ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2022, том 96, № 8, с. 1118–1127

_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 544.31:547.1'128

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА КАРБОСИЛАНОВОГО ДЕНДРИМЕРА ЧЕТВЕРТОЙ ГЕНЕРАЦИИ С КОНЦЕВЫМИ ТРИМЕТИЛСИЛИЛСИЛОКСАНОВЫМИ ГРУППАМИ

© 2022 г. Н. Н. Смирнова^{*a*}, А. В. Маркин^{*a*,*}, С. С. Сологубов^{*a*}, С. А. Миленин^{*b*}, Е. А. Татаринова^{*b*}, А. М. Музафаров^{*b*,*c*}

^аНациональный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

^bИнститут синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук, Москва, Россия

сИнститут элементоорганических соединений им. А.Н. Несмеянова Российской академии наук,

Москва, Россия

*e-mail: markin@calorimetry-center.ru Поступила в редакцию 18.11.2021 г. После доработки 18.11.2021 г. Принята к публикации 06.01.2022 г.

Впервые методами адиабатической вакуумной калориметрии в области температур 5–344 К и дифференциальной сканирующей калориметрии в температурном интервале 310–560 К определена температурная зависимость теплоемкости карбосиланового дендримера четвертой генерации с концевыми триметилсилисилоксановыми группами. Обнаружено аномальное изменение теплоемкости дендримера в области T = (46-68) К, а также переход в интервале T = (179-196) К, обусловленный его расстеклованием; определены и проанализированы термодинамические характеристики выявленных превращений. По полученным экспериментальным данным рассчитаны стандартные термодинамические функции исследованного дендримера для области от $T \rightarrow 0$ до 560 K, а также стандартная энтропия его образования при T = 298.15 К. Проведен сравнительный анализ термодинамических свойств дендримеров четвертой генерации, отличающихся природой молекулярного скелета и концевых групп.

Ключевые слова: карбосилановые дендримеры, прецизионная калориметрия, теплоемкость, расстеклование, термодинамические функции

DOI: 10.31857/S0044453722080210

Дендримеры представляют собой наноразмерные сферические макромолекулы, характеризующиеся монодисперсностью (по сравнению с классическими полимерами) и сверхразветвленной трехмерной архитектурой. Основными структурными элементами дендримеров являются ядро (исходная многофункциональная молекула), внутренняя сфера (повторяющиеся в геометрической прогрессии звенья, приводящие к образованию генераций G1, G2, G3 и т.д.) и внешний слой (концевые функциональные группы, расположенные на поверхности макромолекул и экспоненциально увеличивающиеся в зависимости от номера генерации) [1–3].

Дендримеры являются объектами интенсивных фундаментальных и прикладных исследований благодаря своей высокоупорядоченной контролируемой структуре и комплексу уникальных свойств [4–8]. Перспективы использования денд-

римеров в качестве катализаторов обусловлены точной геометрией макромолекул, а также возможностью варьирования числа каталитических центров, что открывает новые способы управления механизмами химических реакций [9, 10]. Кроме этого, дендримеры обладают хорошей растворимостью и биологической инертностью; за счет этого они способны выступать в роли молекулярных контейнеров, обеспечивая целевую доставку противоопухолевых лекарственных препаратов. Полученные результаты биомедицинских исследований дендримеров в настоящее время наиболее приближены к внедрению [11-14]. Рассмотрение дендримеров как ансамбля макромолекул. способных к самоорганизации и обладающих химической, механической и фотоокислистабильностью, тельной лежит В основе разработки материалов для фотоники и молекулярной электроники [15-17].

Рис. 1. Молекулярная структура карбосиланового дендримера четвертой генерации с концевыми триметилсилилсилоксановыми группами G4[OSi(CH₃)₃]₆₄.

Определение комплекса стандартных термодинамических характеристик дендримеров с различной природой ядра и поверхностного слоя методами прецизионной калориметрии в широком диапазоне температур позволяет установить и проанализировать практически важные зависимости свойств от состава и структуры соединений [18–29]. Информация о термодинамических свойствах дендримеров является теоретической основой при разработке технологий получения перспективных наноматериалов на их основе.

Настоящая работа является продолжением исследований и посвящена калориметрическому изучению карбосиланового дендримера четвертой генерации с концевыми триметилсилилсилоксановыми группами в температурной области 5-560 К. Исследование включает в себя определение теплоемкости дендримера в указанном интервале температур; выявление возможных физических превращений и определение их термодинамических характеристик; расчет стандартных термодинамических функций дендримера для области от $T \rightarrow 0$ до T = 560 K, а также стандартной энтропии его образования из простых веществ при T = 298.15 K; сравнительный анализ термодинамических свойств дендримеров четвертой генерации, отличающихся природой молекулярного скелета и концевых групп.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характеристики изученного образца. На рис. 1 представлена структура исследуемого карбосиланового дендримера четвертой генерации с концевыми триметилсилилсилоксановыми группами G4[OSi(CH₃)₃]₆₄, где G4 – номер генерации дендримера, [OSi(CH₃)₃]₆₄ – фрагмент концевых групп дендримера и их количество. Образец был синтезирован в Институте синтетических полимерных материалов им. Н.С. Ениколопова РАН (Москва). Полимерной матрицей для получения целевого дендримера являлся карбосилановый дендример третьей генерации с диаллилметилсилильными концевыми группами. Модификация его внешнего слоя была проведена по реакции гидросилилирования в присутствии катализатора Карстедта при комнатной температуре; в качестве модификатора был использован 1,1,1,3,5,5,5гептаметилтрисилоксан [30]. Состав и структура дендримера были подтверждены методами элементного анализа, ¹H, ¹³C и ²⁹Si ЯМР-спектроскопии, а также малоуглового рентгеновского рассеяния. Внутримолекулярная структура и макроскопические характеристики дендримера G4[OSi(CH₃)₃]₆₄ были оценены методом молекулярной динамики с использованием атомистических моделей. По результатам препаративной хроматографии было установлено, что содержание основного вещества в образце дендримера составляло около 99 мол. %. Молярная масса карбосиланового дендримера $G4[OSi(CH_3)_3]_{64}$ $(M(C_{432}H_{1116}O_{64}Si_{125}) = 10848.1$ г/моль) была рас-считана по таблице стандартных атомных масс, рекомендованной ИЮПАК [31].

Аппаратура и методики измерений. Термогравиметрический (ТГ) анализ карбосиланового дендримера G4[OSi(CH₃)₃]₆₄ был проведен с помощью термомикровесов TG 209 *F1 Iris* (NETZSCH, Германия) в температурном интервале 300–800 К (продувочный газ — высокочистый аргон; скорость потока газа — 25 мл/мин). Масса дендримера, загруженного в алюминиевый тигель, составляла 17.653 мг; скорость нагревания тигля с веществом составляла 5 К/мин. Результаты ТГанализа показали, что температура начала разложения исследуемого дендримера T = 560 К (потеря массы - 2%). Полученная ТГ-кривая дендримера G4[OSi(CH₃)₃]₆₄ представлена на рис. 2.

Температурная зависимость теплоемкости карбосиланового дендримера $G4[OSi(CH_3)_3]_{64}$ в области температур 5-344 К была определена с использованием адиабатического вакуумного калориметра БКТ-3 ("ТЕРМИС", Московская обл.). Подробное описание конструкции установки и методики измерений опубликовано в работах [32, 33]. Образец дендримера G4[OSi(CH₃)₃]₆₄ (m == 0.1579 г) был взвешен на аналитических весах Shimadzu AUX 220 (Япония) и помещен в тонкостенную титановую калориметрическую ампулу. Перед измерением теплоемкости небольшое количество сухого газообразного гелия особой чистоты (р ~ 5 кПа) было введено для улучшения теплопроводности калориметрической системы. В качестве хладагентов были использованы жидкие гелий и азот в интервалах температур 5-85 К и 83-344 К соответственно. Скорость нагревания ампулы с веществом составляла 0.2 К/мин. Калориметрические измерения были выполнены дважды в интервалах температур, где наблюдались физические превращения дендримера. Поверку надежности работы прибора проводили посредством измерения теплоемкостей эталонных образцов бензойной кислоты. синтетического сапфира и высокочистой меди в температурном интервале 5-350 К [34]. Установлено, что адиабатический калориметр позволяет определять теплоемкости соединений с относительной расширенной неопределенностью $U_{\rm r}(C_{\rm p}) = 0.02$ в области температур 5–15 К, $U_r(C_p) = 0.005$ в ин-тервале температур 15–40 К, $U_r(C_p) = 0.002$ в температурной области 40-350 К. Температуры и энтальпии фазовых и физических превращений были определены со стандартной неопределенностью $u(T_{\rm tr}) = 0.02$ К и суммарной относительной расширенной неопределенностью $U_{c,r}(\Delta_{tr}H) = 0.01$ соответственно.

Теплоемкость карбосиланового дендримера G4[OSi(CH₃)₃]₆₄ в температурном интервале 310– 560 К была определена с помощью дифференциального сканирующего калориметра DSC 204 *F1 Phoenix* (NETZSCH, Германия). Методика проведения эксперимента и устройство прибора детально описаны в работах [35, 36]. Калибровка калориметра по температуре и по тепловому потоку была выполнена путем определения температур и энтальпий плавления высокочистых (99.99%) эталонных образцов индия, висмута, олова, ртути, бифенила и циклогексана [37]. Калибровочные эксперименты были проведены со скоростью нагревания 5 К/мин; в качестве продувочного газа был использован аргон высокой чи-

Рис. 2. Термогравиметрическая кривая карбосиланового дендримера четвертой генерации $G4[OSi(CH_3)_3]_{64}; \Delta m/m -$ потеря массы.

стоты со скоростью потока 25 мл/мин. Было установлено, что ДСК позволяет определить температуры и энтальпии фазовых и физических превращений со стандартной неопределенностью $u(T_{\rm tr}) = 0.5$ К и суммарной относительной расширенной неопределенностью $U_{\rm c,r}(\Delta_{\rm tr} H) = 0.01$ соответственно.

Определение теплоемкости с помощью ДСК состояло из трех последовательных измерений [38]:

 базовой линии (эталонный пустой тигель + + пустой тигель для образца);

• стандартного образца сапфира α-Al₂O₃ (эталонный пустой тигель + тигель с сапфиром в качестве образца);

• исследуемого образца (эталонный пустой тигель + тигель с образцом дендримера).

Все ДСК-измерения были проведены в температурном интервале 310-560 К со скоростью нагревания 5 К/мин (продувочный газ - высокочистый аргон; скорость потока газа - 25 мл/мин). Macca образца дендримера G4[OSi(CH₃)₃]₆₄, помещенного в алюминиевый тигель для ДСК-измерений, составляла 16.82 мг. Теплоемкость дендримера была определена по методу отношений (Ratio Method) в соответствии с методикой, описанной в международных стандартах (ISO 11357-4:2021; ASTM E1269-11(2018); DIN 51007: 2019-04); для анализа и обработки полученных результатов была использована программа NETZSCH Proteus Software. Установлено, что ДСК позволяет определить теплоемкости вешеств с относительной расширенной неопределенностью $U_{\rm r}(C_{\rm p}) = 0.02$ в области температур 310-560 K.

Рис. 3. Температурная зависимость теплоемкости карбосиланового дендримера четвертой генерации G4[OSi(CH₃)₃]₆₄: АЕ – аморфное (стеклообразное) состояние; FG – аморфное (расстеклованное) состояние; BCD – кажущаяся теплоемкость в интервале низкотемпературной аномалии.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теплоемкость. Кривая температурной зависимости теплоемкости карбосиланового дендримера G4[OSi(CH₃)₃]₆₄ представлена на рис. 3. Экспериментальные значения теплоемкости $C_{p,m}$ дендримера приведены в табл. 1 (серии 1–4 получены с использованием адиабатического вакуумного калориметра; серия 5 – с помощью ДСК).

Стандартные термодинамические характеристики низкотемпературной аномалии теплоемкости. Исследуемый дендример был охлажден от комнатной температуры до температуры начала измерений (T = 5 K) со скоростью 0.02 K/c. В результате нагревания образца в интервале T = (46 - 68) К выявлено аномальное изменение его теплоемкости (рис. 4), выражающееся в положитель-

Рис. 4. Низкотемпературная аномалия теплоемкости карбосиланового дендримера четвертой генерации G4[OSi(CH₃)₃]₆₄: BCD – кажущаяся теплоемкость; BD (пунктирная линия) – нормальный (интерполяционный) ход теплоемкости.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 8 2022

ном отклонении от нормального (интерполяционного) хода кривой. Аналогичные аномалии были обнаружены ранее у карбосилановых дендримеров низких генераций с различными концевыми группами в том же диапазоне температур. Установлено, что проявление подобных аномалий имеет системный характер и определяется номером генерации дендримера, а также практически не зависит от природы молекулярного скелета и концевых групп. Комплексные калориметрические и спектральные исследования ряда дендримеров низких генераций [18–21, 24–29] указывают на то, что проявление этих превращений обусловлено тонкими структурными (конформационными) колебаниями метильных групп в макромолекулах дендримеров при их нагревании. Как было отмечено в литературе, подобные низкотемпературные аномалии следует относить к равновесным релаксационным переходам типа "порядок ∠ ской классификацией Веструма-МакКаллафа.

Рассчитанные значения термодинамических характеристик низкотемпературных аномалий дендримеров четвертой генерации приведены в табл. 2. Интервал ΔT определяли по температурной зависимости теплоемкости. За температуры начала ($T_{\text{нач}}$) и конца ($T_{\text{кон}}$) перехода принимали температуры начала и конца аномальной зависимости теплоемкости. Энтальпию $\Delta_{\text{tr}} H^{\circ}$ рассчитывали как разность интегралов по кривым кажущейся и нормальной теплоемкостей вещества $C_{\text{p}}^{\circ} = f(T)$ в интервале аномалии. Энтропию $\Delta_{\text{tr}} S^{\circ}$ вычисляли аналогичным способом по кривой $C_{\text{o}}^{\circ} = f(\ln T)$.

Стандартные термодинамические характеристики расстеклования и стеклообразного состояния. При последующем нагревании дендримера в ин-

СМИРНОВА и др.

Таблица 1. Экспериментальные значения теплоемкости [кДж/(Кмоль)] карбосиланового дендримера G4[OSi(CH₃)₃]₆₄ ($M(C_{432}H_{1116}O_{64}Si_{125}) = 10848.1$ г/моль)

<i>Т</i> , К	C _{p,m}	Т, К	C _{p,m}	Т, К	C _{p,m}	Т, К	C _{p,m}	Т, К	C _{p,m}	Т, К	C _{p,m}
Cep	ия 1	41.98	3.360	93.91	7.878	208.30	17.80	193.97	17.52	433.5	23.0
5.13	0.143	44.98	3.616	96.44	8.061	210.97	17.82	196.12	17.61	436.5	23.0
5.33	0.156	47.31	3.842	98.97	8.244	213.63	17.85	Серия 5	5 (ДСК)	439.5	23.1
5.50	0.166	49.66	4.118	101.50	8.441	216.29	17.90	310.5	20.5	442.5	23.1
5.65	0.173	52.02	4.407	104.04	8.607	218.97	17.93	313.5	20.6	445.5	23.2
5.81	0.185	54.40	4.704	106.59	8.763	221.64	17.98	316.5	20.6	448.5	23.2
5.96	0.187	56.78	5.052	109.14	8.920	224.33	18.04	319.5	20.8	451.5	23.3
6.15	0.201	59.19	5.250	111.70	9.085	227.02	18.13	322.5	20.9	454.5	23.3
6.65	0.230	61.62	5.311	114.26	9.228	229.70	18.18	325.5	21.0	457.5	23.4
7.12	0.259	64.06	5.380	116.82	9.378	233.01	18.25	328.5	21.1	460.5	23.4
7.65	0.292	66.50	5.568	119.39	9.548	236.75	18.34	331.5	21.2	463.5	23.5
8.17	0.331	68.94	5.804	121.96	9.693	241.45	18.43	334.5	21.3	466.5	23.5
8.68	0.362	71.39	6.060	124.56	9.878	245.06	18.54	337.5	21.4	469.5	23.5
9.09	0.390	74.50	6.309	127.14	10.03	248.69	18.61	340.5	21.4	472.5	23.6
9.73	0.437	76.84	6.540	129.72	10.19	252.33	18.68	343.5	21.5	475.5	23.6
10.25	0.476	79.32	6.720	132.30	10.36	255.97	18.79	346.5	21.5	478.5	23.6
10.80	0.525	81.84	6.960	134.89	10.54	259.62	18.89	349.5	21.6	481.5	23.6
11.32	0.559	84.90	7.208	137.48	10.70	263.28	19.01	352.5	21.6	484.5	23.7
11.86	0.603	Cep	ия 2	140.08	10.86	266.95	19.13	355.5	21.7	487.5	23.7
12.31	0.646	46.02	3.745	142.67	11.01	270.62	19.21	358.5	21.8	490.5	23.8
12.85	0.687	47.22	3.848	145.27	11.21	274.30	19.33	361.5	21.8	493.5	23.8
13.32	0.729	48.41	3.966	147.87	11.41	277.97	19.41	364.5	21.8	496.5	23.8
13.85	0.777	49.12	4.057	150.48	11.55	281.65	19.49	367.5	21.9	499.5	23.8
14.33	0.821	50.56	4.242	153.09	11.72	285.32	19.61	370.5	21.9	502.5	23.9
14.82	0.867	51.72	4.356	155.70	11.90	288.98	19.71	373.5	22.0	505.5	23.9
15.23	0.9113	53.10	4.500	158.31	12.05	292.61	19.85	376.5	22.0	508.5	23.9
15.49	0.9373	54.21	4.679	160.93	12.20	296.34	19.96	379.5	22.1	511.5	23.9
15.88	0.9720	55.44	4.828	163.54	12.37	299.94	20.09	382.5	22.2	514.5	23.9
16.28	1.015	56.54	4.991	166.20	12.56	304.13	20.22	385.5	22.2	517.5	24.0
16.68	1.051	57.68	5.176	168.83	12.71	309.70	20.36	388.5	22.3	520.5	24.0
17.08	1.101	59.02	5.258	171.45	12.87	313.31	20.48	391.5	22.3	523.5	24.0
17.48	1.135	60.29	5.287	174.08	13.03	317.81	20.62	394.5	22.3	526.5	24.1
17.95	1.172	61.37	5.301	176.70	13.21	322.27	20.75	397.5	22.4	529.5	24.1
18.78	1.248	62.56	5.363	179.33	13.40	326.68	20.89	400.5	22.4	532.5	24.1
19.70	1.332	63.75	5.413	181.96	13.62	331.05	21.05	403.5	22.4	535.5	24.1
20.74	1.429	65.11	5.475	184.59	13.94	335.37	21.23	406.5	22.5	538.5	24.2
22.72	1.611	66.56	5.584	187.22	14.40	339.65	21.42	409.5	22.5	541.5	24.2
25.68	1.884	67.65	5.693	189.84	15.30	343.91	21.61	412.5	22.6	544.5	24.2
25.54	1.871	68.74	5.799	192.44	17.06	Cep	ия 4	415.5	22.7	547.5	24.3
27.03	2.024	69.94	5.894	195.04	17.62	182.25	13.72	418.5	22.7	550.5	24.3
29.57	2.255	Cep	ия 3	197.67	17.63	184.71	14.09	421.5	22.7	553.5	24.3
31.72	2.464	82.94	7.034	200.31	17.66	187.21	14.41	424.5	22.8	556.5	24.3
34.21	2.674	86.35	7.307	202.95	17.70	189.53	15.03	427.5	22.8	559.5	24.3
36.78	2.902	88.86	7.507	205.59	17.74	191.88	16.06	430.5	22.9	562.5	24.3
39.21	3.118	91.38	7.688								

Примечание. Стандартная неопределенность u(T) = 0.02 К в интервале T = (5.13-343.91) К, u(T) = 0.5 К в области T = (310.5-562.5) К. Относительная расширенная неопределенность $U_r(C_{p,m}) = 0.02$, 0.005, 0.002 и 0.02 в интервалах T = (5.13-14.82) К, T = (15.23-39.21) К, T = (41.98-343.91) К и T = (310.5-562.5) К, соответственно. Указанные неопределенности соответствуют уровню достоверности 0.95 ($k \approx 2$). В серии 5 (ДСК) приведено каждое третье значение теплоемкости; значения $C_{p,m}$ соответствуют расстеклованному состоянию дендримера.

Дендример	ΔT , K	$\Delta_{ m tr} H^{\circ},$ Дж/моль	$\Delta_{\rm tr} S^{\circ}, Дж/(К моль)$	Ссылка			
Карбосилановые дендримеры							
G4[OSi(CH ₃) ₃] ₆₄	46-68	2980	52.1	Данная работа			
G4[All] ₆₄	56-70	3537	57.7	[18]			
G4[But] ₆₄	50-70	5997	81.6	[19]			
Силоксановый дендример							
$G4[OSi(CH_3)_3]_{48}$	43-65	1778	50.2	[29]			

Таблица 2. Стандартные термодинамические характеристики низкотемпературных аномалий теплоемкостей дендримеров четвертой генерации с различной природой молекулярного скелета и концевых групп

Таблица 3. Стандартные термодинамические характеристики расстеклования и стеклообразного состояния дендримеров четвертой генерации с различной природой молекулярного скелета и концевых групп

Дендример	ΔT , K	$(T_{\rm g}^{\circ} \pm 1), \mathrm{K}$	$\Delta C_{ m p}^{ m o}(T_{ m g}^{ m o}),$ Дж/(К моль)	$S_{\text{conf}}^{\circ} = S^{\circ}(0),$ Дж/(К моль)	Ссылка	
		Карбосилановые	дендримеры			
G4[OSi(CH ₃) ₃] ₆₄	179—196	191	3410	868	Данная работа	
G4[All] ₆₄	170-180	172	3660	931	[18]	
G4[But] ₆₄	175-195	186	3820	973	[19]	
Жидкокристаллический дендример						
G4[Und-MPhB] ₆₄	230-275	258	15700	3998	[23]	
Силоксановый дендример						
G4[OSi(CH ₃) ₃] ₄₈	157-187	176	1373	350	[29]	

тервале T = (179-196) К наблюдается его расстеклование (рис. 3, участок EF). Выявленный переход воспроизводился при охлаждении и повторном нагревании образца в том же температурном интервале.

Термодинамическими характеристиками расстеклования и стеклообразного состояния дендримера являются температурный интервал расстеклования ΔT , температура расстеклования T_{g}° , изменение (увеличение) теплоемкости при расстекловании $\Delta C_{\rm p}^{\circ}(T_{\rm g}^{\circ})$, конфигурационная энтропия S_{conf}° и остаточная энтропия $S^{\circ}(0)$. Полученные данные для исследованного дендримера, а также имеющиеся данные для дендримеров четвертой генерации приведены в табл. 3. Температура расстеклования T_{g}° была определена как точ-ка пересечения трех касательных к кривой C_{p}° = = f(T) в интервале расстеклования. Интервал расстеклования ΔT и увеличение теплоемкости при расстекловании $\Delta C_p^{\circ}(T_g^{\circ})$ определяли графически. Конфигурационную энтропию S_{conf}° рассчитывали по уравнению, предложенному в работе [39]:

$$S_{\rm conf}^{\circ} = \Delta C_{\rm p}^{\circ}(T_{\rm g}^{\circ}) \ln(T_{\rm g}^{\circ}/T_{\rm K}), \qquad (1)$$

где $T_{\rm K}$ – температура Кауцманна [40], соотношение $(T_{\rm g}^{\circ}/T_{\rm K}) = 1.29$ [41]. При вычислении $S_{\rm conf}^{\circ}$ полагали, что приведенное соотношение справедли-

во для исследуемого соединения. При определении значения абсолютной энтропии дендримера принимали, что $S_{\text{conf}}^{\circ} = S^{\circ}(0)$.

Из сравнительного анализа данных, полученных в настоящей работе и ранее, можно сделать вывод, что температура расстеклования дендримеров зависит как от химической природы групп внешнего слоя, так и от структуры ядра. В случае силоксанового дендримера G4[OSi(CH₃)₃]₄₈ с тремя ветвлениями от центрального атома кремния (рис. 5а) температура расстеклования составляет 176 К. Такое невысокое значение $T_{\rm g}^{\circ}$ обусловлено наличием гибких силоксановых фрагментов во внутренней сфере и на поверхностном слое дендримера [29]. Изученные карбосилановые дендримеры четвертой генерации имеют четыре ветвления от центрального атома кремния, что приводит к снижению их молекулярной подвижности и закономерному увеличению их температур расстеклования по сравнению с силоксановым дендримером. Такая тенденция наблюдается в случае дендримера G4[OSi(CH₃)₃]₆₄, изученного в данной работе ($T_{\rm g}^{\circ} = 191$ K), а также для карбо-силанового дендримера с концевыми бутильными группами G4[But]₆₄ ($T_{\rm g}^{\circ}$ = 186 K) [19]. Наибольшее значение температуры расстеклования (T_{σ}° = = 258 К) имеет жидкокристаллический дендри-

Рис. 5. Молекулярные структуры силоксанового (а) и карбосилановых (б) дендримеров четвертой генерации с различными концевыми функциональными группами.

мер четвертой генерации с концевыми метоксифенилбензоатными мезогенными группами G4[Und-MPhB]₆₄ (рис. 56), что объясняется сильными ориентационными взаимодействиями между ними и, как следствие, высокой жесткостью молекулы дендримера в целом [23]. Таким образом, изменение химической природы молекулярного скелета и поверхностного слоя дендримеров является эффективным инструментом регулирования их различных физико-химических характеристик.

Стандартные термодинамические функции. Кривую зависимости $C_p^\circ = f(T)$ сглаживали с помощью логарифмических полиномов, а затем экстраполировали от температуры начала измерений до $T \rightarrow 0$ по функции теплоемкости Дебая [42]:

$$C_{\rm p}^{\rm o} = n \mathbf{D}(\Theta_{\rm D}/T), \qquad (2)$$

где **D** – функция Дебая, n = 83 и $\Theta_{\rm D} = 34.97$ K – специально подобранные параметры. Уравнение (2) с указанными параметрами описывает экспериментальные значения C_p° дендримера в интервале T = (6-9) K с погрешностью $\pm 1.3\%$.

По полученным значениям теплоемкости были рассчитаны стандартные термодинамические функции изученного карбосиланового дендримера G4[OSi(CH₃)₃]₆₄ (табл. 4). При расчете функций принимали, что уравнение (2) воспроизводит значения при $T \le 6$ К с погрешностью $\pm 1.3\%$. Расчет энтальпии $[H^{\circ}(T) - H^{\circ}(0)]$ и энтропии $[S^{\circ}(T) - S^{\circ}(0)]$ проводили численным интегрированием зависимостей $C_{p}^{\circ} = f(T)$ и $C_{p}^{\circ} = f(\ln T)$, соответственно. Расчет энергии Гиббса $[G^{\circ}(T) - H^{\circ}(0)]$ осуществляли по уравнению Гиббса– Гельмгольца:

$$[G^{\circ}(T) - H^{\circ}(0)] = [H^{\circ}(T) - H^{\circ}(0)] - - T[S^{\circ}(T) - S^{\circ}(0)].$$

Подробная методика расчета стандартных термодинамических функций опубликована в работе [43].

По значениям [$S^{\circ}(T) - S^{\circ}(0)$] изученного дендримера при T = 298.15 К (табл. 4), его остаточной энтропии (табл. 3) и абсолютных энтропий простых веществ ($C_{(rp)}$, $H_{2(r)}$, $O_{2(r)}$, $Si_{(\kappa)}$ [44]) была вычислена стандартная энтропия образования $\Delta_{\rm P}S^{\circ}$ карбосиланового дендримера в аморфном (расстеклованном) состоянии при той же температуре. Полученное значение $\Delta_{\rm P}S^{\circ}(C_{432}H_{1116}O_{64}Si_{125}, 298.15) = -(60699 \pm 298)$ Дж/(К моль) соответствует уравнению реакции:

$$\begin{array}{l} 432C_{(rp)} + 558H_{2(r)} + 32O_{2(r)} + 125Si_{(\kappa)} \rightarrow \\ & \rightarrow C_{432}H_{1116}O_{64}Si_{125(p)}, \end{array}$$

где (гр) – графит, (г) – газ, (к) – кристалл, (р) – расстеклованное состояние.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 8 2022

Т, К	$C_{ m p}^{\circ}(T),$ кДж/(К моль)	$[H^{\circ}(T) - H^{\circ}(0)],$ кДж/моль	[<i>S</i> °(<i>T</i>) — <i>S</i> °(0)], кДж/(К моль)	$-[G^{\circ}(T) - H^{\circ}(0)],$ кДж/моль			
Стеклообразное состояние							
5	0.132	0.182	0.0491	0.0637			
10	0.457	1.62	0.2361	0.739			
15	0.887	4.94	0.4992	2.55			
20	1.360	10.59	0.8210	5.832			
25	1.824	18.53	1.174	10.81			
30	2.298	28.84	1.548	17.61			
35	2.749	41.47	1.937	26.31			
40	3.184	56.31	2.332	36.98			
45	3.622	73.32	2.732	49.64			
50	4.159	92.68	3.140	64.32			
60	5.286	140.5	4.008	100.0			
70	5.905	195.5	4.856	144.4			
80	6.799	259.1	5.703	197.1			
90	7.598	331.2	6.551	258.4			
100	8.311	410.8	7.389	328.1			
110	8.966	497.2	8.213	406.2			
120	9.595	590.0	9.020	492.4			
130	10.22	689.1	9.813	586.5			
140	10.86	794.5	10.59	688.6			
150	11.51	906.3	11.36	798.4			
160	12.16	1025	12.13	915.8			
170	12.80	1149	12.88	1041			
180	13.41	1281	13.63	1173			
190	14.05	1418	14.38	1314			
191	14.11	1432	14.45	1328			
Расстеклованное состояние							
191	17.52	1432	14.45	1328			
200	17.66	1590	15.26	1462			
210	17.80	1768	16.13	1619			
220	17.97	1947	16.96	1784			
230	18.18	2127	17.76	1958			
240	18.40	2310	18.54	2139			
250	18.65	2495	19.29	2328			
260	18.91	2683	20.03	2525			
270	19.19	2874	20.75	2729			
280	19.48	3067	21.45	2940			
290	19.77	3263	22.14	3158			
298.15	20.02	3425	22.69	3341			
300	20.07	3462	22.82	3383			
310	20.39	3665	23.48	3614			
320	20.73	3870	24.13	3852			
330	21.07	4078	24.77	4097			

Таблица 4. Стандартные термодинамические функции карбосиланового дендримера $G4[OSi(CH_3)_3]_{64}$ ($M(C_{432}H_{1116}O_{64}Si_{125}) = 10848.1$ г/моль)

Т, К	Ср(Т), кДж∕(К моль)	[<i>H</i> °(<i>T</i>) — <i>H</i> °(0)], кДж/моль	[<i>S</i> °(<i>T</i>) — <i>S</i> °(0)], кДж/(К моль)	-[<i>G</i> °(<i>T</i>) - <i>H</i> °(0)], кДж/моль
340	21.39	4290	25.41	4348
350	21.60	4506	26.0	4605
360	21.8	4723	26.6	4868
370	21.9	4942	27.2	5138
380	22.1	5162	27.8	5413
390	22.2	5384	28.4	5694
400	22.4	5607	29.0	5981
410	22.6	5832	29.5	6274
420	22.7	6058	30.1	6572
430	22.9	6286	30.6	6875
440	23.1	6516	31.1	7184
450	23.2	6748	31.7	7498
460	23.4	6981	32.2	7817
470	23.5	7215	32.7	8141
480	23.6	7451	33.2	8470
490	23.8	7688	33.7	8805
500	23.9	7926	34.1	9144
510	23.9	8165	34.6	9487
520	24.0	8405	35.1	9836
530	24.1	8645	35.5	10189
540	24.2	8887	36.0	10546
550	24.2	9129	36.4	10909
560	24.3	9371	36.9	11 275

Таблица 4. Окончание

Примечание. Стандартные неопределенности $u(p) = 10 \ \kappa \Pi a$; $u(T) = 0.01 \ K$ в области температур 5–350 K; $u(T) = 0.5 \ K$ в интервале температур 350–560 K. Суммарные расширенные относительные неопределенности $U_{c,r}(C_p^{\circ}(T)) = 0.02, 0.005, 0.002 \ u$ 0.02; $U_{c,r}([H^{\circ}(T) - H^{\circ}(0)]) = 0.022, 0.007, 0.005 \ u$ 0.022; $U_{c,r}([S^{\circ}(T) - S^{\circ}(0)]) = 0.023, 0.008, 0.006 \ u$ 0.023; $U_{c,r}([G^{\circ}(T) - H^{\circ}(0)]) = 0.03, 0.01, 0.009 \ u$ 0.03 в температурных интервалах 5–15 K, 15–40 K, 40–350 K и 350–560 K, соответственно. Указанные неопределенности соответствуют уровню достоверности 0.95 ($k \approx 2$).

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (государственное задание № 0729-2020-0053), Российского фонда фундаментальных исследований (проект № 19-03-00248) и Программы стратегического академического лидерства "Приоритет-2030" (проект H-489-99_2021-2022).

СПИСОК ЛИТЕРАТУРЫ

- 1. Dendrimers and Other Dendritic Polymers / Ed. by *J.M.J. Fréchet, D.A. Tomalia.* John Wiley & Sons: Chichester, UK, 2001. 688 p.
- Newkome G.R., Moorefield C.N., Vögtle F. Dendrimers and Dendrons: Concepts, Syntheses, Applications. WI-LEY-VCH Verlag GmbH: Weinheim, Germany, 2002. 635 p.

- Vögtle F, Richardt G., Werner N. Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications. WI-LEY-VCH Verlag GmbH: Weinheim, Germany, 2009. 354 p.
- 4. Bosman A.W., Janssen H.M., Meijer E.W. // Chem. Rev. 1999. V. 99. P. 1665.
- 5. Tomalia D.A. // Prog. Polym. Sci. 2005. V. 30. P. 294.
- 6. *Muzafarov A.M., Rebrov E.A.* // J. Polym. Sci. A: Polym. Chem. 2008. V. 46. P. 4935.
- Bronstein L.M., Shifrina Z.B. // Chem. Rev. 2011. V. 111. P. 5301.
- Музафаров А.М., Василенко Н.Г., Татаринова Е.А. и др. // Высокомолекуляр. соединения. Сер. С. 2011. Т. 53. № 7. С. 1217.
- 9. van Heerbeek R., Kamer P.C.J., van Leeuwen P.W.N.M. et al. // Chem. Rev. 2002. V. 102. P. 3717.
- Astruc D., Boisselier E., Ornelas C. // Ibid. 2010. V. 110. P. 1857.

- Svenson S., Tomalia D.A. // Adv. Drug Deliv. Rev. 2005. V. 57. P. 2106.
- 12. *Mintzer M.A., Grinstaff M.W.* // Chem. Soc. Rev. 2011. V. 40. P. 173.
- Yang J., Zhang Q., Chang H. et al. // Chem. Rev. 2015.
 V. 115. P. 5274.
- 14. Pedziwiatr-Werbicka E., Milowska K., Dzmitruk V. et al. // Eur. Polym. J. 2019. V. 119. P. 61.
- Cho M.J., Choi D.H., Sullivan P.A. et al. // Prog. Polym. Sci. 2008. V. 33. P. 1013.
- 16. *Wu W., Ye C., Qin J. et al.* // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 7033.
- 17. *Zhang X., Zeng Y., Yu T. et al.* // J. Phys. Chem. Lett. 2014. V. 5. P. 2340.
- Лебедев Б.В., Рябков М.В., Татаринова Е.А. и др. // Изв. АН. Сер. хим. 2003. № 3. С. 523.
- 19. Smirnova N.N., Stepanova O.V., Bykova T.A. et al. // Thermochim. Acta. 2006. V. 440. P. 188.
- Смирнова Н.Н., Маркин А.В., Самосудова Я.С. и др. // Журн. физ. химии. 2013. Т. 87. № 4. С. 570.
- 21. Markin A.V., Sologubov S.S., Smirnova N.N. et al. // Thermochim. Acta. 2015. V. 617. P. 144.
- Sologubov S.S., Markin A.V., Smirnova N.N. et al. // J. Phys. Chem. B. 2015. V. 119. P. 14527.
- Samosudova Ya.S., Markin A.V., Smirnova N.N. et al. // J. Chem. Thermodyn. 2016. V. 98. P. 33.
- Sologubov S.S., Markin A.V., Smirnova N.N. et al. // J. Therm. Anal. Calorim. 2016. V. 125. P. 595.
- Смирнова Н.Н., Сологубов С.С., Сармини Ю.А. и др. // Журн. физ. химии. 2017. Т. 91. № 12. С. 2030.
- 26. Сологубов С.С., Маркин А.В., Смирнова Н.Н. и др. // Там же. 2018. Т. 92. № 2. С. 219.
- Sologubov S.S., Markin A.V., Sarmini Yu.A. et al. // J. Therm. Anal. Calorim. 2019. V. 138. P. 3301.

- Маркин А.В., Сармини Ю.А., Сологубов С.С. и др. // Журн. физ. химии. 2020. Т. 94. № 2. С. 171.
- 29. Sologubov S.S., Markin A.V., Sarmini Yu.A. et al. // J. Chem. Thermodyn. 2021. V. 153. 106318.
- 30. Milenin S.A., Selezneva E.V., Tikhonov P.A. et al. // Polymers. 2021. V. 13. 606.
- 31. *Meija J., Coplen T.B., Berglund M. et al.* // Pure Appl. Chem. 2016. V. 88. P. 265.
- 32. *Малышев В.М., Мильнер Г.А., Соркин Е.Л. и др. //* Приб. техн. экспер. 1985. № 6. С. 195.
- 33. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
- 34. *Sabbah R., Xu-wu A., Chickos J.S. et al.* // Thermochim Acta. 1999. V. 331. P. 93.
- Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential Scanning Calorimetry. Springer: Heidelberg, Germany, 2003. 310 p.
- Gabbott P. Principles and Applications of Thermal Analysis. Blackwell Publishing: Oxford, UK, 2008. 480 p.
- 37. Della Gatta G., Richardson M.J., Sarge S.M. et al. // Pure Appl. Chem. 2006. V. 78. P. 1455.
- Kaisersberger E., Janoschek J., Wassmer E. // Thermochim. Acta. 1989. V. 148. P. 499.
- Adam G., Gibbs J.H. // J. Chem. Phys. 1965. V. 43. P. 139.
- 40. Kauzmann W. // Chem. Rev. 1948. V. 43. P. 219.
- 41. *Bestul A.B., Chang S.S.* // J. Chem. Phys. 1964. V. 40. P. 3731.
- 42. Debye P. // Ann. Phys. 1912. V. 344. P. 789.
- Experimental Thermodynamics. Volume I. Calorimetry of Non-reacting Systems / Ed. by J. P. McCullough, D. W. Scott. Butterworth & Co. (Publishers) Ltd.: London, UK, 1968. 615 p.
- 44. *Chase M.W.* // J. Phys. Chem. Ref. Data. 1998. V. 1–2. P. 1951.