ТЕПЛОЕМКОСТЬ: ЭКСПЕРИМЕНТ И РАСЧЕТ

УДК 536.631+544.31.031

ТЕПЛОЕМКОСТЬ ПИВАЛОИЛТРИФТОРАЦЕТОНАТА ЛЮТЕЦИЯ [Lu(C $_8H_{10}F_3O_2$)_3]₂

© 2022 г. М. А. Беспятов^{*a*,*}, А. Е. Мусихин^{*a*}, П. А. Стабников^{*a*}, Д. П. Пищур^{*a*}, И. С. Черняйкин^{*a*}, Н. В. Гельфонд^{*a*}

^аИнститут неорганической химии им. А.В. Николаева СО РАН, 630090, Новосибирск, Россия

*e-mail: bespyatov@niic.nsc.ru Поступила в редакцию 09.03.2022 г. После доработки 14.03.2022 г. Принята к публикации 15.03.2022 г.

Образец димерного комплекса пивалоилтрифторацетоната лютеция ($[Lu(C_8H_{10}F_3O_2)_3]_2$) был синтезирован и охарактеризован различными физико-химическими методами. Методами дифференциального термического анализа и термогравиметрии была исследована термическая стабильность комплекса в интервале 300–505 К, определена температура плавления. Впервые получены экспериментальные данные о теплоемкости в интервале 195–410 К методом дифференциальной сканирующей калориметрии. Аномалий в поведении теплоемкости, связанных с фазовыми переходами, ниже температуры плавления не выявлено. Были рассчитаны сглаженные значения регулярной теплоемкости для [Lu(C₈H₁₀F₃O₂)₃]₂ в интервале 195–443 К.

Ключевые слова: теплоемкость, бета-дикетонаты лантаноидов, дифференциальная сканирующая калориметрия

DOI: 10.31857/S0044453722090035

Бета-дикетонаты лантаноидов в настоящее время активно используются в качестве прекурсоров для изготовления различного рода пленок и покрытий [1, 2]. Кроме того, они являются перспективными для использования в методах газофазного хроматографического разделения лантаноидов [3]. Пивалоилтрифторацетонат лютеция ([Lu($C_8H_{10}F_3O_2$)_3]_2 или [Lu(ptfa)_3]_2) является представителем бета-дикетонатов металлов.

Строение бета-дикетонатов позволяет, оставаясь в рамках одинаковой молекулярной геометрии, варьировать атом редкоземельного металла и тип органического лиганда — что открывает возможность (при систематическом исследовании) для создания основ направленного синтеза этих комплексов с необходимыми функциональными свойствами. В связи с этим в последние годы наблюдается повышенный интерес к исследованию различных физико-химических свойств бета-дикетонатов лантаноидов [4, 5].

Целью данной работы являлось получение экспериментальных данных о теплоемкости и о фазовой стабильности [Lu(ptfa)₃]₂ в интервале 195–410 К. Данное исследование для [Lu(ptfa)₃]₂ было выполнено впервые.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец. Образец пивалоилтрифторацетоната лютеция ([Lu($C_8H_{10}F_3O_2$)₃]₂) был синтезирован согласно методике, описанной в работе [6]. Исходными реагентами служили: кристаллогидрат хлорида лютеция (CAS: 15230-79-2, чистота: 99.99%), пивалоилтрифторацетон (CAS: 22767-90-4, чистота: 98%), гидрооксид натрия (CAS: 1310-73-2, чистота: >98%). Все химические вещества, использовавшиеся в синтезе, были коммерчески доступны и применялись без дополнительной очистки. Безводный комплекс получен сублимацией в вакуумной градиентной печи. Образец при комнатной температуре является кристаллическим порошком белого цвета.

Рис. 1. Температурная зависимость относительного изменения веса $\Delta_r m(T)$ (кривая TG) и разности температур $\Delta t(T)$ (кривая с-DTA) в интервале 300–505 К для [Lu(C₈H₁₀F₃O₂)₃]₂.

 ± 0.0010 Å, $\beta = 111.426 \pm 0.002^{\circ}$, $V_{ec} = 6048.1 \pm 0.5$ Å³, Z = 4. Химический анализ (анализатор Carlo Erba 1106, Италия) очищенного соединения показал, что состав С, Н и F соответствует расчетному в пределах точности анализа (менее 0.3% [7]). Массовая доля основного вещества в образце составляла не менее 99%. Температура плавления [Lu(ptfa)₃]₂ была определена на столике Кофлера и составляет 442 ± 1 К.

Исследование термической стабильности и теплоемкости. Термогравиметрический анализ с синхронным получением ДТА-сигнала для выявления тепловых эффектов выполнен в интервале 300–505 К с использованием термовесов Netzsch TG 209 F1 со скоростью нагрева 10 К мин⁻¹ в атмосфере гелия со скоростью потока 30 мл мин⁻¹. Измерения проводились в открытом алюминиевом тигле, исходная масса образца составляла 7.190 мг.

Для экспериментального исследования теплоемкости [Lu(ptfa)₃]₂ использовался дифференциальный сканирующий калориметр NETZSCH DSC 204 F1 Phoenix. Калибровка температуры и шкалы энтальпии проводилась по методике, описанной в [8], с использованием набора стандартов: ртути, галлия, нафталина, бензойной кислоты, индия, олова, циклогексана, адамантана и нитрата калия. По результатам калибровки и измерения стандартных веществ (синтетического сапфира и бензойной кислоты) стандартная неопределенность для температуры составляет 0.5 K, относительная расширенная (уровень достоверности 0.95) неопределенность измерения теплоемкости составляет 2.0%. Теплоемкость определялась по стандарту DIN 51007. Измерения проводились с использованием открытых алюминиевых тиглей с постоянной скоростью нагрева 9 К мин⁻¹ в температурном интервале 195–410 К. Масса образца составляла 8.930 мг. Инертную атмосферу поддерживали путем продувки газообразным аргоном со скоростью потока 25 мл мин⁻¹. В качестве стандартного вещества использовался синтетический сапфир α -Al₂O₃. Табличные данные об удельной теплоем-кости сапфира, используемого для калибровки, основаны на данных, опубликованных Национальным институтом стандартов и технологии (NIST, США) [9, 10].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Термогравиметрическая (TG) кривая, представленная на рис. 1, соответствует образцу безводного комплекса [Lu(ptfa)₃]₂. Суммарная потеря веса составляет $\approx 1.0\%$ в интервале 300–430 К и достигает $\approx 2.0\%$ при 440 К и $\approx 5\%$ при 450 К. Выше 500 К наблюдается практически полное испарение комплекса, что свидетельствует о хорошей летучести соединения. ДТА-кривая демонстрирует наличие одного эндотермического эффекта в интервале 438–450 К с максимумом при температуре 443.5 \pm 0.5 К. Этот температурный диапазон согласуется с температурой плавления, определенной на столике Кофлера. Таким образом выявленный эффект связан с процессом плавления вещества.

Полученная экспериментальная теплоемкость $[Lu(ptfa)_3]_2$ приведена на рис. 2; молярная масса,

1263

Рис. 2. Молярная теплоемкость $C_p(T)$ для [Lu(C₈H₁₀F₃O₂)₃]₂: (+) – экспериментальные значения, линия – сглаженное описание экспериментальных данных.

используемая для представления молярной теплоемкости, составляет 1520.90 г моль⁻¹.

В исследуемом интервале температур не выявлено каких-либо аномалий в функциональном поведении теплоемкости, указывающих на наличие фазовых переходов.

Для описания экспериментальных точек обычно используются различные эмпирические или полуэмпирические полиномиальные уравнения, имеющие минимальный набор членов и дающие при этом описание температурной зависимости теплоемкости с заданной точностью. В данной работе для описания теплоемкости при высоких температурах было выбрано уравнение Хааса—Фишера [11], которое имеет пять параметров:

$$C_p(T) = k_0 + k_1 T + k_2 T^{-2} + k_3 T^{-1/2} + k_4 T^2.$$
(1)

Мы не стали использовать другие уравнения с меньшим количеством параметров (три-четыре параметра), они также описывали теплоемкость в пределах экспериментальной неопределенности, однако имели тенденцию некорректного поведения на границах области описания и/или систематическое отклонение от экспериментальных данных в некоторых интервалах температур. Уравнение Хааса-Фишера дало возможность экстраполировать описываемые данные в небольшом интервале высоких температур до температуры плавления 443 К (для более корректной экстраполяции была сделана дополнительная оценка и вручную добавлены опорные точки при 443 К). Коэффициенты k_i уравнения (1) соответствуют минимальному значению стандартного отклонения σ экспериментальных точек от иско-

Рис. 3. Относительное отклонение $\Delta_r C_p(T)$ экспериментальных значений теплоемкости [Lu(C₈H₁₀F₃O₂)₃]₂ от их описания уравнением (1) в интервале 195–409 К.

мого описания в интервале 195—410 К. Полученные значения k_i , стандартное σ и относительное стандартное σ_r отклонения приведены в табл. 1. Округление коэффициентов k_i выполнено таким образом, чтобы величина σ не изменилась более чем на 1.0%. Результаты описания в рамках уравнения (1) приведены на рис. 2 в виде сплошной линии. Относительное отклонение экспериментальных точек от полученного описания приведено на рис. 3. Сглаженные значения теплоемкости в интервале 195—443 К представлены в табл. 2.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (научный проект № 19-03-00385) и Минобрнауки России (проект № 121031700314-5).

Таблица 1. Коэффициенты k_i уравнения (1), дающие наилучшие описания экспериментальных данных о теплоемкости [Lu(C₈H₁₀F₃O₂)₃]₂ в интервале 195–409 К, и соответствующие ему стандартное σ и относительное стандартное σ_r отклонения

Параметр	Значение		
k_0	1.02705×10^4		
k_1	-9.6182		
k_2	5.149×10^{7}		
k_3	-1.24663×10^{5}		
k_4	8.269×10^{-3}		
σ , Дж моль $^{-1}$ K $^{-1}$	0.7		
$\sigma_r, \%$	0.04		

<i>Т</i> , К	$C_p(T),$ Дж моль $^{-1}$ К $^{-1}$	<i>Т</i> , К	$C_p(T),$ Дж моль $^{-1}$ К $^{-1}$	Т, К	$C_p(T),$ Дж моль $^{-1}$ К $^{-1}$
195	1136	280	1432	370	1739
200	1150	290	1468	380	1771
210	1180	298.15	1497 ± 30	390	1803
220	1214	300	1504	400	1835
230	1249	310	1539	410	1867
240	1285	320	1573	420	1898
250	1322	330	1607	430	1930
260	1359	340	1641	440	1962
270	1396	350	1674	443	1972
273.15	1407 ± 28	360	1707		

Таблица 2. Сглаженные значения регулярной теплоемкости $C_p(T)$ для [Lu(C₈H₁₀F₃O₂)₃]₂ в интервале 195–443 К (молярная масса – 1520.90 г/моль)

СПИСОК ЛИТЕРАТУРЫ

- Jones A.C., Aspinall H.C., Chalker P.R. et al. // Mater. Sci. Eng. B 2005. V. 118. P. 97. https://doi.org/10.1016/j.mseb.2004.12.081
- Nehra K., Dalal A., Hooda A. et al. // J. Mol. Struct. 2022. V. 1249. P. 131531. https://doi.org/10.1016/j.molstruc.2021.131531
- 3. Shigematsu T., Matsui M., Utsunomiya K. // Bull. Chem. Soc. Jpn. 1969. V. 42. P. 1278–1281. https://doi.org/10.1246/bcsj.42.1278
- Shahbazi S., Oldham C., Mullen A. et al. // Radiochim. Acta. 2019. V. 107. P. 1173–1184. https://doi.org/10.1515/ract-2018-3085
- Bespyatov M.A. // J. Chem. Thermodynam. 2020. V. 147. P. 106123. https://doi.org/10.1016/j.jct.2020.106123

- Babailov S.P., Stabnikov P.A., Korolkov I.V. et al. // Polyhedron 2016. V. 105. P. 178–185. https://doi.org/10.1016/j.poly.2015.12.014
- Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Anal. Chem. 2008. V. 63. P. 1094. https://doi.org/10.1134/S1061934808110142
- Musikhin A.E., Bespyatov M.A. // J. Chem. Thermodyn. 2022. V. 164. P. 106619. https://doi.org/10.1016/j.jct.2021.106619
- Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. Natl. Bur. Stand. 1982. V. 87. P. 159. https://doi.org/10.6028/jres.087.012
- Sabbah R., An X.-W., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
- Haas J.L., Fisher J.R. // Am. J. Sci. 1976. V. 276. P. 525–545. https://doi.org/10.2475/ajs.276.4.525