ТЕПЛОЕМКОСТЬ: ЭКСПЕРИМЕНТ И РАСЧЕТ

УДК 544.33;544.34

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ АЗОЛОВ В КОНДЕНСИРОВАННОМ СОСТОЯНИИ

© 2022 г. А. В. Блохин^{*a*,*}, Я. Н. Юркштович^{*a*}, Е. Н. Степурко^{*a*}, Д. И. Шиман^{*a*,*b*}, А. В. Зураев^{*a*}, С. В. Войтехович^{*b*}

^аБелорусский государственный университет, Минск, Беларусь
 ^bНИИ ФХП БГУ, Минск, Беларусь
 *e-mail: blokhin@bsu.by
 Поступила в редакцию 05.03.2022 г.
 После доработки 05.03.2022 г.
 Принята к публикации 10.05.2022 г.

В работе представлены результаты измерения теплоемкости в конденсированном состоянии методом низкотемпературной адиабатической калориметрии в интервале (5–370) К для 1-этил-4-нитро-1,2,3-триазола, 1-метил-4-нитро-1,2,3-триазола, 2-метил-4-нитро-1,2,3-триазола и 5-(1-адамантил)тетразола и в интервале (80–370) К для 1-бензил-4-фенил-1*H*-1,2,3-триазола и 1,3-бис(1-метил-1*H*-тетразол-5-ил)пропана. Определены термодинамические параметры фазовых переходов соединений в исследованных температурных интервалах. Методом ДСК определены термодинамические параметры плавления трех соединений с температурами плавления выше 370 К, а именно: 2-метил-4-нитро-1,2,3-триазола, 1-бензил-4-фенил-1*H*-1,2,3-триазола и 1,3-бис(1-метил-1*H*-тетразол-5-ил)пропана. На основании полученных данных рассчитаны стандартные термодинамические функции (теплоемкость, энтропия, приведенные энтальпия и энергия Гиббса) исследованных соединений в кристаллическом и жидком состояниях.

Ключевые слова: термодинамические свойства, теплоемкость, энтальпия, энтропия, фазовые переходы, плавление

DOI: 10.31857/S0044453722090059

Интерес к производным триазолов и тетразолов обусловлен высоким массовым содержанием азота в этих соединениях в сочетании с их довольно высокой термической устойчивостью. Они широко используются в качестве высокоэффективных горючих и термически деструктируемых систем, таких как смесевые твердые ракетные топлива и топливные композиции, составы для вспенивания и сшивки полимеров, исходные материалы для получения инициирующих веществ [1, 2]. Производные 4-нитро-1,2,3-триазола широко используются в различных областях химии, техники и медицины как радиосенсибилизирующие агенты [3, 4], прекурсоры при синтезе лекарственных препаратов и биологически активных соединений [5, 6]. 1,4-Дизамещенные производные 1*H*-1,2,3-триазолов могут быть использованы в качестве ингибиторов коррозии [7], а также обладают противоопухолевой, противовирусной фунгицидными биологической активностью, свойствами [8, 9]. N-(1-Адамантил)тетразолы и их производные показывают высокую противовирусную активность против устойчивого к ремантадину штамма вируса гриппа А [10].

В настоящей работе представлены результаты измерения теплоемкости методом низкотемпературной адиабатической калориметрии и определения термодинамических свойств в конденсированном состоянии в интервале (5–370) К для 1-этил-4-нитро-1,2,3-триазола (1-EtT) [11], 1-метил-4-нитро-1,2,3-триазола (1-MeT) [12], 2-метил-4-нитро-1,2,3-триазола (2-MeT) [13] и 5-(1адамантил)тетразола (AdT) [14], исследованных нами ранее, и в интервале (80–370) К для 1-бензил-4-фенил-1*H*-1,2,3-триазола (BnPhT) и 1,3бис(1-метил-1*H*-тетразол-5-ил)пропана (BMTP). Для 2-MeT, BnPhT и BMTP с температурами плавления выше 370 К определены термодинамические параметры плавления методом ДСК.

Структуры исследованных функционально замещенных азолов представлены на рис. 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы 1-EtT, 1-MeT и 2-MeT синтезированы и очищены в лаборатории химии и технологии высокоэнергетических азолов Института проблем химико-энергетических технологий СО

1-метил-4-нитро-1,2,3-триазол (1-MeT) 1-этил-4-нитро-1,2,3-триазол (1-EtT)

`_N-CH₃

5-(1-адамантил)тетразол (AdT)

2-метил-4-нитро-1,2,3-триазол (2-МеТ)

1-бензил-4-фенил-1Н-1,2,3-триазол (BnPhT)

1,3-бис(1-метил-1Н-тетразол-5-ил)пропан (ВМТР)

РАН (г. Бийск) по методике [15]. Образцы AdT, BnPhT и BMTP синтезированы и подготовлены к калориметрическим исследованиям в лаборатории химии конденсированных сред НИИ ФХП БГУ. Образец AdT синтезирован согласно [14], его хроматографическая чистота составила 99.92 мас. % [14]. Образец BnPhT синтезирован по реакции циклоприсоединения Хайзгена [3 + 2] между фенилацетиленом и бензилазидом (реакция проводилась при комнатной температуре в ТГФ с продуктом термолиза поли-5-винилтетразолата меди (II) в качестве катализатора) [9]. Образец ВМТР подготовлен по методике, описанной в [16], его хроматографическая чистота составила 99.93 мас. %. Хроматографическая чистота изученных образцов 1-EtT, 1-MeT, 2-MeT и Bn-PhT составила ~100 мас. % (на хроматограммах присутствовали лишь пики, соответствующие целевым веществам) и подтверждается тем, что чистота 1-EtT, определенная методом фракционного плавления, составила (99.95 ± 0.01) мол. % [11].

Измерение теплоемкостей соединений в интервале (5–370) К и определение параметров их твердофазных переходов и плавления выполнено в автоматизированном вакуумном адиабатическом калориметре ТАУ-10 (ЗАО "Термис", г. Москва, Россия). Конструкция калориметра, методика измерений и результаты градуировки и поверки установки описаны ранее [17, 18]. Температура измерялась железо-родиевым термометром сопротивления (R = 50 Ом), размещенным на внутренней поверхности адиабатического экрана. Адиабатические условия в калориметре подерживались с помощью дифференциальной термопары (медь + 0.1% железо)/хромель и двух нагревателей: основного и дополнительного для устранения градиентов температур по длине адиабатической оболочки. Управление нагревателями и определение видимой энергии, измерение температуры и расчет теплоемкостей в калориметрическом опыте осуществлялись с помощью автоматического блока управления АК-6.25.

Образец вещества помещался на воздухе в контейнер объемом ~1.0 см³ на 3/5-4/5 его объема. После загрузки образца проводилась дегазация контейнера с образцом в вакууме в течение 30-60 мин. Для обеспечения быстрого установления теплового равновесия при проведении измерений после дегазации контейнер заполнялся гелием при давлении 10 кПа, после чего он герметично закрывался бронзовой крышкой. В качестве уплотнителя использовалось индиевое кольцо. Взвешивание контейнера с образцом проводилось на весах Mettler-Toledo AG245 с максимальной погрешностью $\pm 5 \times 10^{-5}$ г. Герметичность контейнера контролировалась путем нескольких циклов выдерживания контейнера на воздухе и в вакууме до постоянной массы.

Погрешность измерения теплоемкости в калориметре TAУ-10 составляет $\pm 0.4\%$ для основного температурного интервала (20–370) K, с понижением температуры от 20 K она линейно увеличивается, но не превышает $\pm 2.0\%$ вблизи 5 K [17].

Параметры плавления 2-MeT, AdT, BnPhT и ВМТР определены методом ДСК, поскольку область плавления этих веществ находится выше 370 К – верхнего температурного предела измерений в ТАУ-10. ДСК исследования проводились с использованием синхронного термического анализатора STA449-F3 Jupiter (Netzsch, Германия) в области (300-420) К. Образцы измеряли в алюминиевых тиглях со скоростью нагрева и охлаждения 2 К мин⁻¹. В качестве продувочного газа был использован гелий высокой чистоты. Надежность работы калориметра была проверена путем определения температур и энтальпий плавления стандартных калибровочных образов (адамантана, дифенила, индия, олова, висмута, цинка и хлорида цезия). Установлено, что аппаратура и методика измерений позволяют определять температуру фазовых переходов с погрешностью ± 0.2 K, а энтальпии переходов с погрешностью ±1%. Проведение синхронного термогравиметрического и калориметрического анализа на STA449-F3 Jupiter позволяет исключить вопросы, связанные с деструкцией нестабильных при нагревании веществ с температурой фазового перехода, близкой к температуре деструкции (как в случае 2-МеТ с температурой плавления $T_{\rm fus} =$ = 371.2 К и температурой деструкции $T_{\rm d} = 393.2$ К, соответствующей 5% потери массы образца).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Температурные зависимости изобарной теплоемкости исследованных замещенных азолов в кристаллическом и жидком состояниях приведены на рис. 2—7. На этих рисунках окружностями обозначены сглаженные значения теплоемкости и нормальные (регулярные) составляющие теплоемкости веществ в области фазовых переходов, а ромбами представлены экспериментальные кажущиеся (эффективные) значения теплоемкости соединений в области фазовых превращений.

Установлено, что изученные алкилзамещенные 4-нитро-1,2,3-триазола (1-EtT, 1-MeT и 2-MeT) и ВМТР обладают сложным термическим поведением, обусловленным наличием для них твердофазных переходов перед плавлением (рис. 2–4, 7). На кривой температурной зависимости теплоемкости 1-EtT (рис. 2) имеются три аномальных области, связанные с двумя твердофазными переходами (крIII–крII и крII–крI) и

Рис. 2. Температурная зависимость теплоемкости 1этил-4-нитро-1,2,3-триазола (1-EtT) в конденсированном состоянии.

Рис. 3. Температурная зависимость теплоемкости 1-метил-4-нитро-1,2,3-триазола (1-MeT) в конденсированном состоянии.

Рис. 4. Температурная зависимость теплоемкости 2-метил-4-нитро-1,2,3-триазола (2-MeT) в конденсированном состоянии.

плавлением. На кривых температурной зависимости теплоемкости 1-МеТ (рис. 3), 2-МеТ (рис. 4) и ВМТР (рис. 7) обнаружены аномальные области, связанные с твердофазным переходом крII-крI (для всех веществ) и началом плавления (для 1-МеТ и ВМТР).

Рис. 5. Температурная зависимость теплоемкости 5-(1-адамантил)тетразола (AdT) в конденсированном состоянии.

Рис. 7. Температурная зависимость теплоемкости 1,3бис(1-метил-1*H*-тетразол-5-ил)пропана (ВМТР) в конденсированном состоянии.

На температурных кривых теплоемкости AdT (рис. 5) и BnPhT (рис. 6) аномальных областей, связанных с фазовыми переходами первого рода, не обнаружено. Небольшой излом на кривой температурной зависимости теплоемкости для AdT в области, близкой к 200 К, может быть обусловлен фазовым переходом второго рода или размораживанием дополнительных степеней свободы молекулы (внутренним вращением). Для выяснения природы этой аномалии требуются дополнительные структурные исследования.

Типичные ДСК-кривые в температурной области плавления 2-MeT, BnPhT и BMTP представлены на рис. 8.

Термодинамические параметры фазовых переходов изученных функционально замещенных азолов представлены в табл. 1. Температуры и энтальпии фазовых переходов определены как средние по результатам 3–4 измерений для каждого вещества. За температуру твердофазного перехода в каждой серии измерений принималось значение, соответствующее максимальному значе-

Рис. 6. Температурная зависимость теплоемкости 1-бензил-4-фенил-1*H*-1,2,3-триазола (BnPhT) в конденсированном состоянии.

Рис. 8. Типичные ДСК-кривые в температурной области плавления соединений.

нию теплоемкости в области фазового перехода. Температура плавления 1-EtT найдена методом фракционного плавления образца [11]. При использовании метода ДСК за температуру плавления принималась экстраполированная температура начала перехода (onset) как точка пересечения касательной, проведенной через точку наибольшего изгиба внешнего обвода кривой, с экстраполированной базисной линией. При расчетах энтропий фазовых переходов принято, что все обнаруженные превращения являются изотермическими.

На основании полученных температурных зависимостей теплоемкости и параметров фазовых переходов рассчитаны стандартные термодинамические функции соединений 1-EtT, 1-MeT, 2-MeT и AdT в ктталлическом и жидком состояниях в интервале (5–370) К [11–14] и соединений BnPhT и BMTP в конденсированном состоянии в интервале (80 – $T_{\rm fus}$) К (табл. 2, 3).

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

Фазовый переход	T _{tr} , K	$\Delta_{ m tr} H$, кДж моль $^{-1}$	$\Delta_{ m tr} S$, Дж моль $^{-1}$ K $^{-1}$		
1-этил-4-нитро-1,2,3-триазол (1-EtT) [11]					
крIII—крII	$223.6 \pm 0.1 \qquad \qquad 1.343 \pm 0.007$		6.01 ± 0.03		
крІІ–крІ	259.7 ± 0.5	0.783 ± 0.026	3.02 ± 0.10		
крІ—ж	349.04 ± 0.01	16.40 ± 0.06	46.97 ± 0.17		
1-метил-4-нитро-1,2,3-триазол (1-MeT) [12]					
крІІ–крІ	66.1 ± 0.4	0.334 ± 0.004	5.05 ± 0.06		
2-метил-4-нитро-1,2,3-триазол (2-МеТ) [13]					
крІІ–крІ	350.9 ± 0.1	0.643 ± 0.005	1.83 ± 0.01		
крІ—ж	371.2 ± 0.2	22.60 ± 0.23	60.89 ± 0.59		
1-бензил-4-фенил-1 <i>H</i> -1,2,3-триазол (BnPhT)					
крІ—ж	403.1 ± 0.2	29.48 ± 0.29	73.13 ± 0.73		
1,3-бис(1-метил-1 <i>Н</i> -тетразол-5-ил)пропан (ВМТР)					
крІІ–крІ	197.5 ± 0.1	1.402 ± 0.008	7.10 ± 0.04		
крІ—ж	378.8 ± 0.2	22.21 ± 0.22	58.63 ± 0.59		

Таблица 1. Термодинамические параметры фазовых переходов соединений в конденсированном состоянии

Обозначения: T_{tr} – температура перехода, $\Delta_{tr}H$ – энтальпия перехода, $\Delta_{tr}S$ – энтропия перехода.

Теплоемкости (Дж моль $^{-1}$ K $^{-1}$) BMTP и BnPhT при температурах (К) выше 341 и 368 К соответственно рассчитаны по уравнениям

> $C_{p,m} = 31.85 + 0.7833T,$ $C_{p,m} = -9.079 + 0.9541T,$

полученным методом наименьших квадратов на основе экспериментальных значений теплоемкости веществ в интервалах 307.0—341.4 К для ВМТР и 329.8—368.4 К для ВnPhT.

Нормальные составляющие теплоемкости ВМТР в области твердофазного перехода крII крI рассчитаны по уравнениям

$$C_{p,m} = 63.73 + 0.5824T$$
 для крII,
 $C_{p,m} = 28.10 + 0.7881T$ для крI,

полученным методом наименьших квадратов на основе экспериментальных значений теплоемкости в интервалах 169.6–178.8 К и 216.3–226.2 К до и после твердофазного перехода соответственно. Значения стандартных термодинамических параметров исследованных веществ при T = 298.15 К приведены в табл. 4.

Таким образом, методом адиабатической калориметрии измерены теплоемкости в конденсированном состоянии шести функционально замещенных азолов: 1-этил-4-нитро-1,2,3-триазола, 1-метил-4-нитро-1,2,3-триазола, 2-метил-4-нитро-1,2,3-триазола и 5-(1-адамантил) тетразола в интервале (5-370) К и 1-бензил-4-фенил-1*H*-1,2,3-триазола и 1,3-бис(1-метил-1*Н*-тетразол-5-ил)пропана в интервале (80-370) К. Определены термодинамические параметры обнаруженных фазовых переходов соединений. Методом ДСК определены температуры и энтальпии плавления 2-метил-4-нитро-1,2,3-триазола, 1-бензил-4-фенил-1*H*-1,2,3триазола и 1,3-бис(1-метил-1*H*-тетразол-5ил)пропана. На основании полученных данных рассчитаны стандартные термодинамические функции (теплоемкость, энтропия, приведенная энтальпия и приведенная энергия Гиббса) исследованных соединений в кристаллическом и жидком состояниях.

Т. К	$C_{p,\mathrm{m}}^{\circ}$	$\Delta_{80}^T S_{ m m}^\circ$	$\Delta_{80}^T S_{ m m}^{\circ}/T$	$-\Delta_{80}^T G_{ m m}^{\circ}/T$	
,	Дж моль ⁻¹ К ⁻¹				
		Кристалл			
80	94.06 ± 0.38	0	0	0	
90	101.8 ± 0.4	11.53 ± 0.05	10.89 ± 0.04	0.6448 ± 0.0634	
100	109.3 ± 0.4	22.65 ± 0.09	20.36 ± 0.08	2.293 ± 0.122	
110	116.6 ± 0.5	33.42 ± 0.13	28.78 ± 0.12	4.635 ± 0.176	
120	123.9 ± 0.5	43.88 ± 0.18	36.40 ± 0.15	7.472 ± 0.228	
130	131.2 ± 0.5	54.08 ± 0.22	43.41 ± 0.17	10.67 ± 0.28	
140	138.5 ± 0.6	64.07 ± 0.26	49.95 ± 0.20	14.12 ± 0.33	
150	146.0 ± 0.6	73.88 ± 0.30	56.10 ± 0.22	17.78 ± 0.37	
160	153.7 ± 0.6	83.55 ± 0.33	61.96 ± 0.25	21.59 ± 0.42	
170	161.5 ± 0.6	93.10 ± 0.37	67.58 ± 0.27	25.52 ± 0.46	
180	169.4 ± 0.7	102.6 ± 0.4	73.02 ± 0.29	29.54 ± 0.50	
190	177.6 ± 0.7	111.9 ± 0.4	78.31 ± 0.31	33.63 ± 0.55	
200	185.9 ± 0.7	121.3 ± 0.5	83.48 ± 0.33	37.77 ± 0.59	
210	194.4 ± 0.8	130.5 ± 0.5	88.55 ± 0.35	41.97 ± 0.63	
220	203.2 ± 0.8	139.8 ± 0.6	93.56 ± 0.37	46.21 ± 0.67	
230	212.2 ± 0.8	149.0 ± 0.6	98.52 ± 0.39	50.47 ± 0.71	
240	221.3 ± 0.9	158.2 ± 0.6	103.4 ± 0.4	54.77 ± 0.76	
250	230.6 ± 0.9	167.4 ± 0.7	108.4 ± 0.4	59.09 ± 0.80	
260	240.0 ± 1.0	176.7 ± 0.7	113.2 ± 0.5	63.44 ± 0.84	
270	249.5 ± 1.0	185.9 ± 0.7	118.1 ± 0.5	67.80 ± 0.88	
280	258.9 ± 1.0	195.2 ± 0.8	123.0 ± 0.5	72.19 ± 0.92	
290	268.4 ± 1.1	204.4 ± 0.8	127.8 ± 0.5	76.59 ± 0.96	
300	277.8 ± 1.1	213.7 ± 0.9	132.7 ± 0.5	81.00 ± 1.01	
310	287.2 ± 1.1	222.9 ± 0.9	137.5 ± 0.6	85.43 ± 1.05	
320	296.5 ± 1.2	232.2 ± 0.9	142.3 ± 0.6	89.87 ± 1.09	
330	305.9 ± 1.2	241.5 ± 1.0	147.1 ± 0.6	94.32 ± 1.13	
340	315.3 ± 1.3	250.7 ± 1.0	151.9 ± 0.6	98.79 ± 1.17	
350	324.8 ± 1.3	260.0 ± 1.0	156.7 ± 0.6	103.3 ± 1.2	
360	334.4 ± 1.3	269.3 ± 1.1	161.5 ± 0.6	107.7 ± 1.3	
370	344.0 ± 1.4	278.6 ± 1.1	166.3 ± 0.7	112.2 ± 1.3	
380	353.5 ± 1.4	287.9 ± 1.2	171.1 ± 0.7	116.7 ± 1.3	
390	363.0 ± 1.5	297.2 ± 1.2	175.9 ± 0.7	121.2 ± 1.4	
400	372.5 ± 1.5	306.5 ± 1.2	180.7 ± 0.7	125.8 ± 1.4	
403.1	375.5 ± 1.5	309.4 ± 1.2	182.2 ± 0.7	127.2 ± 1.4	
Жидкость					
403.1	_	382.5 ± 1.5	255.4 ± 1.0	127.2 ± 1.8	

Таблица 2. Стандартные термодинамические функции 1-бензил-4-фенил-1*H*-1,2,3-триазола (BnPhT) в конденсированном состоянии

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 9 2022

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

ТК	$C_{p,\mathrm{m}}^{\circ}$	$\Delta_{80}^T S_{ m m}^\circ$	$\Delta_{80}^T S_{ m m}^{\circ}/T$	$-\Delta_{80}^T G_{ m m}^{\circ}/T$	
-,	Дж моль ⁻¹ К ⁻¹				
	1	Кристалл II			
80	105.7 ± 0.4	0	0	0	
90	113.7 ± 0.5	12.92 ± 0.05	12.20 ± 0.05	0.7232 ± 0.0711	
100	121.0 ± 0.5	25.29 ± 0.10	22.72 ± 0.09	2.566 ± 0.136	
110	127.7 ± 0.5	37.14 ± 0.15	31.97 ± 0.13	5.174 ± 0.196	
120	133.9 ± 0.5	48.53 ± 0.19	40.21 ± 0.16	8.316 ± 0.252	
130	139.8 ± 0.6	59.48 ± 0.24	47.65 ± 0.19	11.83 ± 0.30	
140	145.7 ± 0.6	70.06 ± 0.28	54.44 ± 0.22	15.62 ± 0.35	
150	151.4 ± 0.6	80.30 ± 0.32	60.71 ± 0.24	19.59 ± 0.40	
160	157.0 ± 0.6	90.25 ± 0.36	66.55 ± 0.27	23.70 ± 0.45	
170	162.7 ± 0.7	99.94 ± 0.40	72.04 ± 0.29	27.90 ± 0.49	
180	168.6 ± 0.7	109.4 ± 0.4	77.24 ± 0.31	32.16 ± 0.54	
190	174.4 ± 0.7	115.3 ± 0.5	82.20 ± 0.33	33.06 ± 0.57	
197.5	178.8 ± 0.7	122.1 ± 0.5	85.79 ± 0.34	36.32 ± 0.60	
	1	Кристалл І		I.	
197.5	183.8 ± 0.7	129.2 ± 0.5	92.89 ± 0.37	36.32 ± 0.64	
200	185.7 ± 0.7	154.2 ± 0.6	94.03 ± 0.38	60.21 ± 0.72	
210	193.6 ± 0.8	163.5 ± 0.7	98.59 ± 0.39	64.91 ± 0.76	
220	201.5 ± 0.8	172.7 ± 0.7	103.1 ± 0.4	69.60 ± 0.80	
230	209.5 ± 0.8	181.8 ± 0.7	107.5 ± 0.4	74.28 ± 0.84	
240	217.9 ± 0.9	190.9 ± 0.8	112.0 ± 0.4	78.95 ± 0.89	
250	226.5 ± 0.9	200.0 ± 0.8	116.4 ± 0.5	83.61 ± 0.93	
260	235.2 ± 0.9	209.0 ± 0.8	120.8 ± 0.5	88.26 ± 0.97	
270	243.9 ± 1.0	218.1 ± 0.9	125.2 ± 0.5	92.90 ± 1.01	
280	252.3 ± 1.0	227.1 ± 0.9	129.6 ± 0.5	97.54 ± 1.05	
290	260.3 ± 1.0	236.1 ± 0.9	133.9 ± 0.5	102.2 ± 1.1	
300	268.0 ± 1.1	245.0 ± 1.0	138.3 ± 0.6	106.8 ± 1.1	
310	275.0 ± 1.1	254.0 ± 1.0	142.6 ± 0.6	111.4 ± 1.2	
320	282.1 ± 1.1	262.8 ± 1.1	146.8 ± 0.6	116.0 ± 1.2	
330	290.0 ± 1.2	271.6 ± 1.1	151.0 ± 0.6	120.6 ± 1.2	
340	298.7 ± 1.2	280.4 ± 1.1	155.3 ± 0.6	125.1 ± 1.3	
350	306.0 ± 1.2	289.1 ± 1.2	159.4 ± 0.6	129.7 ± 1.3	
360	313.8 ± 1.3	297.9 ± 1.2	163.6 ± 0.7	134.2 ± 1.4	
370	321.7 ± 1.3	306.6 ± 1.2	167.8 ± 0.7	138.8 ± 1.4	
378.8	328.5 ± 1.3	314.2 ± 1.3	171.4 ± 0.7	142.8 ± 1.4	
Жидкость					
378.8	_	372.8 ± 1.5	230.1 ± 0.9	142.8 ± 1.8	

Таблица 3. Стандартные термодинамические функции 1,3-бис(1-метил-1*H*-тетразол-5-ил)пропана (BMTP) в конденсированном состоянии

Соелинение	$C_{p,\mathrm{m}}^{\circ}$	$\Delta_0^T S_{ m m}^{\circ}$	$\Delta_0^T S_{ m m}^{\circ}/T$	$-\Delta_0^T G_{ m m}^\circ/T$	
	Дж моль ⁻¹ К ⁻¹				
1-EtT	182.3 ± 0.7	221.1 ± 0.9	109.2 ± 0.5	111.8 ± 1.1	
1-MeT	143.5 ± 0.6	181.4 ± 0.8	85.32 ± 0.40	96.1 ± 0.8	
2-MeT	141.0 ± 0.6	183.0 ± 0.8	83.97 ± 0.35	99.06 ± 0.87	
AdT	240.2 ± 1.0	231.5 ± 1.0	117.3 ± 0.5	114.1 ± 1.1	
		$\Delta_{80}^T S_{ m m}^\circ$	$\Delta_{80}^T S_{ m m}^{\circ}/T$	$-\Delta_{80}^T G_{ m m}^{\circ}/T$	
BnPhT	276.1 ± 1.1	212.0 ± 0.8	131.8 ± 0.5	80.18 ± 0.89	
BMTP	266.6 ± 1.1	243.4 ± 1.0	137.5 ± 0.6	105.9 ± 1.2	

Таблица 4. Стандартные термодинамические функции функционально замещенных азолов в кристаллическом состоянии при *T* = 298.15 K

Работа выполнялась в рамках задания 2.1.1 ГПНИ "Химические процессы, реагенты и технологии, биорегуляторы и биооргхимия" (2021– 2025 гг.).

СПИСОК ЛИТЕРАТУРЫ

- 1. Curtis A.D.M., Jennings N. // Comprehensive Heterocyclic Chemistry III. 2008. V. 5. P. 160.
- Ostrovskii V.A., Koldobskii G.I., Trifonov R.E. // Comprehensive Heterocyclic Chemistry III. 2008. V. 6. P. 257.
- Shibamoto Y., Sakano K., Kimura R. et al. // Int. J. Radiat. Oncol. Biol. Phys. 1986. V. 12. P. 1063–1066.
- Shibamoto Y., Nishimoto S., Shimokawa K. et al. // Int. J. Radiat. Oncol. Biol. Phys. 1989. V. 16. P. 1045–1048.
- Walczak K., Gondela A., Suwiński J. // Eur. J. Med. Chem. 2004. V. 39. P. 849–853.
- Heinrich E., Getoff N. // Radiat. Phys. Chem. 2003. V. 67. P. 487–492.
- Fernandes C.M., Alvarez L.X., dos Santos N.E. et al. // Corrosion Science. 2019. V. 149. P. 185.

- 8. *Hernandez-Lopez H., Leyva-Ramos S., Pedraza-Alvarez A. et al.* // ACS Omega. 2020. V. 5. № 23. P. 14061.
- 9. Zuraev A.V., Grigoriev Y.V., Budevich V.A., Ivashkevich O.A. // Tetrahedron Letters. 2018. V. 59. № 16. P. 1583.
- Zarubaev V.V., Golod E.L., Anfimov P.M. et al. // Bioorg. Med. Chem. 2010. V. 18. P. 839.
- 11. Blokhin A.V., Kohut S.V., Kabo G.J. et al. // Thermochim. Acta. 2013. V. 565. P. 221.
- 12. Stepurko E.N., Blokhin A.V., Kohut S.V., Kabo G.J. // Thermochim. Acta. 2020. V. 686. P. 178534.
- 13. Stepurko E.N., Blokhin A.V., Yurkshtovich Y.N., Charapennikau M.B. // Intern. J. of Thermophysics – accepted for publication.
- 14. Stepurko E.N., Paulechka Y.U., Blokhin A.V. et al. // Thermochim. Acta. 2014. V. 592. P. 10.
- 15. Vereshchagin L.I., Kuznetsova N.I., Kirillova L.P. et al. // Chem. Het. Comp. 1986. V. 22. № 7. P. 745.
- 16. Voitekhovich S.V., Lyakhov A.S., Shiman D.I. et al. // Polyhedron. 2020. V. 190. P. 114793.
- Blokhin A.V., Paulechka Y.U., Kabo G.J. // J. of Chemical & Engineering Data. 2006. V. 51. № 4. P. 1377.
- 18. *Kabo G.J., Blokhin A.V., Paulechka E. et al.* // J. Chem. Thermodyn. 2019. V. 131. P. 225.