= ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ =

УДК 66.011

КОНЦЕНТРАЦИОННО-КАПИЛЛЯРНАЯ КОНВЕКЦИЯ ПРИ МАССОПЕРЕНОСЕ ЧЕРЕЗ СФЕРИЧЕСКУЮ ГРАНИЦУ РАЗДЕЛА ФАЗ ПРИ ЖИДКОСТНОЙ ЭКСТРАКЦИИ

© 2022 г. А.А. Ермаков^{а,*}, С.А. Ермаков^а, З. Р. Русинова^а, Л.А. Мостов^а, Е.А. Калимуллина^{а,**}

^аУральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002, Екатеринбург, Россия

*e-mail: anatolerm@yandex.ru **e-mail: eshevchenk0@yandex.ru Поступила в редакцию 26.10.2021 г. После доработки 26.10.2021 г. Принята к публикации 07.11.2021 г.

Представлены результаты экспериментальных исследований концентрационно-капиллярной конвекции при массопередаче через сферическую границу раздела фаз. Исследован конвективный массоперенос при малых и средних значениях чисел Рейнольдса. Показано, что циркуляционное движение жидкости внутри капель играет основную роль при учете сопротивления массопереносу в сплошной или дисперсной фазах.

Ключевые слова: самопроизвольная межфазная конвекция (СМК), эффект Марангони, жидкостная экстракция

DOI: 10.31857/S0044453722090072

В большинстве научных публикаций рассматривается термо-капиллярный вариант межфазной конвекции, в то же время концентрационнокапиллярная конвекция изучена недостаточно [1]. Отчасти это связано с отсутствием адекватных методов определения локальных концентраций ПАВ, а также наличием нестационарных концентрационных течений, обусловленных диффузионными процессами. Поведение движущейся капли обусловлено взаимодействием диффузионных и конвективных механизмов массопереноса.

Рассмотрим конвективный массоперенос между каплей и сплошной средой. Будем считать, что лимитирующей является сплошная фаза, а внутри капли осуществляется полное перемешивание (массоперенос в каплю). Для концентрации в капле на основании уравнений, приведенных в [2], можно записать:

$$\frac{\partial c}{\partial \tau} = j S_{ya} = \frac{3}{R_{\kappa}} \frac{b^2}{\eta_1 + \eta_2} \frac{\partial \sigma}{\partial c} Sc^{-1/2} \Delta c^2, \qquad (1)$$

где j — поток вещества через единицу площади раздела фаз, кмоль/(м² с);

c — концентрация вещества в капле; S_{ya} — удельная поверхность; R_{κ} — радиус капли; η_1 и η_2 — вязкости отдающей и принимающей фаз, кг/(м c); σ — межфазное натяжение, кг/c²; $\partial \sigma / \partial c$ — поверхностная активность переносимого веще-

ства; Sc — критерий Шмидта; b^2 — находится из корреляции — $0.8K_p^{1.7}\text{Re}^{-2}F_0^{0.3}$ [3].

Перейдем к степени насыщения
$$A = \frac{C - C_0'}{C_p - C_0'}$$
.

$$\frac{dA}{d\tau} = \frac{3}{R_{\kappa}} \frac{b^2}{\eta_1 + \eta_2} \frac{\partial \sigma}{\partial c} \operatorname{Sc}^{-1/2} \frac{\Delta C_0^2}{C_p - C_0^{\prime 2}} (1 - A)^2, \qquad (2)$$

где C'_0 — концентрация экстрагируемого вещества в капле на начало движения; C_1 — концентрация вещества в сплошной фазе, $C_p = C_1 K_p$.

Рассмотрим множитель:

$$\frac{\Delta C_0^2}{C_p - C_0'} = \frac{\left(C_1 - C_0'/K_p\right)^2}{C_1 K_p - C_0'} = \frac{1}{K_p^2} \frac{\left(C_1 K_p - C_0'\right)^2}{\left(C_1 K_p - C_0'\right)} = \frac{1}{K_p} \left(C_1 - \frac{C_0'}{K_p}\right) = \frac{1}{K_p} \Delta C_0$$
(3)

с учетом (2):

$$\frac{dA}{d\tau} = \beta (1 - A)^{2};$$

$$\beta = \frac{3}{R_{\kappa}} \frac{b^{2}}{\eta_{1} + \eta_{2}} \frac{\partial \sigma}{\partial \tau} \operatorname{Sc}^{-1/2} K_{p}^{-1} \Delta C_{0}.$$
(4)

Рис. 1. Схема экспериментальной установки: *1* – колонна из боросиликатного стекла; *2* – рубашка; *3a*, *36* – шприцевые насосы; *4* – электромагнитное устройство; *5* – капилляр; *6* – термостат; *7* – каплеуловители; *8* – люминесцентные лампы; *9* – видеокамера; *10* – ПК.

После интегрирования получим:

$$A = \frac{\beta \tau}{1 + \beta \tau}.$$
 (5)

Общая степень насыщения капли с учетом концевого эффекта:

$$A_{\text{общ}} = A_0 + (1 - A_0) \frac{\beta \tau}{1 + \beta \tau} \tag{6}$$

или

$$A_{\rm ofun} = A_0 + (1 - A_0) \frac{\beta' F_0}{1 + \beta' F_0}, \tag{7}$$

где $F_0 = D_1 \tau / R_\kappa^2 - число Фурье;$

$$\beta' = 3b^2 K_{\rm p}^{-1} \,{\rm Ma} \,{\rm Sc}^{-1/2}, \qquad (8)$$

где Ма – число Марангони [4]:

$$Ma = R_{\kappa} \left[(\eta_1 + \eta_2) D_1 \right]^{-1} \frac{\partial \sigma}{\partial c} A C_0.$$
(9)

С учетом (9) выражение для степени насыщения может быть представлено в следующем виде:

$$A_{\text{ofint}} = A_0 + (1 - A_0) \frac{2.4 K_p^{0.7} \text{Re}^{-2} \text{Sc}^{-0.5} \text{Ma} F_0^{0.7}}{1 + 2.4 K_p^{0.7} \text{Re}^{-2} \text{Sc}^{-0.5} \text{Ma} F_0^{0.7}}.$$
 (10)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования массопереноса из единичной капли в сплошную и из сплошной фазы в каплю

проводились на лабораторной установке, показанной на рис. 1.

Методика эксперимента заключалась в следующем: положение каплеуловителя устанавливали на нужную высоту подъема или падения капли (время контакта со сплошной фазой), затем микронасосом подавали капли, которые, пройдя определенную высоту, собирались в каплеуловителе. Из каплеуловителя непрерывно отбирали пробы и анализировали. Для определения следующей точки на зависимости "концентрациявремя контакта" подвижный капилляр передвигали в новое положение, повторяя описанные выше операции, сохраняя при этом все параметры (расход, время гидродинамической стабилизации капли, диаметр капли, вязкости, плотности фаз). Такая последовательность эксперимента позволяла неоднократно дублировать концентрацию в капле. Погрешность воспроизводимости опытных данных не превышала 5%.

Выбор экспериментальных систем для массопереноса в каплю определялся широким диапазоном физико-химических свойств переносимых веществ и взаимодействующих фаз. Чистоту используемых продуктов контролировали по температуре кипения, коэффициенту рефракции, межфазному натяжению. Концентрации определяли при помощи двухлучевого спектрофотометра Shimadzu UV-1800. Данные по равновесию переносимых веществ определяли экспериментально. Коэффициент распределения находили как отношение равновесных концентраций в принимающих и отдающих фазах.

N⁰	Экстракционная система	$C_0,$ кмоль/м ³	$D_1 \times 10^9,$ m ² /c	$R_{\rm K} \times 10^2$, M	$\frac{d\sigma}{dc} \times 10^3,$ кг м ³ /(кмоль с)	Sc	Re	$Ma \times 10^6$	$u_{\rm k} imes 10^2,$ M/c	K _p
1	Гептан-вода-	0.30	3.40	0.135	20.30	169.12	784	1.86	16.67	36.4
2	уксусная кислота	0.50		0.135			784	3.01		26.0
3		1.05		0.140			813	5.98		14.2
4		2.02		0.135			784	10.22		8.2
5	Гептан-вода-про-	1.00	3.04	0.114	32.00	189.16	535	7.10	15.38	5.0
	пионовая кислота									
6	Вода-CCl ₄ -	0.52	1.47	0.111	23.00	388.40	486	4.80	12.50	11.5
7	уксусная кислота	1.01						8.98		9.0
8	Вода-CCl ₄ -	0.48	1.28	0.068	27.00	700.30	355	3.67	15.0	3.2
	масляная кислота									
9	Толуол-вода-	0.45	2.80	0.149	7.00	228.29	602	1.16	13.0	42.8
	муравьиная кислота									
10	Толуол-вода-	1.00	2.41	0.160	14.30	265.20	531	5.52	10.6	7.9
	уксусная кислота									
11	Вода-тетрахлор-	0.31	1.32	0.082	41.70	679.10	255	3.29	14.0	0.7
	этилен-фенол									

Таблица 1. Физико-химические и гидродинамические характеристики исследованных систем (к расчету общей степени насыщения капли)

Мгновенное значение коэффициента массопереноса определяли (при условии лимитирования диффузионного сопротивления одной из фаз) по уравнению:

$$K_{\rm M} = \frac{\partial c / \partial \tau}{\Delta c S_{\rm va}},$$

где $\partial c / \partial \tau$ — изменение концентрации в капле; Δc — движущая сила процесса; S_{yg} — удельная поверхность контакта фаз.

В табл. 1 приведены физико-химические и гидродинамические характеристики некоторых систем для расчета общей степени насыщения [5, 6].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В работе приведены примеры обнаружения СМК при массопередаче во время свободного движения капли с помощью методов, описанных в статьях [7, 8]. Один из них — метод "тестирования", который состоит во взаимном влиянии диффузионных потоков. В подобных системах скорость переноса компонентов, участвующих в массопереносе, может зависеть от молекулярных транспортных свойств макрокомпонента и может быть изменена по сравнению со значением микрокомпонента в бинарной системе.

На рис. 2а показан массоперенос йода (трассер) из сплошной фазы в каплю, а на рис. 26 – из капли в сплошную фазу при индивидуальном массопереносе (кривая *1*) и совместном массопереносе с уксусной кислотой (кривая *2*).

Как видно из рис. 2, тест-массоперенос убедительно тестирует все режимы переноса как "в каплю", так и в обратном направлении. Кроме того, использование данного метода позволяет зафиксировать переходы от режима самопроизвольной межфазной конвекции к дифузионноконвективному режиму.

На рис. 3 показан способ обнаружения СМК, основанный на применении сильных ПАВ, имеющих структуру абсорбционных слоев, способных гасить СМК, но не препятствовать протеканию массопереноса в диффузионном режиме (поливиниловый спирт с содержанием ацетатных групп ~10.7, М.В. 47800).

На рис. 4 представлены зависимости коэффициента массопереноса от движущей силы и времени движения капли. При времени существования режима СМК для пропионовой кислоты, равном 0.4 с, для уксусной кислоты – 2.4 с, из рис. 4 видно, что для пропионовой кислоты коэффициент массопередачи в диффузионном режиме $K_{\rm D} = 1 \times 10^{-4}$ м/с, коэффициент массопередачи в режиме межфазной конвекции $K_{\rm M}$ находится в диапазоне от 1×10^{-4} до 5×10^{-4} м/с. Для уксусной кислоты значения этих показателей: $K_{\rm D} = 2 \times 10^{-4}$ м/с, $K_{\rm M} = 2 \times 10^{-4}$ м/с.

Представляет интерес массоперенос из капли и в каплю при одинаковой начальной концентрации переносимого компонента. На рис. 5 приве-

Рис. 2. Тест-массопереноса йода из четыреххлористого углерода в 10%-ный водный раствор КІ при совместном массопереносе с уксусной кислотой: а – перенос в каплю, $c_0^{\rm H} = 1.0$ кмоль/м³, $c_0^{\rm I_2} = 0.0106$ кмоль/м³; б – перенос из капли, $c_0^{\rm H} = 0.478$ кмоль/м³, $c_0^{\rm I_2} = 0.02$ кмоль/м³. Заштрихованный участок – диффузионно-конвективный режим – $K_{\rm D}$.

Рис. 3. Массоперенос уксусной кислоты: а – из капли гептана в воду, $C_0 = 0.5$ кмоль/м³; б – из капли четыреххлористого углерода в воду, $C_0 = 0.51$ кмоль/м³; I – без ПАВ, 2 – в присутствии ПАВ (поливинилового спирта).

дены кинетические кривые массопереноса уксусной кислоты из капли четыреххлористого углерода в водную сплошную фазу (кривая *I*) и из четыреххлористого (сплошная фаза) в водную каплю (кривая *2*) при одной и той же начальной концентрации $C_0 = 0.5$ кмоль/м³.

Как видно из рис. 5, в начальный период интенсивность СМК в том и другом случае максимальна ($K_{\rm M} = 10 \times 10^{-4}$ м/с), и далее постоянно снижается до значений, которые соответствуют фазовым сопротивлениям: кривая $1 - до 2 \times 10^{-4}$ м/с, кривая $2 - до 3 \times 10^{-4}$ м/с.

Таким образом, интенсивность межфазной конвекции через сферическую границу раздела фаз увеличивает коэффициент массопередачи в ~10 раз. Независимо от направления массопереноса (из капли, в каплю) интенсивность СМК определяется из условий непрерывности тангенциальных составляющих тензора напряжения:

$$\eta \frac{\partial u_x}{\partial x} = \frac{\partial \sigma}{\partial c} \frac{\partial c}{\partial x}$$

Рис. 4. Зависимости мгновенного значения массопередачи от движущей силы и времени движения капли: а – массоперенос пропионовой кислоты из капли CCl_4 в воду (сплошная фаза), $C_0 = 0.7$ кмоль/м³; б – массоперенос уксусной кислоты из бензола (сплошная фаза) в водную каплю, $C_0 = 0.5$ кмоль/м³.

Рис. 5. Изменение коэффициента массопередачи в ходе экстракции уксусной кислоты, $C_0 = 0.5$ кмоль/м³: 1 -из капли CCl₄ в водную фазу (сплошная фаза); 2 -из CCl₄ (сплошная фаза) в водную каплю.

Решающее значение при возникновении СМК имеют фазовые сопротивления, обусловленные физико-химическими свойствами переносимых веществ и растворителей (вязкость, коэффициент распределения, градиенты межфазного натяжения, протекающие в фазах химические реакции).

На рис. 6 представлены экспериментальные значения степени насыщения за время движения капли с использованием физико-химических и гидродинамических характеристик, рассчитанные по уравнению (10).

Опытным путем установлены результаты эксперимента: степень насыщения за время движения капли с учетом концевого эффекта находится в диапазоне $A \approx 10-15\%$ (расчетные значения по уравнению (10)), коэффициент массопередачи в настоящем исследовании составляет ~1 × 10⁻⁴-5 × 10⁻⁴ м/с для уксусной кислоты и 1 × 10⁻⁴-8 × × 10⁻⁴ м/с для пропионовой кислоты.

Согласно [9], турбулентный режим в капле можно моделировать системой тороидов, при этом нестационарный механизм переноса с развитой циркуляцией жидкости внутри капли описывает массоперенос только в каплях диаметром более 5 мм. Коэффициент массопередачи в данном исследовании составляет 0.214×10^{-4} м/с, степень насыщения капли в диапазоне $A \approx 40-60\%$.

Рис. 6. Сравнение экспериментальных значений степени насыщения за время движения капли с рассчитанными по формуле (10). Обозначения систем соответствуют табл. 1.

В теоретической модели, предложенной в [10], для капель с развитой циркуляцией жидкости при малых и средних значениях чисел Рейнольдса коэффициент массопереноса составил 0.49×10^{-5} м/с при степени насыщения капли равной $A \approx 60-90\%$.

Ориентируясь на значения степеней насыщения капли и коэффициента массопередачи, можно сделать вывод, что модель, предложенная в данной статье, показывает более удовлетворительные результаты, чем модели, описывающие массоперенос в режиме нестационарности межфазной границы, предложенные в [9, 10].

ЗАКЛЮЧЕНИЕ

Проведены экспериментальные исследования концентрационно-капиллярной конвекции на одиночной капле при массопередаче в области малых и средних значений чисел Рейнольдса. Массоперенос осуществлялся из лимитирующей фазы (как из капли, так и в каплю).

Время образования капли учитывалось в виде "концевого эффекта". Показано, что предложенная полуэмпирическая модель дает удовлетворительную сходимость, относительная ошибка не превышает 10% и может быть использована для расчета степени насыщения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зуев А.Л., Костарев К.Г. // Вестн. Пермского научного центра УрО РАН. 2009. № 4. С. 4.
- 2. Головин А.А., Ермаков А.А., Рабинович Л.М. // Докл. АН СССР. 1989. Т. 305. № 4. С. 921.
- 3. Головин А.А., Поломарчук Н.И., Ермаков А.А. // ТОХТ. 1990. Т. 24. № 4. С. 450.
- 4. Ермаков А.А., Головина И.Г., Коньшин Ю.А. // ЖПХ. 1988. № 5. С. 1167.
- 5. *Ермаков А.А., Коньшин Ю.А.* // Журн. физ. химии. 1989. Т. 63. № 4. С. 1136.
- 6. Ермаков А.А., Данилов В.А., Коньшин Ю.А. // Там же. 1991. № 1. С. 223.
- 7. Самохин С.П., Вайсов О.В., Пожарская Г.И. и др. // Там же. 2000. Т. 74. № 8. С. 1502–1505.
- Ермаков А.А., Ермаков С.А., Русинова З.Р. и др. // Башкирский хим. журн. 2018. Т. 25. № 1. С. 33.
- 9. Handlos A., Baron T. // AIChE J. 1957. V. 3. P. 127.
- 10. Полянин А.Д. // ТОХТ. 1984. Т. 18. С. 284.