ТЕПЛОЕМКОСТЬ: ЭКСПЕРИМЕНТ И РАСЧЕТ

УДК 544.31:547'1:86

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА МОНОГИДРАТА L-АСПАРАГИНА

© 2022 г. Ю. А. Дейко^{*a*}, Д. Ю. Ильин^{*a*}, А. И. Дружинина^{*a*,*}, Н. М. Константинова^{*a*}, Н. С. Луконина^{*a*}, А. О. Дмитриенко^{*a*}, К. А. Лысенко^{*a*}, С. В. Таразанов^{*b*}, В. А. Лукьянова^{*a*}

^аМосковский государственный университет им. М.В. Ломоносова, Химический факультет, Москва, 119992, Россия ^bAO "ВНИИ НП", Москва, 111116, Россия

> *e-mail: druzhinina@thermo.chem.msu.ru; annchved@yandex.ru Поступила в редакцию 09.03.2022 г. После доработки 12.03.2022 г. Принята к публикации 14.03.2022 г.

Методом дифференциальной сканирующей калориметрии определены температуры, энтальпии плавления моногидрата L-аспарагина. Проведена оценка его термической стабильности. Методом низкотемпературной адиабатической калориметрии измерена его теплоемкость в интервале температур 8–355 К. На кривой теплоемкости в области 265–275 К обнаружена и изучена аномалия. Проведен рентгеноструктурный анализ образца в области 113–281 К. На основании литературных и полученных экспериментальных данных рассчитаны основные термодинамические функции и функции образования в конденсированном состоянии при 298 К.

Ключевые слова: моногидрат L-аспарагина, дифференциальная сканирующая калориметрия, адиабатическая калориметрия, рентгеноструктурный анализ, термодинамические функции **DOI:** 10.31857/S0044453722090060

ВВЕДЕНИЕ

Актуальность изучения и уточнения теплофизических и термодинамических свойств L-аминокислот обусловлена их важной ролью в азотистом обмене живых организмов. Помимо их широко известных функций в биосинтезе белка, в качестве нейромедиаторов и эндогенных источников NO [1], аминокислоты используются в современной медицинской и пищевой промышленности [2, 3]. Для проведения комплексного изучения процессов с участием аминокислот необходимо иметь возможность осуществлять их термодинамическую оценку, поэтому важно иметь достоверные величины основных термодинамических функций этих соединений.

L-аспарагин представляет собой α-аминокислоту и относится к 20 основным аминокислотам, которые участвуют в построении первичной структуры белков. В организме L-аспарагин участвует в метаболизме клеток мозга и нервной системы и регулирует концентрацию аммиака. В промышленности применение кристаллов аспарагина рассматривают для конструкции нелинейных оптических устройств [4], а также ведется разработка противораковых препаратов на его основе [5].

В настоящей работе получены термодинамические характеристики моногидрата L-аспарагина, L-Asn·H₂O. В литературе методом дифференциальной сканирующей калориметрии (ДСК) изучено поведение L-Asn·H₂O [6, 7] в закрытом и открытом (проколотом) контейнере в температурном интервале 353-533 К. На кривой ДСК наблюдали два пика: пик при температуре 355-388 К отнесли к дегидратации, а при 479–526 К к термическому разложению аминокислоты.

Определение теплоемкости L-Asn·H₂O калориметрическим методом проведено в двух работах [8, 9]. В работе [8] для определения удельной теплоемкости использовали анероидный медный калориметр. Исследованная область составила 90.4-296.2 К с погрешностью определения менее 1%. Коммерческий образец L-Asn·H₂O (фирма "Merck") был прелварительно очишен многократной перекристаллизацией при быстром охлаждении горячего водного раствора, затем образец выдерживали в печи при 100-110°С до постоянной массы. Чистота исследованного образца L-Asn \cdot H₂O в работе не указана. Полученная экспериментальная теплоемкость экстраполирована к 0 К [10], рассчитана абсолютная энтропия L-Asn \cdot H₂O.

Измерение мольных теплоемкостей L-Asn· H_2O в температурном интервале 11—305 К провели в работе Hutchens et al. [9]. В работе использован калориметр, состоящий из медного контейнера с вакуумной изоляцией, окруженный массивным

Рис. 1. Значения мольных теплоемкостей L-Asn·H₂O, экспериментально полученные в [8] (\blacktriangle) и [9] (\blacklozenge).

экраном, температура которого остается почти постоянной во время измерения теплоемкости [11], погрешность измерения теплоемкости ссоставляла 5% при 10 K, 2% до 15 K, 1% до 20 K, 0.27% для 40–250 K, 0.4% до 300 K. Образец для исследования был получен из Национального института здравоохранения США (National Institutes of Health, USA). Перед началом эксперимента образец моногидрата L-аспарагина высушивали в калориметре при давлении <10⁻⁶ мм и охлаждении жидким азотом до постоянной массы. Чистота исследуемого образца авторами так же не указана. В работе рассчитаны значения термодинамических функций при 298.15 К.

Сравнение данных, полученных в [8] и [9] (рис. 1) показывает, что величины мольных теплоемкостей моногидрата L-аспарагина сопоставимы в интервале температур от 85 до 297 К, однако, на кривой, полученной в [9] наблюдается некая температурная аномалия от 276 до 284 К, которая отсутствует в [8], т.е. данные по мольной теплоемкости моногидрата L-аспарагина требуют дополнительного уточнения и изучения.

В настоящей работе методами низкотемпературной адиабатической калориметрии (в области температур 7.59–354.33 К), дифференциальной сканирующей калориметрии (в области температур 293–553 К) и рентгеноструктурного анализа проведены экспериментальные определения теплоемкости, параметров плавления и структуры L-Asn· H_2O .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец. Коммерческий образец L-аспарагина (компания "Роанал", чистота 98.0 мас. %) был очищен трехкратной перекристаллизацией из пересыщенного водно-спиртового раствора [12]. В качестве растворителей использовали деионизованную воду ("MilliQ", "х.ч.") и этанол ("Химмед", "х.ч."). Полученные кристаллы были отфильтрованы, промыты этанолом и высушены при пониженном давлении 2.6 кПа. Далее все операции с очищенным образцом проводили в атмосфере сухого аргона.

Перекристаллизованный образец был исследован методом рентгенофазового анализа. РФАанализ подтвердил наличие в образце единственной кристаллической фазы, совпадающей с фазой моногидрата L-аспарагина (L-Asn·H₂O, C₄H₁₀N₂O₄, CAS 5794-13-8), известной из литературы (ССDС 2041930, кристаллографическая база данных The Cambridge Crystallographic Data Cen-(CCDC), https://www.ccdc.cam.ac.uk/structre tures/). Уточненные методом полнопрофильного анализа (рис. П-1, Приложение) параметры элементарной ячейки составили: a = 5.58836(12) Å, b = 9.8250(2) Å, c = 11.8090(3) Å, пространственная группа Р212121. Дифрактограмма была получена на порошковом дифрактометре Rigaku Mini-FLEX 600, оснащенном рентгеновской трубкой с медным анодом (излучение Cu $K\alpha_{1,2}$, $\lambda = 1.5460$ Å) и позиционночувствительным полупроводниковым детектором D/teX Ultra в установках Брэгга-Брентано. Интервал съемки составил 3–90° 20, шаг 0.01° 20.

Чистота исследуемого образца определена методом элементного анализа, проведенного на приборе CHNS/O анализатор 2400 Series II производства Perkin Elmer. Полученные результаты приведены в табл. 1.

Дифференциальная сканирующая калориметрия (ДСК) и термогравиметрический анализ (ТГА). Термический анализ проводили на дифференциальном сканирующем калориметре теплового потока DSC 204 F1 Phoenix® (NETZSCH, Германия), оснащенном т-сенсором с термопарой Етипа. Прибор был предварительно откалиброван согласно стандартам ASTM E967 и ASTM E2253

Таблица 1. Данные элементного анализа образца моногидрата L-аспарагина (мас. %)

Способ	С	Н	Ν	0	Чистота
Расчет	32.00	6.71	18.66	42.63	
Эксперимент	31.86 ± 0.10	6.75 ± 0.02	18.58 ± 0.06	42.82 ± 0.13	99.87 ± 0.06

по точно установленным параметрам фазовых переходов веществ высокой чистоты (99.999%): циклогексан C₆H₁₂, адамантан C₁₀H₁₆, Hg, Ga, бифенил C₁₂H₁₀, бензойная кислота C₆H₅COOH, In, Sn, Bi, KClO₄, Pb, Zn, CsCl. Среднеквадратичное отклонение результатов калибровки от эталонных значений составило 0.1 К по температуре и 3% по теплоте. Точную навеску образца (m = 5.25 мг) L-аспарагина помещали в стандартный алюминиевый контейнер (V = 56 мм³, d = 6 мм), запрессованный крышкой с отверстием, и нагревали в интервале температур 293–553 К со скоростью 2 К/мин в проточной атмосфере инертного газа (N₂, "ос.ч.", 40 мл/мин).

Термическую стабильность определяли на термомикровесах TG 209 F1 Iris® (NETZSCH, Германия), оснащенных алундовым держателем с защитным экраном и температурным сенсором типа Р, откалиброванным по точкам плавления стандартных веществ (In, Sn, Bi, Al, Ag, чистота 99.99%). Точную навеску образца (*m* = 7.52 мг) нагревали в открытых алундовых тиглях ($V = 85 \text{ мм}^3$, d = 6.7 мм) в интервале температур 303-553 К со скоростью 10 К/мин в проточной атмосфере инертного газа (N₂, "ос.ч.", 20 мл/мин). Неопределенность получаемых результатов, согласно измерениям потери массы при нагревании до 1000°С стандартного образца моногидрата оксалата кальция CaC₂O₄·H₂O, не превышала 0.5 мас. %.

Массы всех навесок определяли на аналитических весах A&D GH 202 с точностью 1×10^{-2} мг по разнице значений для пустого контейнера (тигля) и заполненного. Измерения проводили не менее трех раз до получения сходящихся подряд значений.

Экспериментальные данные обрабатывали с помощью пакета анализа NETZSCH Proteus Thermal Analysis согласно нормам ASTM E 793, E 794, 2550.

Адиабатическая калориметрия. Молярную теплоемкость L-Asn H_2O измеряли в автоматизированном вакуумном адиабатическом калориметре. Детали конструкции калориметра и процедуры измерения описаны в работах [13–15].

Образец загружали в цилиндрический контейнер объемом 1 см³, и герметизировали прокладкой из индия. Контейнер в калориметрической ячейке вставляли в медную манжетку с нагревателем ($R \sim 300 \Omega$), окруженную адиабатическим, радиационными и тепловыми экранами. Разница температур между контейнером и адиабатической оболочкой измеряли с помощью дифференциальной термопары (Cu +0.1 мас. % Fe)/Хромель. Адиабатические характеристики калориметра поддерживали цифровым управлением с использованием компьютерной измерительной системы с точностью $\pm 3 \times 10^{-3}$ К. Температуру в калориметре измеряли во всей исследуемой области железо-родиевым термометром сопротивления ($R_{273.1} \sim 51 \Omega$), прокалиброванным в МТШ-90 [16].

Теплоемкость определяли методом калориметрических ступеней, с "шагом" по температуре 0.1–1.0 К в области 5–80 К и 1.0–2.0 К – выше 80 К. В каждом экспериментальном "шаге" начальную и конечную температуры калориметра в главном периоде оценивали экстраполяцией линейной зависимости скоростей дрейфа температуры во времени до середины этого периода. Время установления температурного равновесия после ввода тепла (60–400 с в зависимости от диапазона температур) контролировали компьютерной программой; время измерения температурного дрейфа составляло 40–270 с. Теплоемкость измеряли в процессе нагрева образца.

Калориметр был протестирован по образцам меди (99.95 мол. %) и хроматографически чистого *н*-гептана. Средние отклонения экспериментальных значений теплоемкости от прецизионных литературных данных [17, 18] рассматриваются как экспериментальные неопределенности прибора при определении теплоемкости и составляют 2% в диапазоне температур от 7 до 20 K, 1% от 20 до 40 K, 0.4% от 40 до 80 K, 0.2% от 80 до 300 K и 1% выше 300 К. Погрешность определения температуры оценивали в $\pm 2 \times 10^{-2}$ K во всем диапазоне температур 7–350 K.

Рентгеноструктурный анализ. Рентгеноструктурный анализ монокристалла моногидрата Lаспарагина проводили с использованием дифрактометра Bruker D8 Quest с детектором Photon III при температурах 113(2), 173(2), 223(2), 265(2), 273(2) и 281(2) К с излучением Мо K_{α} ($\lambda =$ = 0.71073 Å), φиω-сканирования. Структура была расшифрована прямым методом и уточнена полноматричным анизотропным МНК по F^2 с использованием программного пакета SHELX-TL [19, 20]. Атомы водорода были локализованы из карт разностной электронной плотности и уточнены в изотропном приближении. Кристаллографические данные, параметры эксперимента и уточнения структуры приведены в табл. 2. Координаты атомов, длины связей, валентные углы и параметры теплового смещения депонированы в Кембриджском банке структурных данных (CCDC № 2156639-2156643).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Термический анализ, оценка параметров плавления L-Asn H_2O . Предварительно была проведена оценка термической стабильности образца методом термогравиметрического анализа. Согласно проведенным экспериментам на кривой ТГА при

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

	1,5 , 5,1		· •	*		
Т, К	113	173	223	265	273	281
Ζ	4					
<i>a</i> , Å	5.5765(6)	5.5763(4)	5.5781(3)	5.5773(5)	5.5774(7)	5.5767(7)
<i>b</i> , Å	9.7405(13)	9.7525(8)	9.7744(7)	9.7898(10)	9.7936(15)	9.8028(17)
<i>c</i> , Å	11.6974(13)	11.7174(9)	11.7416(7)	11.7600(10)	11.7624(15)	11.7671(17)
<i>V</i> , Å ³	635.38(13)	637.23(8)	640.18(7)	642.10(10)	642.50(15)	643.28(17)
$d_{\rm выч}$, г см ⁻³	1.570	1.565	1.558	1.553	1.552	1.550
μ, см ⁻¹	1.39	1.39	1.38	1.38	1.38	1.38
<i>F</i> (000)	320	320	320	320	320	320
2θ _{max} , град.						
N_1	6246	6280	6302	6339	6333	5117
<i>N</i> ₂	1692	1695	1708	1712	1712	1708
	1508	1456	1439	1437	1432	1360
γ	121					
R_1	0.0463	0.0459	0.0464	0.0480	0.0473	0.0507
wR_2	0.1079	0.1098	0.1111	0.1124	0.1089	0.1151
GOF	1.054	1.042	1.017	1.003	1.025	1.016
ρ , e Å ⁻³ (d_{\min}/d_{\max})	0.284/-0.256	0.232/-0.209	0.231/-0.223	0.264/-0.207	0.217/-0.213	0.210/-0.210

Таблица 2. Основные структурные данные для моногидрата L-аспарагина

Примечание. Брутто-формула – C₄H₁₀N₂O₄, M = 150.14, кристаллическая система – ромбическая, пространственная группа – $P2_12_12_1$; N_1 – число измеренных отражений, N_2 – число независимых отражений, N_3 – число отражений с I > 2(I), γ – количество уточняемых параметров, ρ – остаточная электронная плотность.

температуре 370.86 К наблюдается одностадийное разложение вещества: образец теряет 11.74% или 0.88 мг своей массы в температурном интервале 357-388 К, что соответствует процессу дегидратации аминокислоты (массовое содержание кристаллизационной воды в молекуле моногидрата L-аспарагина равна 11.99%, рис. 2). Для оценки термодинамических параметров процесса плавления моногидрата L-аспарагина применяли метод дифференциальной сканирующей калориметрии. ДСК измерения проводили в открытом тигле в температурном интервале 293-553 К (рис. 2). Согласно полученным ДСК кривым, первый эндотермический пик соответствует процессу дегидратации, начинающемуся при температуре 355.85 К, тепловой эффект, рассчитанный по площади пика, составляет 355.5 Дж/г = = 46.967 кДж/моль. Аналогично настоящей работе, процесс дегидратации в области температур 353-357 К был подтвержден методом термогравиметрии группой Rodante et al. [21], потеря массы образца в их работе составила 14%.

Второй пик на ДСК-кривой можно соотнести с процессом плавления с разложением, который начинается при температуре $T_{nn} = 480.15$ K, что хорошо согласуется с литературой. Так, группой Contineanu et al. [22] методом ДСК определена средняя температура начала плавления для шести различных навесок аминокислоты, $T_{\text{пл.ср}} = 479.9 \pm$ ± 2.6 К. Такой же профиль ДСК кривой в области температур 479-523 К для открытой измерительной ячейки был получен в работе [7], температура начала разложения аминокислоты ($T_{\text{нач, отк}} = 479 \text{ K}$) оказалась ниже, чем для герметичной ячейки $(T_{\rm Hay, 3ak} = 491 \text{ K})$ при низком давлении и $(T_{\rm Hay, 3ak} =$ = 501.85 К) при высоком давлении. Однако в справочнике Lide D.R. [23] приведены более высокие значения температур плавления моногидрата и безводного L-аспарагина, 507 К и 508 К соответственно.

Процесс плавления с разложением происходит в диапазоне температур 480–533 К. Определенная в настоящей работе методом ДСК энтальпия плавления аминокислоты равна $\Delta H_{nn} =$ = 840.2 Дж/г или 111.01 кДж/моль при стандарт-

Рис. 2. ТГ (скорость нагрева 10К/мин) и ДСК (скорость нагрева 2К/мин) кривые моногидрата L-аспарагина в среде инертного газа (N₂).

Рис. 3. Мольная теплоемкость L-Asn·H₂O в области температур 8.63-354.33 K.

ной неопределенности значения $u(\Delta H_{n,n}) =$ = 3.33 кДж/моль. Полученное значение энтальпии фазового перехода меньше величины, указанной в публикации [7] для открытой ячейки на 2.9%. В случае высокого давления в системе при измерениях в закрытом тигле получено меньшее значение энтальпии разложения, $\Delta H_{n,n} = 97.8$ кДж/моль, что объясняется частичной деградацией вещества на этапе дегидратации аспарагина.

Теплоемкость, рентгеноструктурный анализ L-Asn·H₂O. Теплоемкость L-Asn·H₂O определена в интервале температур от 8.63 до 354.33 К. Измерения проводили в контейнере с образцом и гелием (теплообменный газ) при давлении *p*298(He) = $10 \pm 2 \text{ к}\Pi a$. Образец взвешивали на весах марки "Меттлер" с погрешностью $\pm 5 \times 10^{-5}$ г. Массу образца L-Asn·H₂O с поправкой на вакуум (0.59609 г)

Рис. 4. Термическая аномалия на кривой теплоемкости L-Asn· H_2O при различных "шагах" по температуре.

определяли с использованием плотности 1.567 г см⁻³ [24]. В качестве охлаждающих агентов использовали жидкий гелий и жидкий азот. Экспериментальные данные приведены на рис. 3 и в табл. П-1 (Приложение). Воспроизводимость кривой $C_{p,m} = f(T)$ составила 0.03–0.2%.

На кривой теплоемкости в области температур 265–275 К обнаружена термическая аномалия, которая хорошо воспроизводится в серии экспериментов. В области аномалии проведено три измерения с различным "шагом" по температуре ($\Delta T - 1, 0.8$ и 0.4 К, рис. 4).

Температура максимума аномалии (272.9 \pm 0.2 K) соответствует наибольшему значению мольной теплоемкости при исследовании с наименьшим температурным шагом ($\Delta T = 0.4$ K). Значения

п	Δ <i>Τ</i> , Κ	$\Delta H_{ m a},$ Дж моль $^{-1}$	$\Delta S_{ m a},$ Дж К $^{-1}$ моль $^{-1}$
1	1.0	219.3	0.804
2	0.8	209.2	0.774
3	0.4	196.8	0.690
Среднее		208 ± 11	0.76 ± 0.06

Таблица 3. Мольные энтальпия, ΔH_a , и энтропия, ΔS_a , в области термической аномалии

теплоемкостей, полученных в этих экспериментах приведены в табл. П-2 (Приложение).

Изменение энтальпии, ΔH_a , и энтропии, ΔS_a , в области термической аномалии оценили суммированием значений в каждой экспериментальной точке за вычетом гипотетической невозмущенной части теплоемкости (табл. 3).

Для объяснения наблюдаемой температурной аномалии был проведен рентгеноструктурный анализ образца при температурах 113, 173, 223, 265, 273 и 281 К. Аспарагин кристаллизуется в ромбической хиральной пространственной группе $P2_12_12_1$ в виде моногидрата. Пространственная группа и число молекул в ячейке при всех температурах остаются неизменными и совпадают с литературными данными [25]. Анализ параметров элементарной ячейки однозначно показывает, что параметр а остается фактически неизменным, а параметры b и c монотонно растут с температурой без значительных отклонений от линейной зависимости и аномалий (рис. П-2). Аналогично и объем элементарной ячейки для кристалла изменяется по закону, близкому к линейному. Таким образом, исходя из макроскопических параметров мы можем однозначно утверждать, что в области 265-281 К стандартной картины для фазовых переходов или потери воды в кристалле моногидрата L-аспарагина не наблюдается.

Поскольку можно было предположить, что наблюдаемая температурная аномалия на кривой теплоемкости связана с переносом протона, мы также проанализировали и детали кристаллической структуры. В кристалле цвиттер-ионная форма аспарагина вовлечена в цепь прочных водородных связей типа N–H···O и O–H···O. При этом самая прочная (N···O 2.788(2) Å) из N–H···O связей (N(1)–H(1NB)···O(3) направлена вдоль кристаллографической оси *a*, которая остается фактически неизменной с ростом температуры (рис. П-3). Исходя из анализа длин связей в молекуле, а также учитывая, что атомы водорода были локализованы в разностных синтезах электронной плотности, мы можем однозначно утверждать, что в кристалле не наблюдается переноса протона. Во всем диапазоне температур сохраняется одинаковая таутомерная форма и одинаковая система водородных связей. Более того, мы не видим никакого разупорядочения как для молекулы, так и сольватной молекулы воды. Параметры атомных смещений в кристалле монотонно увеличиваются с ростом температуры без аномалий, характерных для динамической разупорядоченности.

Таким образом, мы можем однозначно утверждать, что с точки зрения, как макроскопических параметров, так параметров, описывающих супрамолекулярную организацию и тепловое движение нет никаких указаний на реализацию в области температур 265–281 К структурных фазовых переходов или потери воды.

Термодинамические функции. Для расчета термодинамических функций полученные экспериментальные значения теплоемкости L-Asn·H₂O аппроксимировали степенными полиномами вида:

$$C_{p,m} = \sum_{i=0} A_i \left[\frac{T - A_k}{B_k} \right]^i, \qquad (1)$$

где A_k и B_k — нормирующие коэффициенты, i — степень полинома, A_i — коэффициенты, вычисленные методом МНК. Среднеквадратичные отклонения (СКО) экспериментальных значений теплоемкости от вычисленных по аппроксимирующим уравнениям (1), лежат в пределах погрешности эксперимента (табл. 4).

Экстраполяцию $C_{p,m}$ к 0 К проводили с помощью уравнения:

$$C_{p,m} = \alpha D \left[\frac{\beta}{T} \right], \tag{2}$$

используя функцию Дебая теплоемкости, *D*, и подгоночные параметры α и β . Значения α и β вычислены методом наименьших квадратов (МНК) в интервале температур 8.63–10.36 К, α = 20.0000, β = 273.9540. СКО экспериментальных значений теплоемкости от рассчитанных по уравнению (2) составляет 0.0122 Дж К⁻¹ моль⁻¹ (2.18%).

Интегрированием аппроксимирующих уравнений (1) и (2) рассчитаны сглаженные основные термодинамические функции в области температур 5–350 К (табл. 5).

Погрешности сглаженных функций составляют ~0.5% (для энтальпии), ~0.6–0.8% (для энтропии, ~1.5% (для свободной энергии Гиббса).

Сравнение термодинамических функций, полученных в настоящей работе с имеющимися в литературе приведены в табл. 6.

ΔT , K	i	A_{k}	B _k	Коэффициенты	СКО
9.62-24.47	3	17.045	7.425	3.6781008618E+00	0.0135 (0.97%)
				4.3492436370E+00	
				1.2108844148E+00	
				1.1638275099E-02	
19.04-47.96	3	33.50	14.46	1.8916706232E+01	0.0286 (0.28%)
				1.7052281379E+01	
				1.6649802438E+00	
				-1.4200575229E+00	
36.87-84.98	4	60.925	24.055	5.0178188003E+01	0.0542 (0.12%)
				2.4716185059E+01	
				-2.2777457986E+00	
				-9.8974544026E-02	
				-3.6140451054E-01	
79.57-182.36	3	130.965	51.395	1.0526461865E+02	0.0720 (0.08%)
				3.3819227175E+01	
				-2.5619917878E+00	
				9.9690595302E-01	
179.28-268.94	3	224.11	44.83	1.6289498224E+02	0.0952 (0.06%)
				2.6455246062E+01	
				-2.8026388843E-01	
				6.6976769898E-01	
276.39-352.90	3	314.645	38.255	2.1719105458E+02	0.2160 (0.10%)
				2.2343946323E+01	
				7.5317565526E-01	
				1.3318282034E+00	

Таблица 4. Коэффициенты аппроксимации экспериментальной теплоемкости L-Asn·H₂O полиномами вида (1)

На основе абсолютных энтропий L-Asn·H₂O, $S_m^{\circ}(T)$ (табл. 6) и C_(графит), N_{2(г)}, H_{2(г)}, O_{2(г)} [26] рассчитана абсолютная энтропия образования L-Asn·H₂O, $\Delta_f S_{298(кp.)}^{\circ}$, (табл. 7) согласно реакции:

$$4C_{(rpa\phi \mu r)} + 5H_{2(r)} + N_{2(r)} + 2O_{2(r)} =$$

= C₄H₈N₂O₃ H₂O_(kp.). (3)

Свободная энергия Гиббса образования L-Asn·H₂O в конденсированном состоянии, $\Delta_{\rm f}G^{\circ}_{298({\rm kp.})}$, рассчитана с использованием значений

энтропии образования, $\Delta_{\rm f} S^{\circ}_{298({\rm Kp.})}$, полученной в этой работе, и литературных данных по энтальпии образования, $\Delta_{\rm f} H^{\circ}_{298({\rm Kp.})}$.

Поскольку все литературные величины $\Delta_{\rm f} H^{\circ}_{298({\rm kp.})}$ незначительно различаются между собой (-1084.8 [8], -1086.6 ± 0.84 [27], -1084.1 ± ± 3.0 [20]), для расчета энергии Гиббса образования использовали среднюю величину (-1085.2 ± ± 3.0 кДж моль⁻¹). Основные термодинамические функции образования моногидрата L-аспарагина в кристаллическом состоянии при температуре 298.15 К представлены в табл. 7.

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА

Т К	$C_{p,m}^{\circ},$	$H^{\circ}_{\mathrm{m}}(T) - H^{\circ}_{\mathrm{m}}(0),$	$S_{\mathrm{m}}^{\mathrm{o}}(T),$	$-(G_{\mathrm{m}}^{\circ}(T)-H_{\mathrm{m}}^{\circ}(0)),$
<i>1</i> , K	Дж K^{-1} моль $^{-1}$	кДж моль $^{-1}$	Дж K^{-1} моль $^{-1}$	кДж моль ⁻¹
5	0.0788	0.0001	0.0268	0.00003
10	0.6303	0.0016	0.2111	0.0005
15	2.5718	0.0091	0.7978	0.0028
20	5.6015	0.0291	1.9263	0.0094
25	9.7566	0.0670	3.601	0.0230
30	14.907	0.1284	5.823	0.0463
35	20.702	0.2172	8.550	0.0821
40	26.789	0.3359	11.710	0.1325
45	32.817	0.4850	15.216	0.1997
50	38.477	0.6633	18.968	0.2851
60	49.224	1.1025	26.945	0.5143
70	59.166	1.6451	35.291	0.8252
80	68.153	2.2826	43.790	1.2206
90	76.176	3.0049	52.288	1.7010
100	83.741	3.8048	60.708	2.2661
110	90.975	4.6786	69.031	2.9149
120	97.923	5.6233	77.247	3.6463
130	104.63	6.7246	85.351	4.3711
140	111.14	7.8036	93.345	5.2647
150	117.49	8.9468	101.23	6.2376
160	123.73	10.153	109.01	7.2889
170	129.91	11.421	116.70	8.4175
180	136.07	12.751	124.30	9.6226
190	142.31	14.143	131.82	10.903
200	148.48	15.597	139.28	12.259
210	154.52	17.112	146.67	13.689
220	160.47	18.687	154.00	15.192
230	166.37	20.321	161.26	16.768
240	172.27	22.014	168.46	18.417
250	178.21	23.767	175.62	20.137
260	184.24	25.579	182.72	21.929
272.86	Аномалия	27.459	189.80	24.330
280	196.58	28.164	192.34	25.690
290	202.75	30.161	199.34	27.648
298.15	207.59	31.833	205.03	29.296
300	208.67	32.219	206.32	29.676
310	214.49	34.334	213.25	31.774
320	220.34	36.508	220.16	33.941
330	226.37	38.742	227.03	36.177
340	232.72	41.037	233.88	38.482
350	239.54	43.398	240.72	40.855

Таблица 5. Сглаженные термодинамические функции моногидрата L-аспарагина ($p^{\circ} = 101.325 \text{ к}\Pi a$)

$C_{p,m}^{\circ},$ Дж К $^{-1}$ моль $^{-1}$	$H^{\circ}_{ m m}(T) - H^{\circ}_{ m m}(0),$ кДж моль $^{-1}$	$S^{\circ}_{ m m}(T),$ Дж ${ m K}^{-1}$ моль $^{-1}$	$-(G^{\circ}_{\mathrm{m}}(T) - H^{\circ}_{\mathrm{m}}(0)),$ кДж моль ⁻¹	Ссылка
207 ± 2	_	213.48	—	[8]
207.9 ± 0.8	33.1	209.62	29.4	[9]
207.6 ± 0.4	31.8 ± 0.2	205.03 ± 1.4	29.3 ± 0.4	н.р.

Таблица 6. Сравнение значений термодинамических функций при 298.15 К

Таблица 7. Термодинамические функции образования L-Asn· H_2O в конденсированном состоянии при T = 298.15 K

$\Delta_{ m f} H^{\circ}_{ m m}$ (кр.) кДж моль $^{-1}$	$\Delta_{\mathrm{f}} S^{\circ}_{\mathrm{m}}(\kappa\mathrm{p.})$ Дж K^{-1} моль $^{-1}$	$\Delta_{\mathrm{f}}G^{\mathrm{o}}_{\mathrm{m}}(\mathrm{\kappa p.})$ кДж моль $^{-1}$	
-1085.2 ± 3.0	-1072.4 ± 1.7	-765.47 ± 3.0	

Примечание. $\Delta_f H_m^{\circ}$ (кр.) – средняя величина литературных значений [8, 20, 27].

Таким образом, в работе проведено комплексное исследование образца моногидрата L-аспарагина чистотой 99.87 мас. % методами дифференциальной сканирующей калориметрии, ретгеноструктурного анализа и вакуумной адиабатической калориметрии. Выполнена оценка термической стабильности вещества, уточнены температуры, энтальпии плавления моногидрата L-аспарагина, измерена низкотемпературная теплоемкость. На кривой теплоемкости в области 265-275 К обнаружена термическая аномалия. Для выяснения ее происхождения проведен рентгеноструктурный анализ образца при нескольких температурах, однако, однозначно определить причину ее возникновения не удалось. На основании литературных и полученных экспериментальных данных рассчитаны основные термодинамические функции и функции образования в конденсированном состоянии при 298 К.

Исследование было выполнено в рамках госбюджетной темы "Химическая термодинамика и материаловедение" (АААА-А16-121031300039-1) и поддержано Национальным проектом "Наука", Программой развития МГУ и Центром совместного исследовательского оборудования МГУ "Технологии получения новых наноструктурированных материалов и их комплексное изучение".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Марри Р., Греннер Д., Мейес П., Родуэлл В.* Биохимия человека. М.: Мир, 1993.
- 2. Wu G. Amino Acids. CRC Press, 2013.
- 3. *Friedman M.* // J. Agric. Food Chem. 1999. V. 47. № 9. P. 3457.
- Yogam F., Vetha Potheher I., Jeyasekaran R. et al. // J. Therm. Anal. Calorim. 2013. V. 114. № 3. P. 1153.

- 5. Meister A. // The Enzymes. Elsevier. 1974. V. 10. P. 561.
- Contineanu M., Contineanu I., Neacsu A. et al. // Radiation Physics and Chemistry. 2010. V. 79. № 10. P. 1047.
- Contineanu M., Neacsu A., Contineanu I. et al. // J. Radioanal. Nucl. Chem. 2013. V. 295. № 1. P. 379.
- Huffman H.M., Borsook H. // J. Am. Chem. Soc. 1932. V. 54. № 11. P. 4297.
- 9. *Hutchens J.O., Cole A.G., Robie R.A. et al.* // J. Biol. Chem. 1963. V. 238. № 7. P. 2407.
- 10. *Kelley K.K., Parks G.S., Huffman H.M.* // J. Phys. Chem. 1929. V. 33. № 11. P. 1802.
- 11. Cole A.G., Hutchens J.O., Robie R.A. et al. // J. Am. Chem. Soc. 1960. V. 82. № 18. P. 4807.
- 12. *Титце Л., Айхер Т.* Препаративная органическая химия. М.: Мир, 1999.
- 13. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. № 6. P. 623.
- 14. Krol O.V., Druzhinina A.I., Varushchenko R.M. // Ibid. 2008. V. 40. № 4. P. 549.
- Ilin D. Yu., Tarazanov S.V., Druzhinina A.I. et al. // Ibid. 2021. V. 158. P. 106447.
- 16. Mangum B.W., Bloembergen P., Chattle M.V. et al. // Metrologia. 1997. V. 34. № 5. P. 427.
- 17. *Stevens R., Boerio-Goates J.* // J. Chem. Thermodyn. 2004. V. 36. № 10. P. 857.
- Douglas T.B., Furukawa G.T., McCoskey R.E. et al. // J. Res. Natl. Bur. Stan. 1954. V. 53. № 3. P. 139.
- 19. *Sheldrick G.M.* // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
- 20. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- 21. Rodante F., Marrosu G., Catalani G. // Thermochimica Acta. 1992. V. 194. P. 197.
- 22. Contineanu I., Neacsu A., Perisanu S.T. // Ibid. 2010. V. 497. № 1–2. P. 96.
- 23. *Lide D.R.* Handbook of Chemistry and Physics. 84th edition. CRC Press LLC, 2004.
- 24. Flaig R., Koritsanszky T., Dittrich B. et al. // J. Am. Chem. Soc. 2002. V. 124. № 13. P. 3407.
- 25. *Flaig R., Koritsánszky T., Janczak J. et al.* // Angew. Chem. Int. Ed. 1999. V. 38. № 10. P. 1397.
- CODATA key values for thermodynamics. New York: Hemisphere Pub. Corp, 1989 / ed. Cox J.D., Wagman D.D., Medvedev V.A.
- 27. Huffman H.M., Ellis E.L., Fox S.W. // J. Am. Chem. Soc. 1936. V. 58. № 9. P. 1728