.1016/j.molliq.2007.07.003
- 44. Yada H., Nagai M., Tanaka K. // Chem. Phys. Lett. 2009. V. 473. P. 279. https://doi.org/10.1016/j.cplett.2009.03.075
- 45. *Malomuzh N.P., Shakun K.S.* // J. Mol. Liq. 2019. V. 293. P. 111413.
- https://doi.org/10.1016/j.molliq.2019.111413
 46. Makhlaichuk V.N., Malomuzh N.P. // J. Mol. Liq. 2018. V. 253. P. 83.

https://doi.org/10.1016/j.molliq.2018.01.018

- 47. *Маломуж Н.П.* // РЭНСИТ. 2020. Т. 12. № 1. С. 39. https://doi.org/10.17725/rensit.2020.12.039
- Eggert J.H., Weck G., Loubeyre P. // J. Phys.: Condens. Matter. 2002. V. 14. P. 11385. https://doi.org/10.1088/0953-8984/14/44/487