## ТЕПЛОЕМКОСТЬ: ЭКСПЕРИМЕНТ И РАСЧЕТ

УДК 536.631+544.31.031

# НИЗКОТЕМПЕРАТУРНЫЕ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА БИС-ДИПИВАЛОИЛМЕТАНАТА ПАЛЛАДИЯ

© 2022 г. М. А. Беспятов<sup>а,\*</sup>, И. С. Черняйкин<sup>а</sup>, Т. М. Кузин<sup>а</sup>, Н. В. Гельфонд<sup>а</sup>

<sup>а</sup>Институт неорганической химии им. А.В. Николаева СО РАН, 630090, Новосибирск, Россия \*e-mail: bespyatov@niic.nsc.ru Поступила в релакцию 05.03.2022 г.

После доработки 05.03.2022 г. Принята к публикации 10.05.2022 г.

Теплоемкость кристаллического бис-дипивалоилметаната палладия ( $Pd(C_{11}H_{19}O_2)_2$ , CAS: 15214-66-1) была измерена в интервале температур от 5.63 К до 299.45 К с помощью адиабатической калориметрии. В функциональном поведении теплоемкости каких-либо аномалий, связанных с фазовыми переходами, не было обнаружено во всей исследуемой области температур. На основе полученных данных были рассчитаны значения интегральных термодинамических функций (энтропия, энтальпия, приведенная энергия Гиббса) и в интервале температур от 0 К до 300 К. Продемонстрирована линейная взаимосвязь между объемом элементарной ячейки, нормированной на число молекул в этой ячейке, и теплоемкостью при T = 298.15 К для бета-дикетонатов металлов.

*Ключевые слова:* теплоемкость, калориметрия, термодинамические функции, бета-дикетонаты металлов

DOI: 10.31857/S0044453722090047

В настоящее время активно развивается направление, связанное с водородной энергетикой. Мембраны на основе палладия являются перспективными в процессах очистки и производства водорода [1, 2]. Метод осаждения из газовой фазы (или chemical vapour deposition – CVD) – является одним из широко применяемых методов изготовления палладиевых пленок и мембран [3, 4].

Благодаря высокой летучести (т.е. способности переходить в газовую фазу при умеренных температурах без разложения молекул), дипивалоилметанат палладия ( $Pd(C_{11}H_{19}O_2)_2$ ) является перспективным прекурсором для CVD-технологий [5]. В связи с этим, наблюдается повышенный интерес к исследованию его различных физикохимических свойств [5–8]. Однако многие важные термодинамические свойства этого комплекса, необходимые для оптимизации технологических CVD-процессов, все еще остаются неизученными. В частности отсутствуют данные о низкотемпературной теплоемкости для бисдипивалоилметаната палладия.

Данные о низкотемпературной теплоемкости обладают большой информативностью. Они позволяют рассчитать термодинамические функции, такие как энтропия, энтальпия и приведенная энергия Гиббса, получить информацию о фазовой стабильности в исследуемой области температур и т.д. [9–11]. Накопление надежных термодинамических данных открывает возможности для поиска корреляций и соответствующих теоретических обобщений.

Целью настоящей работы являлось получение новых прецизионных данных о теплоемкости для  $Pd(C_{11}H_{19}O_2)_2$  адиабатическим методом в интервале от 5.63 до 299.45 K, а также расчет на основе этих данных термодинамических функций (энтропия, приращение энтальпии, приведенная энергия Гиббса).

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец. Образец бис-дипивалоилметаната палладия (II) ( $Pd(C_{11}H_{19}O_2)_2$ , CAS: 15214-66-1) был синтезирован в ИНХ СО РАН согласно методике, подробно описанной в [12]. После синтеза препарат был дополнительно очищен методом двойной пересублимации в вакуумной градиентной печи при  $p \approx 5$  Па и  $T \approx 470$  К. Готовый образец для исследований представляет собой кристаллический порошок оранжевого цвета. Чистота образца — не ниже 99.8%.

Элементный анализ на С, Н проводили на CHNS-анализаторе vario MICRO cube (Elementar Analysensysteme GmbH, Германия). Химический анализ очищенного соединения показал, что состав С и Н соответствует расчетным значениям



Рис. 1. Экспериментальная теплоемкость  $Pd(C_{11}H_{19}O_2)_2$ .

(С – 55.87%, Н – 8.10%) в пределах точности анализа (менее 0.1%).

ИК-спектр комплекса регистрировали при комнатной температуре с помощью Фурье-спектрометра Scimitar 2000 (Agilent Technologies, США) в таблетках КВг, в диапазоне волновых чиссел 400–4000 см<sup>-1</sup>. Полученные данные согласуются с представленными в литературе [7]; других полос поглощения не обнаружено.

Спектр <sup>1</sup>Н-ЯМР был получен на спектрометре MSL-300 (Bruker, США), в качестве растворителя использовали CDCl<sub>3</sub>. <sup>1</sup>Н-ЯМР (ppm): 5.60 (m, CH), 1.07 (s, (CH<sub>3</sub>)<sub>3</sub>C).

Рентгенофазовый анализ поликристаллического образца выполнен на дифрактометре Shimadzu XRD-7000 (излучение Cu $K_{\alpha}$ , диапазон 2 $\theta$  = = 5–60°, комнатная температура). Соответствие экспериментальной дифрактограммы теоретической (т.е. рассчитанной по данным монокристаллической рентгенографии [13]), подтверждает однофазность образца Pd(C<sub>11</sub>H<sub>19</sub>O<sub>2</sub>)<sub>2</sub>. Расчетная рентгеновская плотность, по данным работы [13], составляет 2.51 г/см<sup>3</sup>.

Метод измерения теплоемкости. Теплоемкость образца была измерена в интервале от 5.63 К до 299.45 К адиабатическим методом. Вакуумный адиабатический калориметр был изготовлен в ИНХ СО РАН и описан в предыдущих работах [14, 15]. Температуру калориметрической ампулы измеряли с помощью образцового платинового термометра сопротивления капсульного типа  $(R_0 = 100.4695 \text{ Om}; R_{100}/R_0 = 1.3925; ITS-90)$ , вставленного во входную осевую лунку. Стандартная неопределенность температуры u(T) = 0.01 K. Система адиабатического контроля обеспечивала стабильный температурный дрейф калориметри-

ческой ампулы в пределах от  $1 \times 10^{-4}$  К мин<sup>-1</sup> до  $1 \times 10^{-5}$  К мин<sup>-1</sup>. В предыдущих работах была подтверждена надежность калориметрического прибора измерениями теплоемкости бензойной кислоты [14, 15]. Показано [14, 15], что относительные отклонения измеренной теплоемкости бензойной кислоты от рекомендуемых значений [16, 17] составили: менее 0.9% – при  $T \le 20$  К, менее 0.23% – при  $T \ge 20$  К.

Образец был помещен в калориметрическую ампулу и дегазирован в вакууме ( $p \approx 1$  Па) при комнатной температуре в течение 2 ч. После вакуумирования калориметрическая ампула с образцом была заполнена газообразным гелием ( $p \approx$ ≈ 1.0 кПа, T ≈ 295 К) для улучшения теплообмена и герметизирована. Масса загруженного в ампулу образца составляла 4.281 г (в вакууме). Поправка на плавучесть была сделана на основе рентгеновской плотности образца. Теплоемкость исследуемого вещества вычислялась как разность между экспериментально определяемой теплоемкостью калориметра с веществом и теплоемкостью пустого калориметра, измерявшейся в отдельных экспериментах. Молярная масса, использованная для расчета молярной теплоемкости (С<sub>р.m</sub>), была определена по формуле  $Pd(C_{11}H_{19}O_2)_2$  как 472.96 г/моль.

#### ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теплоемкость кристаллического образца бисдипивалоилметаната палладия  $(Pd(C_{11}H_{19}O_2)_2)$ была измерена методом импульсного нагрева в 72 точках диапазона температур от 5.63 до 299.45 К. Всего в этом диапазоне температур было проведено две серии экспериментов. Серии измерений теплоемкости  $C_{p,m}$  в табл. 1 представлены в хро-

| <i>Т,</i> К | $C_{p,m},$<br>Дж моль $^{-1}$ К $^{-1}$ | <i>Т,</i> К | $C_{p,m},$<br>Дж моль <sup>-1</sup> К <sup>-1</sup> | <i>Т,</i> К | $C_{p,m},$<br>Дж моль $^{-1}$ К $^{-1}$ |
|-------------|-----------------------------------------|-------------|-----------------------------------------------------|-------------|-----------------------------------------|
| Серия 1     |                                         | Серия 2     |                                                     | 192.18      | 431.0                                   |
| 5.63        | 2.468                                   | 80.63       | 197.8                                               | 196.57      | 438.0                                   |
| 6.95        | 4.726                                   | 86.58       | 212.9                                               | 200.90      | 445.6                                   |
| 8.21        | 7.492                                   | 92.04       | 226.6                                               | 205.18      | 454.0                                   |
| 10.22       | 13.32                                   | 97.14       | 238.7                                               | 209.42      | 461.5                                   |
| 12.49       | 20.35                                   | 101.96      | 250.5                                               | 213.61      | 467.6                                   |
| 14.22       | 26.25                                   | 106.55      | 262.3                                               | 217.76      | 475.3                                   |
| 15.62       | 30.84                                   | 110.95      | 273.0                                               | 222.21      | 482.3                                   |
| 17.05       | 35.78                                   | 115.18      | 283.0                                               | 226.94      | 490.0                                   |
| 18.91       | 41.91                                   | 119.78      | 292.8                                               | 231.60      | 496.5                                   |
| 21.55       | 50.48                                   | 124.72      | 303.8                                               | 236.35      | 505.6                                   |
| 24.91       | 60.82                                   | 129.51      | 314.6                                               | 241.19      | 513.6                                   |
| 28.75       | 71.81                                   | 134.08      | 324.4                                               | 245.97      | 521.0                                   |
| 32.79       | 82.63                                   | 138.56      | 332.9                                               | 250.70      | 529.5                                   |
| 36.89       | 93.19                                   | 143.03      | 341.9                                               | 255.40      | 538.3                                   |
| 41.58       | 104.4                                   | 147.39      | 351.2                                               | 260.03      | 545.2                                   |
| 46.56       | 116.0                                   | 151.68      | 359.2                                               | 264.61      | 553.8                                   |
| 51.04       | 126.7                                   | 155.89      | 366.9                                               | 269.16      | 560.7                                   |
| 54.88       | 135.4                                   | 160.02      | 375.5                                               | 273.66      | 568.6                                   |
| 59.04       | 145.5                                   | 164.54      | 383.3                                               | 278.47      | 576.0                                   |
| 63.50       | 155.7                                   | 169.32      | 392.5                                               | 283.59      | 585.9                                   |
| 67.49       | 164.9                                   | 174.03      | 401.2                                               | 288.83      | 597.4                                   |
| 71.69       | 175.5                                   | 178.66      | 408.9                                               | 294.24      | 604.0                                   |
| 76.11       | 186.5                                   | 183.21      | 415.8                                               | 299.45      | 609.6                                   |
| 79.22       | 194.2                                   | 187.74      | 423.1                                               |             |                                         |

**Таблица 1.** Экспериментальные значения теплоемкости ( $C_{p,m}$ ) для кристаллического  $Pd(C_{11}H_{19}O_2)_2$  (молярная масса: 472.96 г/моль)

Примечание. Стандартная неопределенность температуры u(T) = 0.01 K; относительная расширенная (уровень достоверности 0.95) неопределенность теплоемкости  $u_{c,r}(C_{p,m})$ : 0.014 при  $T \le 20$  K, 0.004 при T > 20 K.



**Рис. 2.** Температурная зависимость параметра  $\alpha(T)$  для Pd(C<sub>11</sub>H<sub>19</sub>O<sub>2</sub>)<sub>2</sub>.

нологическом порядке. Серия 1 была выполнена после охлаждения образца от комнатной температуры до температуры кипения жидкого гелия (~4.2 K). Серия 2 – от комнатной температуры до температуры кипения жидкого азота (~77.4 K). В функциональном поведении теплоемкости не наблюдается каких-либо аномалий (рис. 1), связанных с фазовыми переходами.

Теплоемкость твердого тела  $C_{p,m}(T)$  при низких температурах может быть описана с помощью степенной функции [18]:

$$C_{p,m}(T) = A(T)T^{\alpha(T)},$$
(1)

где A(T) — размерный коэффициент,  $\alpha(T)$  — безразмерный коэффициент, характеризующий степень нарастания теплоемкости. Вблизи 0 К есть область, где справедливы континуальные модели

| i | $\beta_i$     | $\Theta_i$   |  |  |  |
|---|---------------|--------------|--|--|--|
| 1 | $0.33\pm0.09$ | $24.3\pm2.0$ |  |  |  |
| 2 | $2.06\pm0.18$ | $53 \pm 3$   |  |  |  |
| 3 | $3.04\pm0.24$ | $113 \pm 10$ |  |  |  |
| 4 | $4.7\pm0.9$   | $260 \pm 30$ |  |  |  |
| 5 | $12.4\pm0.8$  | $508\pm29$   |  |  |  |
| 6 | $28.1\pm2.6$  | $1490\pm70$  |  |  |  |

**Таблица 2.** Оптимизированные базовые параметры  $(\beta_i, \theta_i)$  для уравнения (3)

Примечание. Число, следующее за символом " $\pm$ ", представляет собой численное значение неопределенности типа A (уровень достоверности 0.95).

Тарасова ( $\alpha = 2$  и 1 — для двухмерных и одномерных кристаллических структур соответственно) и Дебая ( $\alpha = 3$  — для трехмерных кристаллических структур). Параметр  $\alpha(T)$  можно вычислить в предположении, что коэффициент A(T) в выражении (1) не сильно меняется в малой окрестности рассматриваемой температуры *T*. Для температур  $T_1$  и  $T_2$ , лежащих вблизи *T*, получим:

$$\alpha(T) = \ln \frac{C_{p,m}(T_2)}{C_{p,m}(T_1)} / \ln \frac{T_2}{T_1}.$$
 (2)

Параметр  $\alpha(T)$  используется для анализа кривой теплоемкости при низких температурах [18, 19].

Мы рассчитали зависимость  $\alpha(T)$  с помощью уравнения (2) (рис. 2) для анализа степени анизотропии кристаллической решетки исследуемого комплекса.

Как видно на рис. 2 при понижении температуры параметр  $\alpha$  возрастает и стремится к предельному значению, соответствующему модели Дебая для трехмерных кристаллических структур ( $\alpha = 3$ ).

Сглаживание теплоемкости было выполнено с помощью суммы функций Эйнштейна–Планка. Для теплоемкости при постоянном давлении эта сумма имеет вид [20, 21]:

$$C_{p,m} \approx C_s = \sum_{i}^{m} \beta_i C_E(x),$$

$$C_E(x) = \frac{3x^2 e^x}{(e^x - 1)^2}, \quad x = \frac{\Theta_i}{T},$$
(3)

где m — количество членов в сумме,  $\beta_i$  и  $\Theta_i$  — подгоночные параметры модели,  $C_E(x)$  — функция Эйнштейна—Планка. Для аппроксимации экспериментальных данных уравнением (3) использовалась программа CpFit, алгоритм которой детально описан в [20]. В табл. 2 представлены параметры  $\beta_i$  и  $\Theta_i$ , полученные в результате аппроксимации экспериментальных данных  $C_{p,m}$  с помощью уравнения (3). Среднеквадратичные отклонения экспериментальных точек



**Рис. 3.** Объем элементарной ячейки ( $V_{ec}$ ), деленный на число молекул в этом объеме (Z), и теплоемкость ( $C_{p,m}^{\circ}$ ) при T = 298.15 К для бета-дикетонатов металлов:  $I - Cu(C_5H_7O_2)_2$  [22, 37],  $2 - Pt(C_5H_7O_2)_2$  [23, 38],  $3 - VO(C_5H_7O_2)_2$  [24, 39],  $4 - Ir(C_5H_7O_2)_3$  [25, 40],  $5 - Al(C_5H_7O_2)_3$  [27, 42],  $6 - Ru(C_5H_7O_2)_3$  [26, 41],  $7 - Cr(C_5H_7O_2)_3$  [28, 44],  $8 - Fe(C_5H_7O_2)_3$  [28, 43],  $9 - Al(C_5HF_6O_2)_3$  [18, 30],  $I0 - Pd(C_{11}H_{19}O_2)_2$  [13, эта работа],  $II - Fe(C_{11}H_{19}O_2)_3$  [31, 45],  $I2 - Co(C_{11}H_{19}O_2)_3$  [32, 46],  $I3 - Al(C_{11}H_{19}O_2)_3$  [33, 47],  $I4 - Zr(C_{11}H_{19}O_2)_4$  [34, 48],  $I5 - Co_4(C_5H_7O_2)_8$  [29, 15],  $I6 - Eu_2(C_{11}H_{19}O_2)_6$  [35, 49],  $I7 - Tb_2(C_{11}H_{19}O_2)_6$  [36, 50].

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 9 2022

**Таблица 3.** Молярные термодинамические функции (теплоемкость  $C_{p,m}$ , энтропия  $\Delta_0^T S_m$ , приращение энтальпии  $\Delta_0^T H_m$ , приведенная энергия Гиббса  $\Phi_m = \Delta_0^T S_m - \Delta_0^T H_m/T$ , молярная масса M = 472.96 г/моль) для кристаллического Pd(C<sub>11</sub>H<sub>19</sub>O<sub>2</sub>)<sub>2</sub> при давлении p = 0.1 МПа

| <i>Т,</i> К | $C_{p,m}$ , Дж моль <sup>-1</sup> К <sup>-1</sup> | $\Delta_0^T S_m$ , Дж моль <sup>-1</sup> К <sup>-1</sup> | $\Delta_0^T H_m$ , Дж моль <sup>-1</sup> | $\Phi_m$ , Дж моль <sup>-1</sup> К <sup>-1</sup> |
|-------------|---------------------------------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------|
| 5           | 1.733                                             | 0.578                                                    | 2.166                                    | 0.1444                                           |
| 10          | 12.53                                             | 4.511                                                    | 33.64                                    | 1.147                                            |
| 15          | 28.84                                             | 12.62                                                    | 136.4                                    | 3.525                                            |
| 20          | 45.47                                             | 23.20                                                    | 322.4                                    | 7.085                                            |
| 25          | 61.09                                             | 35.05                                                    | 589.4                                    | 11.48                                            |
| 30          | 75.31                                             | 47.47                                                    | 930.9                                    | 16.44                                            |
| 35          | 88.35                                             | 60.07                                                    | 1340                                     | 21.77                                            |
| 40          | 100.6                                             | 72.67                                                    | 1813                                     | 27.35                                            |
| 45          | 112.5                                             | 85.21                                                    | 2346                                     | 33.08                                            |
| 50          | 124.2                                             | 97.67                                                    | 2938                                     | 38.92                                            |
| 60          | 147.5                                             | 122.4                                                    | 4296                                     | 50.77                                            |
| 70          | 171.4                                             | 146.9                                                    | 5890                                     | 62.75                                            |
| 80          | 196.1                                             | 171.4                                                    | 7727                                     | 74.80                                            |
| 90          | 221.2                                             | 195.9                                                    | 9813                                     | 86.89                                            |
| 100         | 246.1                                             | 220.5                                                    | 12150                                    | 99.03                                            |
| 110         | 270.4                                             | 245.1                                                    | 14730                                    | 111.2                                            |
| 120         | 293.6                                             | 269.6                                                    | 17 550                                   | 123.4                                            |
| 130         | 315.6                                             | 294.0                                                    | 20600                                    | 135.6                                            |
| 140         | 336.5                                             | 318.2                                                    | 23860                                    | 147.7                                            |
| 150         | 356.2                                             | 342.1                                                    | 27 3 30                                  | 159.9                                            |
| 160         | 375.0                                             | 365.7                                                    | 30980                                    | 172.0                                            |
| 170         | 393.0                                             | 388.9                                                    | 34820                                    | 184.1                                            |
| 180         | 410.5                                             | 411.9                                                    | 38840                                    | 196.1                                            |
| 190         | 427.7                                             | 434.6                                                    | 43030                                    | 208.1                                            |
| 200         | 444.6                                             | 456.9                                                    | 47 390                                   | 220.0                                            |
| 210         | 461.4                                             | 479.0                                                    | 51920                                    | 231.8                                            |
| 220         | 478.2                                             | 500.9                                                    | 56620                                    | 243.5                                            |
| 230         | 495.0                                             | 522.5                                                    | 61490                                    | 255.2                                            |
| 240         | 511.9                                             | 543.9                                                    | 66520                                    | 266.8                                            |
| 250         | 528.7                                             | 565.2                                                    | 71720                                    | 278.3                                            |
| 260         | 545.6                                             | 586.2                                                    | 77100                                    | 289.7                                            |
| 270         | 562.5                                             | 607.1                                                    | 82600                                    | 301.1                                            |
| 280         | 579.4                                             | 627.9                                                    | 88300                                    | 312.4                                            |
| 290         | 596.2                                             | 648.5                                                    | 94200                                    | 323.6                                            |
| 298.15      | $609.8 \pm 2.4*$                                  | $665.2 \pm 2.7*$                                         | $99100\pm400^*$                          | 332.7 ± 1.3*                                     |
| 300         | 612.8                                             | 669.0                                                    | 100300                                   | 334.8                                            |

\* Число после символа " ± " представляет собой числовое значение расширенной неопределенности с доверительной вероятностью 0.95.

 $C_{p,m}(T)$  от полученной сглаженной кривой  $C_s(T)$  составляют: 0.5% (5.63 К—18.91 К), 0.09% (21.55—299.45 К).

Значения энтропии ( $\Delta_0^T S_m$ ), приращения энтальпии ( $\Delta_0^T H_m$ ) и приведенной энергии Гиббса ( $\Phi_m$ ) в интервале 0–300 К получены численным интегрированием сглаженной зависимости теплоемкости  $C_s(T)$  от температуры. При расчетах предполагалось, что ниже 5.63 К, где экспериментальные данные отсутствуют, теплоемкость образца не содержит аномальных вкладов и подчиняется предельному закону Дебая ( $C \sim T^3$ , см. рис. 2). Значения термодинамических функций в интервале от 0 К до 300 К представлены в табл. 3.

Мы рассмотрели данные о теплоемкости для бета-дикетонатов металлов, полученные в текущей работе и в других публикациях, совместно с их структурными характеристиками [22-36]. Теплоемкость, представленная в литературе для  $Cu(C_5H_7O_2)_2$  [37],  $Pt(C_5H_7O_2)_2$  [38],  $VO(C_5H_7O_2)_2$ [39],  $Ir(C_5H_7O_2)_3$  [40],  $Ru(C_5H_7O_2)_3$ [41], Al( $C_5H_7O_2$ )<sub>3</sub> [42], Fe( $C_5H_7O_2$ )<sub>3</sub> [43], Cr( $C_5H_7O_2$ )<sub>3</sub>  $[44], Co_4(C_5H_7O_2)_8$  [15], Al $(C_5HF_6O_2)_3$  [18],  $Fe(C_{11}H_{19}O_2)_3$  [45],  $Co(C_{11}H_{19}O_2)_3$  [46],  $Al(C_{11}H_{19}O_2)_3$  $[47], Zr(C_{11}H_{19}O_2)_4$   $[48], Eu_2(C_{11}H_{19}O_2)_6$  [49], $Tb_2(C_{11}H_{19}O_2)_6$  [50], измерена адиабатическим методом. Мы заметили, что объем элементарной ячейки ( $V_{ec}$ ), нормированный на число молекул в этой ячейке (Z), линейно связан с теплоемкостью при температуре 298.15 К (рис. 3).

Выявленная взаимосвязь может быть описана уравнением:

$$\frac{C_{p,m}^{\circ}}{R} = A \frac{V_{ec}}{Z} + B, \qquad (4)$$

где R — универсальная газовая постоянная, A = 116.23 нм<sup>-3</sup> — размерный коэффициент, B = 1.4228 — безразмерный коэффициент. Среднеарифметические отклонения экспериментальных значений теплоемкости при T = 298.15 K от рассчитанных по уравнению (4) составляет ~3%.

Таким образом, в данной работе впервые было проведено исследование теплоемкости бисдипивалоилметаната палладия  $(Pd(C_{11}H_{19}O_2)_2)$  в интервале температур от 5.63 до 299.45 К. Аномалий в поведении теплоемкости, связанных с фазовыми переходами, не было выявлено. На основе полученных данных были рассчитаны интегральные термодинамические функции в интервале от 0 до 300 К.

Была продемонстрирована линейная взаимосвязь между объемом элементарной ячейки, нормированным на число молекул в этой ячейке, и теплоемкостью при температуре 298.15 К для бета-дикетонатов металлов. Ранее [15] подобная взаимосвязь нами была обнаружена для изолигандной группы бета-дикетонатов — для ацетилацетонатов металлов. Таким образом, в данной работе мы обобщили ранее выявленную корреляцию [15] для всех бета-дикетонатов металлов, а также уточнили параметры уравнения, описывающего эту взаимосвязь. Данное уравнение может быть использовано для прогнозирования теплоемкости для еще не изученных объектов из ряда бета-дикетонатов металлов.

Исследование выполнено при поддержке Министерства науки и высшего образования Российской Федерации (проект № 121031700314-5).

### СПИСОК ЛИТЕРАТУРЫ

- Alique D., Martinez-Diaz D., Sanz R. et al. // Membranes. 2018. V. 8. P. 5. https://doi.org/10.3390/membranes8010005
- Bernardo G., Araújo T., Lopes T.S. et al. // Int. J. Hydrog. Energy. 2020. V. 45. P. 7313. https://doi.org/10.1016/j.ijhydene.2019.06.162
- 3. *Igumenov I.K.* // J. Phys. IV France. 1995. V. 5. P. 489. https://doi.org/10.1051/jphyscol:1995556
- Bhaskaran V., Hampden-Smith M.J., Kodas T.T. // Chem. Vap. Deposition. 1997. V. 3. P. 85. https://doi.org/10.1002/cvde.19970030206
- Semyannikov P.P., Grankin V.M., Igumenov I.K. et al. // J. Phys. IV France. 1995. V. 5. P. 205. https://doi.org/10.1051/jphyscol:1995523
- Lashdaf M., Hatanpää T., Krause O. et al. // Appl. Catal. A: Gen. 2003. V. 241. P. 51. https://doi.org/10.1016/S0926-860X(02)00424-6
- Basova T.V., Kiselev V.G., Filatov E.S. et al. // Vib. Spectrosc. 2012. V. 61. P. 219. https://doi.org/10.1016/j.vibspec.2012.04.003
- Krasnov P.O., Mikhaleva N.S., Kuzubov A.A. et al. // J. Mol. Struct. 2017. V. 1139. P. 269. https://doi.org/10.1016/j.molstruc.2017.03.049
- Князев А.В., Шипилова А.С., Лелет М.И. и др. // Журн. физ. химии. 2020. Т. 94. С. 26. https://doi.org/10.1134/S0036024419120148
- Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. // Там же. 2020. Т. 94. С. 163. https://doi.org/10.1134/S0036024420020120
- Маркин А.В., Лякаев Д.В., Смирнова Н.Н. и др. // Журн. физ. химии. 2021. Т. 95. С. 1651. https://doi.org/10.1134/S0036024421110145
- Жаркова Г.И., Игуменов И.К., Ткачев С.В. и др. // Координац. химия. 1988. Т. 14. Вып. 1. С. 67.
- Baker G.J., Raynor J.B., Smits J.M.M. // J. Chem. Soc., Dalton Trans. 1986. V. 1986. P. 2655. https://doi.org/10.1039/DT9860002655
- 14. *Наумов В.Н., Ногтева В.В.* // Приборы и техника эксперимента. 1985. Т. 28. № 5. С. 186.
- Bespyatov M.A. // J. Chem. Eng. Data. 2020. V. 65. P. 5218. https://doi.org/10.1021/acs.jced.0c00391

- Rybkin N.P., Orlova M.P., Baranyuk A.K. et al. // Meas. Tech. 1974. V. 17. P.1021. https://doi.org/10.1007/BF00811877
- Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
- Bespyatov M.A., Kuzin T.M. // J. Chem. Thermodynamics. 2019. V. 138. P. 98. https://doi.org/10.1016/j.jct.2019.06.013
- Musikhin A.E., Naumov V.N., Bespyatov M.A. et al. // J. Alloys Compd. 2016. V. 655. P. 165. https://doi.org/10.1016/j.tca.2018.01.023
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Восков А.Л., Коваленко Н.А., Куценок И.Б. и др. // Журн. физ. химии. 2019. Т. 93. С. 1445. https://doi.org/10.1134/S0036024419100327
- Moreno Y., Arrue R., Saavedra R. et al. // J. Chil. Chem. Soc. 2013. V. 58. P. 2122. https://doi.org/10.4067/S0717-97072013000400049
- Onuma S., Horioka K., Inoue H. et al. // Bull. Chem. Soc. Jpn. 1980. V. 53. P. 2679. https://doi.org/10.1246/bcsj.53.2679
- 24. Dodge R.P., Templeton D.H., Zalkin A. // J. Chem. Phys. 1961. V. 35. P. 55. https://doi.org/10.1063/1.1731933
- Isakova V.G., Baidina I.A., Morozova N.B. et al. // J. Struct. Chem. 1999. V. 40. P. 276. https://doi.org/10.1007/BF02903657
- 26. Reynolds P.A., Cable J.W., Sobolev A.N. et al. // J. Chem. Soc. Dalton Trans. 1998. V. 1998. P. 559. https://doi.org/10.1039/A706681C
- Bott S.G., Fahlman B.D., Pierson M.L. et al. // J. Chem. Soc. Dalton Trans. 2001. V. 2001. P. 2148. https://doi.org/10.1039/B104057J
- Stabnikov P.A., Pervukhina N.V., Baidina I.A. et al. // J. Struct. Chem. 2007. V. 48. P. 186. https://doi.org/10.1007/s10947-007-0030-z
- 29. Cotton F.A., Elder R.C. // Inorg. Chem. 1965. V. 4. P. 1145. https://doi.org/10.1021/ic50030a012
- Smolentsev A.I., Zherikova K.V., Trusov M.S. et al. // J. Struct. Chem. 2011. V. 52. P. 1070. https://doi.org/10.1134/S0022476611060059
- Baidina I.A., Stabnikov P.A., Alekseev V.I. et al. // J Struct Chem. 1986. V. 27. P. 427. https://doi.org/10.1007/BF00751824
- 32. Ahmed M.A.K., Fjellvag H., Kjekshus A. et al. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 247. https://doi.org/10.1002/zaac.200700462

- 33. Ahmed M.A.K., Fjellvag H., Kjekshus A. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 770. https://doi.org/10.1002/zaac.201200478
- 34. Spijksma G.I., Bouwmeester H.J.M., Blank D.H.A. et al. // Inorg. Chem. 2006. V. 45. P. 4938. https://doi.org/10.1021/ic051674j
- Stabnikov P.A., Korol'kov I.V., Pervukhina N.V. et al. // Russ. J. Gen. Chem. 2015. V. 85. P. 135. https://doi.org/10.1134/S1070363215010235
- Mode V.A., Smith G.S. // J. Inorg. Nucl. Chem. 1969.
   V. 31. P. 1857. https://doi.org/10.1016/0022-1902(69)80407-0
- Bespyatov M.A. // J. Chem. Thermodyn. 2019. V. 137. P. 1. https://doi.org/10.1016/j.jct.2019.05.010
- Bespyatov M.A., Kuzin T.M., Naumov V.N. et al. // J. Therm. Anal. Calorim. 2016. V. 123. P. 899. https://doi.org/10.1007/s10973-015-4981-6
- 39. Тюрин А.В., Ненашев Р.Н., Гавричев К.С. и др. // Журн. физ. химии. 2015. Т. 89. С. 1507. https://doi.org/10.1134/S0036024415100325
- Naumov V.N., Bespyatov M.A. // J. Chem. Thermodyn. 2008. V. 40. 885. https://doi.org/10.1016/j.jct.2007.12.009
- 41. Bespyatov M.A., Kuzin T.M., Naumov V.N. et al. // J. Chem. Thermodyn. 2015. V. 82. P. 9. https://doi.org/10.1016/j.jct.2014.10.016
- 42. Беспятов М.А., Наумов В.Н., Стабников П.А. // Журн. физ. химии. 2008. Т. 82. С. 621. https://doi.org/10.1134/S0036024408040031
- 43. Жилина М.Н., Карякин Н.В., Маслова В.А. и др. // Там же. 1987. Т. 61. С. 3098.
- 44. Naumov V.N., Bespyatov M.A., Basova T.V. et al. // Thermochim. Acta. 2006. V. 443. P. 137. https://doi.org/10.1016/j.tca.2005.12.024
- 45. Bespyatov M.A., Naumov V.N. // Ibid. 2007. V. 463. P. 90. https://doi.org/10.1016/j.tca.2007.07.004
- 46. Черняйкин И.С., Беспятов М.А., Доровских С.И. и др. // Журн. неорган. химии. 2020. Т. 65. С. 603. https://doi.org/10.1134/S0036023620050058
- 47. Bespyatov M.A., Chernyaikin I.S., Naumov V.N. et al. // Thermochim. Acta. 2014. V. 596. P. 40. https://doi.org/10.1016/j.tca.2014.09.017
- Bespyatov M.A., Cherniaikin I.S., Zherikova K.V. et al. // J. Chem. Thermodynam. 2017. V. 110. P. 171. https://doi.org/10.1016/j.jct.2017.02.026
- 49. *Bespyatov M.A., Cherniaikin I.S., Stabnikov P.A. et al.* // J. Chem. Thermodynam. 2020. V. 140. P. 105904. https://doi.org/10.1016/j.jct.2019.105904
- Bespyatov M.A. // J. Chem. Thermodynam. 2020. V. 147. P. 106123. https://doi.org/10.1016/j.jct.2020.106123

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 9 2022

1272