— ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ

УДК 543.183

ОПТИМИЗАЦИЯ ХРОМАТОГРАФИЧЕСКОГО РАЗДЕЛЕНИЯ АНТИБАКТЕРИАЛЬНЫХ ПЕПТИДОВ Galleria mellonella

© 2022 г. К. Е. Полунин^{*a*}, О. С. Федоткина^{*b*}, И. А. Полунина^{*a*}, А. К. Буряк^{*a*,*}

^аИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071 Москва, Россия ^bООО "СамараНИПИнефть", 443010 Самара, Россия

> *e-mail: akburyak@mail.ru Поступила в редакцию 21.12.2021 г. После доработки 21.12.2021 г. Принята к публикации 27.12.2021 г.

Методом ОФ ВЭЖХ исследованы условия разделения смесей антимикробных пептидов гемолимфы *Galleria mellonella*, позволяющие количественно выделить и идентифицировать целевые пептиды методом масс-спектрометрии МАЛДИ. Дана оценка термодинамических и кинетических характеристик сорбции индуцированных пептидов на октадецилсиликагеле и пористом графитированном углероде, получены корреляционные зависимости между расчетными и экспериментальными временами удерживания пептидов, между их первичной структурой и удерживанием. Определены оптимальные условия разделения смесей антимикробных пептидов иммунизированной гемолимфы, на колонке Zorbax Eclipse XDB-C18 в условиях градиентного элюирования.

Ключевые слова: хроматографическое разделение смесей, антимикробные пептиды *Galleria mellonella* **DOI:** 10.31857/S0044453722080209

Возрастающая устойчивость патогенных бактерий к классическим антибиотикам стимулирует поиск новых эффективных лекарственных средств. В качестве альтернативы антибиотикам рассматриваются антимикробные пептиды, продуцируемые различными организмами для защиты от патогенов и токсикантов. Преимущества антибактериальных пептидов: селективность, быстродействие, широкий антибактериальный спектр [1, 2]. Насекомые, в частности, личинки гусениц Galleria mellonella L (GM), широко используются в качестве модельных живых организмов при исследовании иммунного ответа на воздействие бактерий, грибков и вирусов [3, 4]. Защитные пептиды, состоящие из нескольких аминокислотных остатков, сорбируются на поверхностности клеточной мембраны агрессоров, повышают ее проницаемость и в отдельных случаях вызывают распад мембраны. Смесь антимикробных пептидов в гемолимфе GM, как показали исследования [3-9], содержит вещества, относящиеся к разным классам органических соединений, которые сильно различаются по сорбционным свойствам. Природа и количество аминокислот, а также их последовательность в цепи пептидов определяют их уникальную пространственную структуру и биологические функции. Механизм антимикробной активности пептидов во многих случаях сходен с их хроматографическим поведением (адсорбция, изменение конформации, взаимодействие гидрофобных и гидрофильных участков). Все это указывает на перспективность применения хроматографических методов, включая расчет термодинамических характеристик адсорбции, для изучения биологической активности пептидов. Хроматографические методы позволяют целенаправленно проводить фракционирование сложных биологически активных жидкостей и выделять пептидные продукты для масс-спектрометрического анализа. Интерпретация полученных масс-спектров по базам данных и на веб-сервисах существенно облегчает задачу идентификации пептидов [10-14]. При хроматографическом разделении сложных смесей, содержащих пептиды разных классов, практически невозможно полностью учесть все варианты молекулярных взаимодействий и предвидеть отклик системы на изменение тех или иных условий опыта. Для устанавления связи между строением пептидов и величинами их хроматографического удерживания используется полуэмпирическое моделирование, основанное на общих представлениях о механизмах сорбции в системах разного типа. Чаще всего используются простые и универсальные модели предсказания времен удерживания пептидов, основанные на больших выборках: модель SSRCalc (Sequence Specific Retention Calculator),

ПОЛУНИН и др.

№ пеп- тида	Пептид	Аминокислотная последовательность пептида (однобуквенный код)	<i>М</i> , Да	n*	p <i>I</i> **
1	Cecropin-B-analog	WKVFKKIEKIGRNIRNGIVKAGPLIAVLGEAKAL	3728	34	11.02
2	Cecropin-D-like peptide	ENFFKEIERAGQRIRDAIISAAPAVETLAQAQKIIKGGD	4253	39	6.45
3	Proline-rich antimi- crobial peptide 1	DIQIPGIKKPTHRDIIIPNWNPNVRTQPWQRFGGNKS	4320	37	10.99
4	Galleria defensin 1	DTLIGSCVWGATNYTSDCNAECKRRGYKGGHCGSFLN- VNCWCE	4715	43	7.25
5	Galleria defensin 2	DTLIGRCVWGATNYTSDCNAECKRRGYKGGHCGSFL- NVNCWCE	4786	43	7.25
6	Lebocin-like anionic peptide 1	EADEPLWLYKGDNIERAPTTADHPILPSIIDDVKLDPNR- RYA	4816	42	4.51
7	Proline-rich antimi- crobial peptide 2	EIRLPEPFRFPSPTVPKPIDIDPILPHPWSPRQTYPIIARRS	4929	42	9.97
8	Defensin-like peptide	DKLIGSCVWGATNYTSDCNAECKRRGYKGGHCGSF- WNVNCWCEE	4949	44	7.46
9	Anionic antimicrobial peptide 2	ETESTPDYLKNIQQQLEEYTKNFNTQVQNAFDSDKIK- SEVNNFIESLGKILNTEKKEAPK	6980	60	4.80
10	Lysozyme	KTFTRCELVQALRRQGFDEAK-LRDWVCLVENESRGRT- DIVGKPNKNGSRDYGLFQINDKYWCSNTSKAGKDCNI- TCSQLLTDDITVASKCAKKVYKRHNFMAWYGWRNHC- QNKPLPDISKC	14027	121	9.53
11	Apolipophorin-3	DASTPLQDLEKHAAEFQKTFSEQLNAFTNSKDTKEFNT- ALKEGSDSVLQQLNALASSLQKALNDANGKAKEALEQ- TRTNLERTAEELRRAHPDVERQAGALRDRLQTAVQATV- QETQKLAKTVGANLEETNKKLAPQIKSAYDDFVKQAQE- VQKKLHEAASKQ	18075	186	8.59
12	27 кДа hemolymph protein precursor	DTLKAQCKKNGAEDKAQDVENAAKNFVECVKGLFDF- STIKKEIEDAKPNGALDEVFGKYCAKSPQLKTCIHTLTT- SATPCLEASVREQVGPINNGADQLIDFICYKDGDRIALF- IAEGGPECFQEKSEGIRACAEKLKNNVGSVEAAQSLTL- VEQCGKYDELTACIIKSLEECST-PTPGNMAESLFRFVR- KGSPCNKAAPLKN	23764	219	5.3

Таблица 1. Антибактериальные пептиды, обнаруженные в гемолимфе Galleria mellonella

* *n* – Число аминокислотных остатков в пептиде

** p*I* – Изоэлектрическая точка

анализирующая параметры гидрофобности пептидов [14, 15] и модель BioLCCC (Liquid Chromatography of Biomacromolecules at Critica 1 Conditions), использующая анализ эффективных энергий адсорбции аминокислотных остатков и компонентов растворителя [16, 17].

Целью работы являлась оптимизация условий хроматографического разделения смеси пептидных продуктов, индуцированных организмом GM в ответ на воздействие грамположительных бактерий *Bacillus cereus* (*B.cereus*) и несимметричного диметилгидразина. Биоактивные пептидные продукты, получаемые на основе иммунных реакций GM, в дальнейшем могут стать основой для разработки новых фармакологических средств и средств защиты от токсикантов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследования использовали личинки GM, выращенные в питомнике Института теоретической и экспериментальной биофизики РАН [18]. Антибактериальные пептиды, приведенные в табл. 1, индуцировались в гемолимфе личинок GM после их иммунизации бактериями *B.cereus, Escherichia coli* или токсичным несимметричным диметилгидразином [7–9].

Способы получения гемолимфы личинок, подготовки образцов к биохимическим и физи-

№	Элюенты	Режим градиентного элюирования	Скорость элюента, <i>Т</i> °С колонки	Объем вводимой пробы, диапазон сбора фракций
1	$A = [0.04\% \text{ T}\Phi\text{Y}]^*$ $B = [AcCN]^{**}$	5-80% <i>В</i> за 30 мин, 80-100% <i>В</i> в диапазоне 30-32 мин	0.5 мл мин ⁻¹ 25°C	20 мкл, 1–30 мин (через 1 мин)
2	$A = [0.04\% \text{ T}\Phi\text{Y}]$ $B = [0.04\% \text{ T}\Phi\text{Y} \text{ B} \text{ AcCN}]$	5—80% <i>В</i> за 30 мин, 80—100% <i>В</i> в диапазоне 30—32 мин	0.5 мл мин ^{−1} 25°С	60 мкл, 3–9 мин (через 3 мин), 9–21.5 мин (через 0.5 мин), 21.5–30.5 мин (через 3 мин)
3	$A = [0.04\% \text{ T}\Phi\text{Y}]$ $B = [0.04\% \text{ T}\Phi\text{Y} \text{ B} \text{ AcCN}]$	10% <i>В</i> за 5 мин, 10–80% <i>В</i> в диапазоне 5–45 мин	0.5 мл мин ⁻¹ 25°C	25 мкл, 5–45 мин (через 1 мин)
4	$A = [0.04\% \text{ T}\Phi\text{Y}]$ $B = [0.04\% \text{ T}\Phi\text{Y} \text{ B} \text{ AcCN}]$	10% <i>В</i> за 10 мин, 10–80% <i>В</i> в диапазоне 10–50 мин	0.5 мл мин ⁻¹ 40°С	100 мкл, 10—50 мин (через 1 мин)
5	$A = [0.04\% \text{ T}\Phi\text{Y}]$ $B = [0.04\% \text{ T}\Phi\text{Y} \text{ B} \text{ AcCN}]$	10—50% <i>В</i> за 20 мин, 50—80% <i>В</i> в диапазоне 20—22 мин	0.5 мл мин ⁻¹ 25°С	100 мкл, 1—23 мин по 1 мин
6	$A = [0.04\% \text{ T}\Phi\text{Y}]$ $B = [0.04\% \text{ T}\Phi\text{Y} \text{ B} \text{ AcCN}]$	35—80% <i>В</i> за 20 мин, 80—100% <i>В</i> в диапазоне 20—22 мин	0.5 мл мин ⁻¹ 25°C	20 мкл, 1—23 мин по 1 мин

Таблица 2. Условия хроматографического разделения антибактериальных пептидов *Galleria mellonella* на колонках Zorbax Eclipse XDB-C18 и Hypercarb

Обозначения: ТФУ – трифторуксусная кислота, AcCN – ацетонитрил.

ко-химическим исследованиям подробно описаны в [7, 8].

Анализ и разделение антибактериальных пептидов методом ОФ ВЭЖХ проводили на колонках: Zorbax Eclipse XDB-C18, заполненной SiO₂-C18 (AgilentTechnologies, США), размером 150 \times \times 4.6 мм (размер зерна 5 мкм, диаметр пор 80 Å), и Hypercarb (ThermoScientific, США) размером 100×2.1 мм (размер зерна 5 мкм, диаметр пор 250 Å), упакованных в жидкостной хроматограф Agilent 1200 с диодно-матричным детектором и программным обеспечением ChemStation A.10.02. Свободный объем колонки определяли, используя нитрит натрия. Мертвое время колонки, измеренное в установленных условиях градиента ацетонитрила, составило 1.8 ± 0.2 мин. В качестве стандартов выбраны пептиды Nisin и Galleria defensin 1. Разделение пептидов осуществляли в условиях градиентного элюирования при переменном во времени составе бинарного растворителя. Режимы градиентного элюирования приведены в табл. 2.

Масс-спектрометрическое исследование фракций гемолимфы GM-методом МАЛДИ проводили на масс-спектрометре UltraFlex II TOF (Bruker Daltoniks, Германия), оснащенном азотным лазером ($\lambda = 337$ нм, энергия лазерного излучения 110 кДж, частота импульса до 20 Гц), времяпролетным масс-анализатором с рефлектоном и про-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 8 2022

граммным обеспечением для сбора и обработки масс-спектров FlexControl 3.4 и FlexAnalysis 3.4. Ускоряющее напряжение 25 кВ. Масс-спектры получали в режиме регистрации положительных ионов. Macc-спектрометр UltraFlex II TOF-TOF (Bruker Daltoniks), оснащенный неодимовым лазером ($\lambda = 355$ нм, энергия лазерного излучения 105 кДж, частота импульса до 20 Гц) и времяпролетным масс-анализатором с рефлектоном, использовали для изучения фрагментации исходных метастабильных протонированных молекул пептидов в режиме распада за пределами ионного источника. Масс-спектры ионов-продуктов регистрировали методом LIFT (Bruker Daltonics). Начальное напряжение и ускоряющая разность потенциалов составляли 7 и 28 кВ соответственно. Точность измеренных моноизотопных масс [М + Н]⁺ в режиме рефлектрона составляла 0.007%, точность измеренных усредненных масс в линейном режиме 0.05-0.1%, точность измеренных масс фрагментов 1-2 Да (0.02-0.1%). Образцы для МАЛДИ готовили на мишенях Anchor-Сhip с матрицей НССА (α-циано-4-гидроксикоричная кислота) от Bruker Daltoniks.

Использовали систему Mascot [10] для определения первичной структуры пептидов на основании информации, получаемой при их диссоциации. Поиск проводился по массам метастабильных протонированных молекул пепти-

Рис. 1. Хроматограммы разделения на колонке Zorbax Eclipse XDB-C18 пептидных смесей гемолимфы *Galleria mellonella* после иммунизации *B.cereus* (1) и НДМГ (2) в режимах градиентного элюирования \mathbb{N} 1 (а) и \mathbb{N} 2 (б). Детектирование при 214 нм.

дов $[M + H]^+$, присутствующим в базе данных NCBI [11] и полученным в работах [7–9]. Определение первичной структуры неизвестных пептидов проводили на основании результатов процедуры секвенирования *de novo* [19].

Использовали AcCN (HPLC-gradient grad, Aldrich, США), 99% ТФУ (Alfa Aesar, Германия) и тридистиллированную воду, очищенную на фильтрах Millipore (Milli-P QG, Waters, США).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Хроматографическое разделение пептидных продуктов гемолимфы GM происходит за счет взаимодействий растворенных веществ с гидрофобной неподвижной фазой и водно-органическим элюентом. Оптимизация режима хроматографического разделения может быть проведена путем изменения селективности разделения за счет изменения состава и градиента подвижной фазы либо за счет радикального увеличения эффективности хроматографической колонки. На рис. 1 приведены хроматограммы разделения пептидных смесей иммунизированной гемолимфы GM на колонке Zorbax Eclipse XDB-C18 в условиях градиентного элюирования №№ 1 и 2 (табл. 2). Использование ион-парного агента ТФУ в подвижной фазе (режимы № 2-6) оказывает значительное влияние на селективность разделения пептидов. К тому же, по данным [20], использование ТФУ способствует подавлению нежелательных процессов в колонке.

Порядок элюирования пептидов гемолимфы GM в разных режимах разделения на октадецилсиликагеле в большинстве случаев зависит от массы M пептидов и количества звеньев n в их цепи, но может изменяться при добавлении ТФУ в элюент (табл. 3).

В режиме элюирования № 1 сравнительно короткоцепочечный пептид № 2 выходит из колонки после массивного пептида № 9. Модель SSR-Calc объясняет аномально сильное удерживание на SiO₂-С18 пептида № 2 его высокой гидрофобностью, так как в первичной структуре цекропинов содержится более половины гидрофобных остатков. После добавления ТФУ (режим № 3) наблюдается инверсия выхода пептидов №№ 2, 9 из колонки. По данным [20], величина и направление модифицирующего эффекта ион-парного агента зависят от знаков заряда ТФУ и пептидов. В кислой среде происходит протонизация концевых аминогрупп пептида № 9 (аргинин К) и удерживание пептида увеличивается. Пептид № 2 содержит кислые концевые карбоксильные группы (аспарагиновая D и глутаминовая E кислоты), ионизацию которых подавляет ТФУ.

Иммунизация гемолимфы GM сопровождается деструкцией некоторых исходных пептидов и образованием их фрагментов f массой 1–3 кДа с

№ пептида	Пептид	<i>М</i> , Да	k	<i>t</i> _R , мин				
Режим элюирования № 1								
3	Proline-rich antimicrobial peptide 1	4320	6.6	13.8				
2f*	Cecropin-D-like peptide	2078	6.9	14.3				
5	Galleria defensin 2	4786	7.2	14.8				
6	Lebocin-like anionic peptide 1	4816	7.4	15.2				
4	Galleria defensin 1	4715	8.0	16.2				
9f	Anionic antimicrobial peptide 2	3420	8.5	17.2				
2f	Cecropin-D-like peptide	3031	8.9	17.9				
9	Anionic antimicrobial peptide 2	6980	9.4	18.8				
2	Cecropin-D-like peptide	4253	9.6	19.2				
Режим элюирования № 3								
3	Proline-rich antimicrobial peptide 1	4320	9.6	26.4				
6	Lebocin-like anionic peptide 1	4816	10.7	29.2				
4	Galleria defensin 1	4715	11.4	30.9				
	Nisin	3354	11.5	31.2				
1	Cecropin-B-analog	3728	11.6	31.4				
7	Proline-rich antimicrobial peptide 2	4929	12.2	33.7				
2	Cecropin-D-like peptide	4253	13.1	35.2				
9	Anionic antimicrobial peptide 2	6980	13.9	37.2				
11	Apolipophorin-3	18075	15.7	41.7				

Таблица 3. Физико-химические характеристики разделения смеси антибактериальных пептидов иммунизированной гемолимфы *Galleria mellonella* на колонке Zorbax Eclipse XDB-C18 в различных режимах градиентного элюрования

Обозначения: f* – фрагмент пептида.

установленной в [7–9] антибактериальной активностью.

На рис. 2а проведено сопоставление экспериментальных (режим элюирования № 3) и рассчитанных с помощью алгоритма SSRCalc значений $t_{\rm R}$ некоторых пептидов GM (табл. 3). Полученная линейная зависимость свилетельствует о возможности модели SSRCalc адекватно прогнозировать порядок элюирования короткоцепочечных пептидов GM. Модель BioLCCC дает худшие прогнозы, так как изначально была предложена для описания удерживания макромолекул полимеров и белков. Также для режима элюирования № 3, который мы считаем оптимальным, на рис. 26 приведена зависимость экспериментальных значений *t*_R от дифференциальных мольных энергий Гиббса $\delta(\Delta G)$, рассчитанных относительно стандартного пептида Nisin. Ее можно описать уравнением $\delta(\Delta G) = -0.0797 t_{\rm R} + 2.5082$ (коэффициент корреляции $r^2 = 0.994$) или в логарифмической форме $\delta(\Delta G) = -2.68 \ln t_{\rm R} + 9.2272$ ($r^2 =$ 0.9998). Полученная зависимость свидетельствует о том, что разделение пептидов GM происходит в соответствии с общими физико-химическими закономерностями, т.е. является отражением связи

порядка элюирования в данной системе с изменением свободной энергии Гиббса. Знание одной из взаимозависимых величин позволяет решить задачу определения или предсказания другой в данном процессе разделения.

Проведение хроматографии при повышенной температуре – удобное средство изменения селективности и повышения эффективности разделения. В табл. 4 приведены параметры удерживания антибактериальных пептидов в условиях режима элюирования № 4 при температуре 40°С. С повышением температуры роль специфических взаимодействий уменьшается, снижается вязкость растворителя, но усиливаются конформационные изменения в биомолекулах. приводящие к нарушениям в их вторичных структурах. Например, при изменении температуры от 25 до 40°С значение $t_{\rm R}$ цекропина № 2 увеличивается с 35.2 до 47.7 мин в результате раскручивания α-спиралей его молекул и увеличения площади их гидрофобного контакта с поверхностью неподвижной фазы. Разупорядоченные молекулы пептидов могут взаимодействовать друг с другом, образуя более устойчивую и энергетически выгодную конформацию. По-видимому, таким взаимодействием можно объяснить соэлюирование

Рис. 2. Корреляция экспериментальных (режим элюирования № 3) и рассчитанных (SSRCalc) значений времен удерживания t_R антибактериальных пептидов *Galleria mellonella* (а) и зависимости экспериментальных значений t_R от дифференциальных мольных энергий Гиббса $\delta(\Delta G)$ (б): 1 – линейная зависимость, 2 – логарифмическая зависимость.

четырех фрагментов антимикробных пептидов $\mathbb{N} \mathbb{N} \mathbb{Q}$, 4, 7 при t_{R} = 39.6 мин. Повышение температуры нарушает адсорбционное равновесие в хроматографической системе и не позволяет реализовать критический режим. В результате модели SSRCalc и BioLCCC не способны правильно предсказывать параметры удерживания пептидов (табл. 4), корреляция между экспериментальными и расчетными значениями t_{R} отсутствует.

В результате проведенных исследований по оптимизации режима градиентного элюирования смеси пептидов гемолимфы GM путем изменения состава и скорости подвижной фазы, температуры колонки, протяженности градиента удалось получить хроматограммы с равномерным распределением сравнительно хорошо разрешенных пиков (рис. 3). Оптимальное разрешение получено в режиме градиентного элюирования № 3. Причем в этом режиме удалось добиться хроматографического разделения пептидов №№ 4, 7, 8 и исключить этап их очистки, что не удавалось ранее [7].

После иммунизации GM усложняется хроматографический профиль пептидных смесей гемолимфы (рис. 3), появляются новые пики и увеличивается интенсивность прежних сигналов, т.е. наглядно проявляется иммунный ответ организма. Идентификация пептидов методом МАЛДИ-

Νο	Пептил		$\delta(\Delta G),$		
JN≌	пентид	эксп	SSRCalc	BioLCCC	кДж моль ^{−1}
3	Proline-rich antimicrobial peptide 1	28.2	31.0	30.3	1.728
2f*	Cecropin-D-like peptide	35.7	24.5	24.8	0.739
		38.9	27.5	27.7	0.411
		39.6	26.0	26.2	0.343
6f	Lebocin-like anionic peptide 1	39.6	29.7	30.7	0.343
		39.6	29.7	30.7	0.343
7f	Proline-rich antimicrobial peptide 2	39.6	29.5	28.6	0.343
6	Lebocin-like anionic peptide 1	41.7	33.0	33.2	0.152
	Lysozyme	42.5	36.9	32.2	0.083
4	Galleria defensin 1	43.5	30.0	31.1	стандарт
8	Defensin-like peptide	47.3	30.9	29.9	-0.296
2	Cecropin-D-like peptide	47.7	35.1	30.6	-0.325
9f	Anionic antimicrobial peptide 2	48.7	30.7	28.7	-0.397
2f	Cecropin-D-like peptide	49.5	31.8	30.2	-0.453

Таблица 4. Физико-химические характеристики разделения смеси антибактериальных пептидов иммунизированной гемолимфы *Galleria mellonella* на колонке Zorbax Eclipse XDB-C18 при 40°С (режим элюирования № 4)

Обозначения: f* – фрагмент пептида.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 8 2022

Рис. 3. Хроматограммы пептидных смесей гемолимфы *Galleria mellonella* (режим элюирования № 3): 1 - до иммунизации, 2, 3 - после иммунизации*B. cereus*и несимметричным диметилгидразином, соответственно. Детектирование при 210 нм.

MC [7, 9] позволила установить, что воздействие бактерий и токсикантов приводит к деструкции исходных пептидов гемолимфы, их модификации и синтезу новых короткоцепочечных соединений с массой до 3 кДа с антибактериальной активностью.

Для разделения аминокислот. пептидов. антибиотиков и других высокополярных соединений в качестве сорбента часто используется пористый графитированный углерод (ПГУ), обладающий высокой удельной поверхностью и пористостью, механической прочностью и стабильностью в широком диапазоне значений рН и температур [21, 22]. Для разделения смеси антимикробных пептидов GM на колонке Hypercarb с сорбентом ПГУ сравнительно более удачным оказался режим градиентного элюирования № 6. Однако даже в этом режиме разделение пептидной смеси на колонке Hypercarb было намного хуже, чем на колонке Zorbax Eclipse XDB-C18 (рис. 4). В элюате удалось обнаружить только пептид № 6 ($t_{\rm R}$ = = 8.2 мин) и низкомолекулярные компоненты антикоагулянта (ЭДТА, тиомочевина). Пептид № 6 на колонке Zorbax Eclipse XDB-C18 удерживается сравнительно слабее ($t_{\rm R} = 3.5$ мин), что соответствует данным [22] о больших временах удерживания аминокислот на Hypercarb по сравнению с фазами на основе силикагеля.

Сильное удерживание антибактериальных пептидов GM на колонке Hypercarb связано с высокими значениями теплот их адсорбции (табл. 5), которые были рассчитаны молекулярно-статистическим методом для графита и использованы для ПГУ (Hypercarb) с учетом эмпирического поправочного коэффициента [22]. При проведении расчетов полипептидную цепь представляли в виде суммы инкрементов аминокислотных остатков –HN–CH(R)–CO–. Зная теплоты их адсорбции и учитывая С-концевую аминокислоту, по аддитивным схемам определили теплоты адсорбции исследуемых пептидов на ПГУ.

Высокие значения теплот адсорбции пептидов позволяют предположить, что они хемосорбируются на ПГУ. По-видимому, структура ПГУ способствует возникновению π - π -взаимодействий с полярными группами пептидов, которые являются сильнополярными соединениями и при рН 2.5 имеют высокий положительный заряд (z = 5-8). Сила взаимодействия пептидов с ПГУ зависит от площади сорбированной молекулы, а также от типа и расположения ее функциональных групп по отношению к поверхности сорбента. Вблизи поверхности ПГУ конформация молекул пептидов может измениться, нарушится их вторичная структура и пептидные клубки развернутся. Адсорбция пептидных цепочек характеризуется высокими энергиями взаимодействия между молекулами и, соответственно, преимущественным вкладом энтальпийного фактора в удерживание. Однако необратимая в данных условиях потеря одной степени свободы позволяет говорить и о вкладе энтропийной составляющей в удерживание. Тот факт, что некоторые пептиды все-таки хроматографируются на Hypercarb, указывает на их глобулярное строение либо на неплоское расположение молекул пептидов на поверхности

Рис. 4. Хроматограммы разделения смеси пептидов гемолимфы *Galleria mellonella* на колонках Hypercarb (а) и Zorbax Eclipse XDB-C18 (б) в условиях хроматографического режима № 6. Детектирование при 210 нм.

сорбента. В целом, хроматограмма пептидной смеси на Hypercarb характеризуется более низкой оптической плотностью элюата, чем хроматограмма на Zorbax Eclipse XDB-C18. Это свидетельствует о том, что полного элюирования антимикробных пептидов не произошло и что исследуемые пептиды в данных условиях не хроматографируются. Поэтому дальнейшие исследования хроматографического поведения антибактериальных пептидов проводились только на колонке Zorbax Eclipse XDB-C18 с октадецилсиликагелем, взаимодействие которого с пептидами в большей степени является только дисперсионным.

Хроматографический процесс зависит как от равновесных характеристик сорбции, так и от кинетики сорбции. Знание кинетических характеристик процесса позволяет оценить качество колонки и оптимизировать разделение. В табл. 6 приведены результаты расчета эффективности хроматографического разделения антимикробных пептидов GM на колонке Zorbax Eclipse XDB-C18 в оптимальном режиме градиентного элюирования № 3. Параметры N (число теорети-

Таблица 5. Теплоты адсорбции ΔH^* антибактериальных пептидов *Galleria mellonella* на пористом графитированном углероде (Hypercarb)

№ пептида	Название пептида	<i>М</i> , Да <i>п</i>		$-\Delta H^*$, кДж моль $^{-1}$	
	Nisin	3354	33	166.9	
1	Cecropin-B-analog	3728	34	192.6	
2	Cecropin-D-like peptide	4253	39	212.7	
3	Proline-rich antimicrobial peptide 1	4320	37	215.2	
4	Galleria defensin 1	4715	43	230.5	
5	Galleria defensin 2	4786	43	235.1	
6	Lebocin-like anionic peptide 1	4816	42	238.0	
7	Proline-rich antimicrobial peptide 2	4929	42	248.2	
8	Defensin-like peptide	4949	44	242.3	
9	Anionic antimicrobial peptide 2	6980	60	340.6	
10	Lysozyme	14027	121	699.4	
11	Apolipophorin-3	18075	186	890.7	
12	27 кДа hemolymph protein precursor	23764	219	1171.9	

№ пептида	<i>М</i> , Да	<i>t</i> _R , мин	k	N	Н	<i>S</i> , %	A _s	R
6	4816	29.2	10.7	15000	2.0	5.8	0.7	2.2
4	4715	30.9	11.4	7200	4.2	12.8	0.7	1.2
7	4929	33.8	12.5	13700	2.2	3.2	0.8	2.2
2	4253	35.2	13.1	30300	1	0.9	0.8	2.6
9	6980	37.2	13.9	18600	1.6	8.3	0.8	2.4
12	23764	39.1	14.7	28000	1.1	5.3	0.9	3.1

Таблица 6. Хроматографические параметры разделения антимикробных пептидов *Galleria mellonella* на колонке Zorbax Eclipse XDB-C18 в режиме элюирования № 3

Обозначения: N – число теоретических тарелок, H – приведенная высота, эквивалентная теоретической тарелке, A_s – коэффициент асимметрии, S – площадь хроматографических пиков, R – разрешение между двумя соседними пиками.

ческих тарелок) и H (приведенная высота, эквивалентная теоретической тарелке) отражают качество использованного сорбента, качество заполнения колонки, правильность выбора хроматографического режима, а также являются мерой интенсивности процессов размывания в колонке.

Разрешение R между двумя соседними хроматографическими пиками является мерой качества разделения и определяется как статическими характеристиками сорбционного слоя, так и динамическими условиями проведения разделения, влияющими на эффективность [20]. Поскольку R > 1, то разделение исследуемых пептидов происходит полностью и с высокой эффективностью. Значения хроматографических параметров, приведенные в табл. 6, свидетельствуют о том, что колонка, сорбент и хроматографический режим для разделения антибактериальных пептидов выбраны правильно, поскольку достигается высокая эффективность разделения и размывание в колонке незначительно.

Таким образом, исследованы условия хроматографического разделения смесей антибактериальных пептидов гемолимфы Galleria mellonella, иммунизированной Bacillus cereus и несимметричным диметилгидразином, в условиях градиентной ОФ ВЭЖХ на колонках Zorbax Eclipse XDB-C18 и Hypercarb. Определены оптимальные условия разделения смесей пептидов путем изменения состава элюента, режима градиентного элюирования, температуры и эффективности хроматографической колонки. Дана оценка термодинамических и кинетических характеристик сорбции индуцированных пептидов на октадецилсиликагеле, получены корреляционные зависимости между расчетными и реальными временами их удерживания, между удерживанием и первичной структурой антибактериальных пептидов. Использование пористого графитированного углерода в колонке Hypercarb оказалось неэффективным для разделения смесей полярных пептидов из-за их сильного взаимодействия с

сорбентом в исследованных режимах градиентного элюирования.

Работа выполнена в рамках государственного задания ИФХЭ РАН.

Авторы благодарят Центр коллективного пользования ИФХЭ РАН за предоставленное для исследований оборудование.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Хавинсон В.Х.* // Клиническая медицина. 2020. Т. 98. № 3. С. 165.
- Sheehan G., Farrell G., Kavanagh K. // Virulence. 2020. V. 11. P. 238. https://doi.org/10.1080/21505594.2020.1731137
- 3. *Cutuli M.A., Petronio J.P., Vergalito F. et al.* // Ibid. 2019. V. 10. № 1. P. 527. https://doi.org/10.1080/21505594.2019.1621649
- Tsai C.J.-Y., Loh J.M.S., Proft T. // Ibid. 2016. V. 7. № 3. P. 214. https://doi.org/10.1080/21505594.2015.1135289
- 5. Cytrynska M., Mak P., Zdybicka-Barabas A. et al. // Peptides Rev. 2007. V. 285. P. 533.
- Pereira T., de Barros P., Fugisaki L. et al. // J. Fungi. 2018. V. 4. P. 128.
- БурякА.К., Срибная О.С., Пурыгин П.П. // Биомедицинская химия. 2010. Т. 56. № 3. С. 387. https://doi.org/10.18097/pbmc20105603387
- Пурыгин П.П., Срибная О.С., Кленова Н.А. и др. // Сорбционные и хроматографические процессы. 2011. Т. 11. № 1. С. 42.
- 9. Полунин К.Е., Федоткина О.С., Полунина И.А., Буряк А.К. // Коллоидн. журн. 2021. Т. 83. № 5. С. 611. https://doi.org/10.1134/S1061933X21050124
- 10. http://www.matrixscience.com/search_form_select.ht-ml.
- 11. http://www.ncbi.nlm.nih.gov/guide/proteins/
- 12. Николаев Е.Н., Попов И.А., Кононихин А.С. и др.// Успехи химии. 2012. Т. 81. № 11. С. 1051.

- 13. *Dams M., Dores-Sousa J.L., Lamers R.J. et al.* // Chromatographia. 2019. V. 82. № 1. P. 101. https://doi.org/10.1007/s10337-018-3647-5
- 14. http://hs2.proteome.ca/SSRCalc/SSRCalc32.html.
- 15. *Krokhin O.V., Craig R.V., Spicer V. et al.* // Mol. Cell. Proteomics. 2004. V. 3. № 9. P. 908. https://doi.org/10.1074/mcp.M400031-MCP200
- 16. http://theorchromo.ru
- 17. *Горшков А.В., Евреинов В.В., Тарасова А.И., Горшков М.В.* // Высокомолекуляр. соединения. Сер. Б. 2007. Т. 49. № 4. С. 732.
- 18. Спиридонов Н.А., Рачков А.К., Мухин С.А., Кондрашова М.Н. Способ получения биологически актив-

ных продуктов из личинок большой восковой моли: патент 2038086 РФ // Б.И. 1995. № 6.

- 19. Артеменко К.А., Самгина Т.Ю., Лебедев А.Т. // Масс-спектрометрия. 2006. Т. 3. № 4. С. 225.
- 20. Высокоэффективная жидкостная хроматография в биохимии: Пер. с англ. / Под ред. А. Хеншен. М.: Мир, 1988. 688 с.
- 21. *Кузнецова Е.С., Буряк А.К.* // Физикохимия поверхности и защита материалов. 2011. Т. 2. № 6. С. 586.

https://doi.org/10.1134/S2070205111060104

22. Кузнецова Е.С., Буряк А.К. // Сорбционные и хроматографические процессы. 2009. V. 9. № 5. Р. 616.