ФОТОХИМИЯ И МАГНЕТОХИМИЯ

УДК 544.58

РАЗРАБОТКА ПРОТОТИПА ДИФФУЗИОННОГО ГЕНЕРАТОРА РАДИОНУКЛИДА ²¹²Рb НА ОСНОВЕ ЭМАНИРОВАНИЯ ²²⁰Rn ИЗ ИОНООБМЕННОЙ ²²⁸Th-СОДЕРЖАЩЕЙ СМОЛЫ

© 2022 г. А. А. Артюхов^{*a*}, П. Н. Ивлиев^{*a*}, К. В. Коков^{*a*,*}, Я. М. Кравец^{*a*}, Т. М. Кузнецова^{*a*}, В. В. Лебедев^{*a*}, К. А. Маковеева^{*a*}, В. Я. Панченко^{*a*}, Д. Ю. Чувилин^{*a*}

^аНИЦ "Курчатовский институт", Москва, Россия *e-mail: kvkokov@yandex.ru Поступила в редакцию 26.11.2021 г. После доработки 26.11.2021 г. Принята к публикации 16.12.2021 г.

Разработан прототип генератора ²¹²Pb диффузионного типа на основе эманирования материнского ²²⁰Rn из ионообменной смолы. Установлено, что эманирующая способность сильноосновной анионообменной ²²⁸Th-содержащей смолы AB-17-8 растет с увеличением ее влажности, а именно, при нормальных условиях выход ²²⁰Rn на тонких слоях может достигать 52%. Показано, что увеличение толщины слоя смолы приводит к значительному уменьшению выхода ²²⁰Rn; 90% осажденного на стенках накопителя ²¹²Pb может быть смыто раствором 0.1 М HCl для дальнейшего применения в реакциях комплексообразования с органическими соединениями для молекулярно-прицельной терапии рака. Альфа-спектрометрическими измерениями показано отсутствие долгоживущих материнских примесей в элюате, что свидетельствует о перспективности применения генератора.

Ключевые слова: свинец-212, торий-228, генератор радионуклидов, источники α-излучения **DOI:** 10.31857/S0044453722080039

В настоящее время распространение онкологических заболеваний и рост связанной с ними смертности постепенно превращается в эпидемию, угрожающую человечеству. По прогнозам Всемирной организации здравоохранения, к 2040 г. число новых случаев рака вырастет до 37 млн в год. В 2020 г. в мире зафиксировано ~19.3 млн новых случаев онкозаболеваний и ~10 млн случаев смерти от рака [1]. В связи с этим активно ведутся поиски новых методов диагностики и терапии злокачественных новообразований.

Таргетная терапия – один из методов, демонстрирующих свою эффективность в борьбе с раком. Ее возможности в визуализации опухолей и терапии онкологических заболеваний основаны на адресной доставке радионуклида к пораженной ткани. Излучение радионуклидов, которые доставляются в комплексе с нацеливающими векторами, такими как моноклональные антитела и синтетические пептилы. приводит к гибели раковых клеток. Наиболее перспективный класс радионуклидов для использования в ядерной медицине – источники α-излучения, которое способно вызвать множественные двойные разрывы ДНК, за счет чего при использовании α-излучающих радионуклидов заметно снижается возможность репарации дефектов опухолевой клеткой и,

как следствие, увеличивается терапевтический эффект от излучения [2–4]. Таким образом, α -частицы демонстрируют высокую цитотоксичность. В экспериментах *in vitro* было показано, что при однократном пересечении α -частицей ядра клетки вероятность ее поражения составляет 20–40% [5–7].

В связи с этим определенный интерес представляет β -активный радионуклид ²¹²Pb ($T_{1/2} = 10.64$ ч), входящий в цепочку распада ²²⁸Th (рис. 1). Терапевтический эффект обусловлен α -излучением его дочернего радионуклида ²¹²Bi. Поэтому препараты на основе ²¹²Pb могут служить *in vivo* генераторами ²¹²Bi. Ценность ²¹²Bi как α -эмиттера связана с его относительно корот-ким периодом полураспада ($T_{1/2} = 60.6$ мин). Это позволяет достичь высокой скорости доставки терапевтической дозы к злокачественным клеткам, что особенно актуально при лечении быстрорастущих опухолей.

В настоящее время ²¹²Pb получают из генератора ²²⁴Ra/²¹²Pb [8, 9], основанного на получении радионуклида ²¹²Pb в результате элюирования его из ионообменной колонки, заполненной ²²⁴Ra ($T_{1/2} = 3.6$ суток). Однако, подобный генератор

$$\xrightarrow{228}_{90} \text{Th} \xrightarrow{\alpha, \gamma} \xrightarrow{224}_{88} \text{Ra} \xrightarrow{\alpha} \xrightarrow{220}_{86} \text{Rn} \xrightarrow{\alpha, \gamma} \xrightarrow{216}_{84} \text{Po} \xrightarrow{\alpha} \xrightarrow{212}_{82} \text{Pb} \xrightarrow{\beta, \gamma} \xrightarrow{212}_{83} \text{Bi} \xrightarrow{\gamma} 2_{10} \text{Po} \xrightarrow{\alpha} \xrightarrow{212}_{82} \text{Pb} \xrightarrow{\beta, \gamma} \xrightarrow{212}_{83} \text{Bi} \xrightarrow{\gamma} 2_{10} \text{Po} \xrightarrow{\alpha} \xrightarrow{212}_{82} \text{Pb} \xrightarrow{\beta, \gamma} \xrightarrow{212}_{83} \text{Bi} \xrightarrow{\gamma} 2_{10} \text{Po} \xrightarrow{\alpha} \xrightarrow{212}_{82} \text{Pb} \xrightarrow{\beta, \gamma} \xrightarrow{212}_{83} \text{Bi} \xrightarrow{\gamma} 2_{10} \text{Po} \xrightarrow{\alpha} \xrightarrow{212}_{82} \text{Pb} \xrightarrow{\beta, \gamma} \xrightarrow{212}_{83} \text{Bi} \xrightarrow{\gamma} 2_{10} \text{Po} \xrightarrow{\alpha} \xrightarrow{212}_{82} \text{Pb} \xrightarrow{\beta, \gamma} \xrightarrow{212}_{83} \text{Pb} \xrightarrow{\beta, \gamma} \xrightarrow{21}_{83} \text{Pb} \xrightarrow{21$$

Рис. 1. Фрагмент цепочки распада ²²⁸Th.

требует перезаправки каждые 3–6 суток, что существенно затрудняет его эксплуатацию. Помимо этого, наличие в цепочке распада высокоэнергетического γ -излучения обусловливает высокие дозовые нагрузки на персонал [4]. Если в качестве источника ²¹²Pb вместо ²²⁴Ra использовать более долгоживущий ²²⁸Th ($T_{1/2} = 1.9$ лет), то время работы генератора можно увеличить до 2–4 лет, что существенно сократит затраты на производство, транспортировку, а также уменьшит дозовую нагрузку [10].

Цель данной работы — исследование эманирующей способности радона из анионита AB-17-8 для создания прототипа диффузионного генератора ²¹²Pb. Рассмотрена возможность использования ²²⁸Th-содержащего анионита AB-17-8 в качестве источника эманирования ²²⁰Rn ($T_{1/2} = 56$ с) для создания прототипа диффузионного генератора радионуклида ²¹²Pb.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Принцип получения ²¹²Pb

Согласно методике, описанной в работе [10], в качестве исходного материала для получения ²¹²Pb использовали ²²⁸Th-содержащую сильноосновную анионообменную гелевую смолу (AB-17-8, диаметр гранул 0.3–0.7 мм), которая служит источником выделения газообразного ²²⁰Rn.

Процесс был организован следующим образом. В экспериментальном генераторе ²¹²Pb радон эманирует из смолы в специальные накопители, где в результате его распада происходит образование дочернего радионуклида ²¹²Pb. Полученный ²¹²Pb осаждается на стенках накопителя и по окончании накопительного цикла смывается промывным раствором, в качестве которого использован 0.1 М раствор HCl. Использование раствора HCl обусловлено сродством образующегося Pb²⁺ к водным хлорид-содержащим растворам по причине образования им хлоридных комплексов [11], в дополнение к нелетучему характеру Pb²⁺ в используемых нормальных условиях.

Благодаря разделению материнского нуклида, находящегося в твердофазном состоянии, и его газообразного продукта распада ²²⁰Rn, исключается возможность попадания долгоживущих материнских радионуклидов в конечный продукт, что обеспечивает радионуклидную чистоту препарата и позволяет исключить операции по его очистке.

Радионуклидная чистота конечного продукта контролировалась проведением измерения α -из-лучения пробы ²¹²Pb на α -детекторе ORTEC Alpha Suite Alpha Duo с разрешающей способностью до 20 кэВ. На рис. 2 представлен полученный α -спектр, на котором видны сигналы, соответствующие только α -излучению продуктов распада целевого радионуклида ²¹²Pb (²¹²Bi и ²¹²Po). Линии в области от 5600 до 6100 кэВ соответствуют распади 2¹¹²Po. Линии, свидетельствующие о наличии в пробе материнских радионуклидов (²²⁸Th, ²²⁴Ra) и продуктов их распада отсутствуют.

Количественная оценка степени эманирования радона из ²²⁸Th-содержащей смолы

Количественно о распределении радона в системе "источник—накопители" судили по активности его продукта распада ²¹²Pb. Измерения проводили полупроводниковым Ge-детектором, соединенным с многоканальным анализатором (ORTEC). Активность радионуклида ²¹²Pb определяли по интегралу фотопика γ-линии 238.63 кэВ.

Степень эманирования радона из смолы (выход) в накопители определяли как процентное отношение активности ²¹²Pb, аккумулированного в накопителях, к равновесной исходной активности ²¹²Pb в герметично закрытом источнике. Равновесная активность ²¹²Pb в ²²⁸Th-содержащей смоле рассчитывали для каждой экспериментальной модели генератора с учетом удельной активности смолы и ее массы.

При определении удельной активности ²²⁸Th-содержащей смолы ее предварительно взвешенный образец помещали в герметичную пробирку для предотвращения утечки радона. По истечении ≈ 100 ч ($\approx 10 T_{1/2}$ ²¹²Pb) измеряли активность образца γ -спектрометром. Удельную активность смолы (300 кБк/г) определяли отношением измеренной активности образца к его массе.

Методика исследования степени эманирования ²²⁰Rn из монослоя ионообменной смолы

Чтобы определить максимально возможную степень эманирования ²²⁰Rn из данной ²²⁸Th-содержащей ионообменной смолы, было обеспе-

Рис. 2. α -Спектр пробы радионуклида ²¹² Pb (p – квантовый выход).

Рис. 3. Схема экспериментального генератора ²¹²Pb: а – на тонком слое ионообменной смолы, б – на толстом слое ионообменной смолы.

чено равномерное распределение гранул тонким слоем толщиной, не превышающей их средний диаметр. Такая геометрия облегчает диффузию, сводит к минимуму процессы ресорбции радона и позволяет оценить выход ²²⁰Rn из отдельной гранулы.

Для исследования выхода ²²⁰Rn из гранулы смолы было изготовлено устройство, в котором ²²⁸Th-содержащая смола была распределена слоем толщиной, не превышающей средний диаметр гранул, и помещена между двумя защитными мембранами (гидрофобные мембраны из фторопласта ФМ-400, диаметр пор 0.45 мкм). Полученная сборка была зафиксирована в кольцеоправе, к которой герметично сверху и снизу были присоединены фторопластовые накопители ($d_{\rm BH} = 32$ мм, h = 60 мм) для аккумулирования ²¹²Pb. Вся сборка была заключена во внешний корпус (рис. 3а).

Достоинство используемой в работе сильноосновной анионообменной смолы (AB-17-8) — ее высокая емкость. Однако, как было установлено, эффективное эманирование радона из нее наблюдается только при увлажнении. Увлажнение монослоя ²²⁸Th-содержащей смолы проводилось следующим образом: на дно нижнего накопителя наливали 5 мл деионизированной воды и выдерживали устройство 36 ч при комнатной температуре, в результате смола насыщалась парами воды. Затем в течение 10 суток периодически производили измерения активности смолы и накопителей.

Конструкция генератора для исследования эманирования ²²⁰ Rn из толстого слоя смолы

Для исследования эманирования радона из толстого слоя 228 Th-содержащей смолы были изготовлены два генератора, в которых смола была размещена во фторопластовом корпусе внутренним диаметром 40 мм, высотой 15 мм и ограничена защитными мембранами ФМ-400 (рис. 36). При изготовлении корпуса был предусмотрен свободный внутренний объем для компенсации увеличения толщины слоя смолы при ее увлажнении. Масса исходной смолы в генераторах составляла 5.7 и 6.3 г, что соответствовало слоям с толщинами 4.6 и 5.1 мм.

В качестве накопителя ²¹²Pb использовали стандартные полипропиленовые пробирки объемом 50 см³. Конструкция генератора предусматривала герметичное резьбовое присоединение двух накопителей к корпусу, при котором исключались проскок частиц смолы из фторопластового корпуса, а также утечка газообразного радона за пределы накопителей. Полипропилен, как материал накопителей, был выбран главным образом по причине высокой химической стойкости и низкой смачиваемости. Благодаря этим свойствам потери целевого радионуклида при смыве сводились к минимуму ($\approx 10\%$).

На этих генераторах проводились эксперименты по исследованию влияния толщины слоя и влажности смолы на выход радона. Кроме того, было получено распределение активности свинца на стенках накопителей.

Методика изучения влияния увлажнения смолы на степень эманирования радона

Для изучения влияния степени увлажнения смолы на эманирование радона на первом этапе из имеющейся ²²⁸Th-содержащей смолы подготавливали ее просушенный образец. Для сушки смолу помещали в эксикатор с силикагелем и контролировали процесс удаления влаги по изменению массы смолы. Выдержку в эксикаторе завершали после того, как масса смолы не изменялась в течение 3 суток. Просушенную смолу помещали в генератор, к которому присоединяли накопители. Всю конструкцию выдерживали в течение ≈100 ч, после чего проводили измерения и расчет степени эманирования радона.

Для количественного увлажнения смолы в нижний накопитель из дозатора вносили 400 мкл дистиллированной воды. Генератор собирали и устанавливали в индукционный нагреватель таким образом, чтобы происходил нагрев нижней части накопителя. Генератор выдерживали в нагревателе не менее 12 ч при температуре 40°С. За время выдержки вода полностью испарялась из накопителя и увлажняла смолу, что подтверждалось соответствующим изменением массы генератора и накопителей.

После увлажнения определяли выход радона по суммарной активности накопителей (по ²¹²Pb). Измерения проводили ежедневно в течение семи суток, затем аналогичным образом проводили следующее увлажнение. Операцию увлажнения смолы для каждого генератора повторяли по нескольку раз до введения в смолу суммарно по 2 г воды.

Методика изучения распределения свинца по высоте накопителей

Для изучения распределения свинца по высоте накопителя использовали описанный выше генератор. После сборки генератор выдерживали в течение 7 суток. Затем производили измерения активности (по ²¹²Pb) накопителей.

Измерения проводили, как и ранее, на полупроводниковом Ge-детекторе, но между анализатором и объектом измерений устанавливали диафрагму, представляющую собой горизонтальную щель шириной 20 мм, ограниченную свинцовой защитой толщиной 50 мм. Толщина применяемой свинцовой защиты гарантировала максимальное поглощение регистрируемого у-излучения от закрытых диафрагмой участков накопителя (высокоэнергетичной ү-линии 2.6 МэВ радионуклида ²⁰⁸Tl). Диафрагма была стационарно установлена на одной горизонтальной оси с Geдетектором, а объект измерений перемещали по вертикальной оси, что позволяло оценить накопленную активность на любом из участков поверхности накопителя размером 20 мм.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При изучении эманирования радона из монослоя влажной ²²⁸Th-содержащей смолы определили, что выход ²²⁰Rn в накопители составляет 52%. Однако, можно предположить, что эта величина не отражает истинное эманирование радона из смолы, а обусловлена конструкцией самого генератора. Поскольку принцип работы генератора основан на свободной диффузии радона и в этом случае нет условий для направленного движения

1214

Рис. 4. Распределение активности ²¹²Pb по поверхности накопителя (δ) в % от суммарной активности; d – расстояние от источника радона.

молекул газа, то имеет место равномерное распределение радона, а, следовательно, и ²¹²Pb на поверхностях источника и накопителей. Исходя из полученных результатов, была произведена оценка действительной степени эманирования радона из исследуемой смолы.

Изучение распределения активности ²¹²Рb по поверхности накопителей (рис. 4) показало, что >76% радионуклида осаждается на расстоянии до 2.5 см от источника. Исходя из этого, была рассчитана площадь эффективной рабочей поверхности накопителей в монослойном генераторе, которая составила 50 см². С учетом того, что суммарная площадь поверхности гранул смолы составляла ≈7.5 см², площадь поверхностей мембран – 32 см², общая площадь поверхности источника и накопителей ≈90 см². Таким образом, перерасчет выхода радона, согласно распределению активности ²¹²Pb по эффективной поверхности, составил 90-95%. По-видимому, полученное значение соответствует действительной степени эманирования радона и служит специфической характеристикой данной смолы, связанной с ее физико-химическими и структурными особенностями.

Переход от монослоя к толстослойным генераторам приводит к возникновению затруднений при движении молекул газа через слой смолы и, соответственно, снижению выхода радона в накопители. Данные рис. 5 показывают, что при увеличении толщины слоя смолы от 0.41 до 0.95 см выход радона в накопители уменьшается более, чем в 2 раза.

В ходе экспериментов на монослойном генераторе качественно было показано, что увлажнение смолы оказывает положительное влияние на эманирование радона. Однако было отмечено, что при сохранении постоянной влажности смолы в ходе эксперимента наблюдалась тенденция к уменьшению выхода радона в накопители.

Рис. 5. Зависимость равновесного выхода радона в накопители от толщины слоя ²²⁸Th-содержащей смолы при влажности 48%.

Исходная влажность смолы в монослойном генераторе составляла $\approx 10\%$. При такой влажности выход ²²⁰Rn составил 11%. Дальнейшее увлажнение смолы привело к заметному улучшению эманирования радона (52%). Однако было отмечено, что с увеличением времени выдержки выход радона в накопители снижался и стабилизировался на новом значении (36%).

В ходе увлажнения смолы ее объем увеличивается 1.5–3 раза; при этом происходит расширение пор, что способствует выходу радона. Кроме того, молекулы воды занимают сорбционные вакансии, в том числе и на поверхности гранулы, блокируя сорбцию радона, тем самым увеличивают его подвижность. Возможно, что эманирование радона из увлажненной смолы повышается в результате увеличения подвижности ²²⁴Ra – предшественника ²²⁰Rn. Накопленный в смоле радий переходит в раствор, что приводит к снижению пространственных затруднений диффузии радона и способствует его выходу в накопители. Но по мере выдержки генератора избыточный растворенный радий распадается, и его концентрация в воде приближается к равновесной. Выход радона уменьшается, но за счет частичного устранения препятствий диффузии и увеличения эффективной площади эманирования стабилизируется на более высоком значении.

Влияние увлажнения смолы на эманирование радона нашло подтверждение и в экспериментах с толстослойными диффузионными генераторами. Так, на зависимости выхода радона в накопители от длительности выдержки генератора при постоянной влажности ²²⁸Th-содержащей смолы наблюдается заметное увеличение выхода с последующей стабилизацией его на постоянном значении (рис. 6). Увлажнение смолы до указанных значений достигалось последовательно, начиная с начального значения влажности смолы в 16%.

Рис. 6. Зависимости выхода радона в накопители от длительности выдержки после увлажнения ²²⁸Th-содержащей смолы до влажности 25 (*1*), 32 (*2*) и 44% (*3*); толщина слоя смолы 0.51 см.

Результаты влияния степени увлажнения смолы на эманирование радона показывают, что при достижении определенной влажности дальнейшее увлажнение смолы не приводит к увеличению выхода радона (рис. 7). Это, вероятно, связано с тем, что при увеличении влажности смолы происходит полное обволакивание водой поверхности зерна, и возникающие препятствия при прохождении радона через слой жидкости нивелируют, по-видимому, положительные эффекты увеличения подвижности прекурсора (²²⁴Ra). Кроме того, радон растворим в воде (отношение концентраций в жилкой и газовой фазах при 18°C составляет 0.285 [12]), что также отрицательно влияет на его эманирование из сильно увлажненного зерна.

Конструкция генератора, основанная на свободной диффузии радона из ²²⁸Th-содержащей смолы, может служить прототипом диффузионного генератора для получения ²¹²Pb. Генератор такого типа имеет ряд несомненных преимуществ: прежде всего радионуклидная чистота целевого продукта ²¹²Pb, кроме того, простота конструкции и эксплуатации, возможность непрерывной работы без перезагрузки 2–4 лет.

Однако, в ходе работы выявлены следующие ограничения в использовании подобного генератора. Прежде всего, сам принцип работы генератора, основанный на диффузионном удалении радона из источника, предполагает наличие неизбежных потерь на уровне 50%.

Для облегчения диффузии выделяющегося газа необходимо минимизировать толщину слоя ²²⁸Th-содержащей смолы, а также увеличить ее удельную активность, при этом принимая во внимание параметры радиационной стойкости смолы и используемых конструкционных материалов и дозовую нагрузку на персонал.

Рис. 7. Зависимости выхода радона (равновесного) в накопители от влажности ²²⁸Th-содержащей смолы при разных толщинах слоя смолы.

В предлагаемой конструкции диффузионного генератора достигается высокая эффективность смыва целевого продукта (²¹²Pb) с накопителей (90%), однако, автоматизация этого процесса весьма затруднительна. Перечисленные выше не-достатки ограничивают использование диффузи-онного генератора для получения высоких активностей ²¹²Pb, однако его можно рассматривать как источник относительно небольших активностей ²¹²Pb для лабораторных и медицинских целей.

СПИСОК ЛИТЕРАТУРЫ

- Кленов Г.И., Хорошков В.С. // УФН. 2016. № 186. С. 891.
- 2. Kohler G., Milstein C. // Nature. 1975. V. 256. P. 495.
- Miao Y., Quinn T. // Crit. Rev. Oncol. Hematol. 2008. V. 67. P. 213.
- Егорова Б.В. Комплексообразование пиридин- и фенил-содержащими азакраун-эфирами Ac³⁺, Eu³⁺, Lu³⁺, Y³⁺, Bi³⁺, Cu²⁺, Pb²⁺: Дис.... канд. хим. наук. М.: МГУ, 2016. 124 с.
- Soyland C., Hassfjell S. // Int. J. Radiat Biol. 2000. V. 76. P. 1315.
- Pugliese M., Durante M., Grossi G. et al. // Ibid. 1997. V. 72. P. 397.
- Hei T., Wu L., Liu S. et al. // Proc. Natl. Acad. Sci. 1997. V. 94. P. 3765.
- Tan Z., Chen P., Schneider N. et al. // Int. J. Oncology. 2012. V. 40. P. 1881.
- 9. *Yong K.J., Milenic K., Baidoo Y.S. et al.* // Cancer Medicine. 2013. V. 2. № 5. P. 646.
- 10. Коков К.В., Егорова Б.В., Ларкин А.А и др. // Прикл. физика. 2020. № 1. С. 64.
- 11. *Luo Y., Millero F.J.* // Geochim. Cosmochim. Acta. 2007. V. 71. № 2. P. 326.
- 12. Несмеянов А.А. Радиохимия. М.: Химия, 1978. 560 с.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 8 2022