_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА _ И ТЕРМОХИМИЯ

УДК: 541.11:536.7

ТЕРМОДИНАМИКА ПРОЦЕССОВ КОМПЛЕКСООБРАЗОВАНИЯ НИКЕЛЯ(II) С ГЛИЦИЛ-ГЛИЦИНОМ В ВОДНОМ РАСТВОРЕ

© 2022 г. Г. Г. Горболетова^{*a*,*}, С. А. Бычкова^{*a*}, К. О. Фролова^{*b*}

^аИвановский государственный химико-технологический университет, Иваново, 153000 Россия ^bНациональный исследовательский университет ИТМО, Санкт-Петербург, 197101 Россия

*e-mail: gorboletova@mail.ru Поступила в редакцию 28.12.2021 г. После доработки 28.12.2021 г. Принята к публикации 14.03.2022 г.

Прямым калориметрическим методом определены энтальпии реакций образования комплексов Ni(II) с диглицином в водном растворе при температуре 298.15 К и ионной силе 0.2, 0.5 и 1.0 (KNO₃). Рассчитаны стандартные термодинамические характеристики ($\Delta_r H^\circ$, $\Delta_r G^\circ$, $\Delta_r S^\circ$) процессов комплексообразования в исследуемой системе. Проведен сравнительный анализ полученных данных с термодинамическими величинами процессов комплексообразования в системах Ni²⁺-глицин и Ni²⁺-триглицин, определенных ранее. Предложены вероятные структуры диглицинатных комплексов NiL⁺, NiH₋₁L, NiL₂, NiH₋₂L²⁻, NiL₃ и NiH₋₃L⁴⁻.

Ключевые слова: калориметрия, энтальпия, комплексообразование, пептид **DOI:** 10.31857/S0044453722090126

Изучение комплексов аминокислот и олигопептидов с ионами переходных металлов имеет большое значение для медицины и фармацевтики [1, 2]. Короткие пептиды представляют интерес как сами по себе, так и в качестве моделей для исследования фрагментов белковых молекул. Аналитические и клинические данные подтверждают, что ионы переходных металлов играют значительную роль в конформационных изменениях и последующей агрегации белков [3].

Никелевые комплексы с короткими пептидами в последние годы изучались рядом авторов [4– 7]. Для определения состава и структуры комплексов были использованы различные физические, физико-химические методы и методы математической обработки данных: электронная и колебательная спектроскопия, ЯМР, ЭПР, круговой дихроизм и т.д. Существенную роль для определения состава и свойств равновесной системы, состоящей из катиона металла и биолиганда, играют также потенциометрический и калориметрический методы исследования.

Изучение процессов комплексообразования в системе Ni(II) — глицил-глицин (L) потенциометрическим и спектрофотометрическим методами было выполнено ранее в нашей лаборатории [8]. Константы устойчивости (lg β°) комплексов диглицина с Ni²⁺ при 298.15 К и I = 0.2) приведены ниже:

NiL^+	$NiH_{-1}L$	NiL ₂
4.00 ± 0.02	-4.20 ± 0.02	6.79 ± 0.03
$NiH_{-2}L_{2}^{2-}$	NiL_3^-	$NiH_{-3}L_{3}^{4-}$
-10.58 ± 0.05	9.36 ± 0.03	-18.20 ± 0.09

Анализ литературных данных по термодинамике процессов комплексообразования в растворах глицил-глицина и Ni²⁺ показал, что приведенные термодинамические параметры немногочисленны и очень противоречивы, так как авторами не были учтены процессы образования некоторых комплексов.

В 1972 г. Э.У. Типпинг и Х.А. Скиннер [9] определили термодинамические характеристики процессов образования комплексов NiL⁺, NiL₂ и NiL₃, полученные данные сведены в табл. 1. В 2014 г. Л.А. Кочергина и А.В. Емельянов [10] методом прямой калориметрии определили энтальпии образования комплексных частиц NiL⁺,

 NiL_2 и NiL_3^- при температуре 298.15 К и нескольких значениях ионной силы раствора (KNO₃). Были рассчитаны стандартные термодинамические характеристики процессов комплексообра-

Процесс	$-\Delta_{ m r} H^{\circ}$, кДж/моль	$-\Delta_{ m r}G^{\circ},$ кДж/моль	$\Delta_{\rm r} S^{\circ}, {\rm Д} {\rm ж}/({\rm моль} {\rm K})$
$Ni^{2+} + L^{-} \leftrightarrow NiL^{+}$ [9]	20.52		9.63
$NiL^+ + L^- \leftrightarrow NiL_2$ [9]	16.50		4.61
$NiL_2 + L^- \leftrightarrow NiL_3^-$ [9]	23.03		-36.85
$Ni^{2+} + L^{-} \leftrightarrow NiL^{+}$ [10]	16.45 ± 0.68	25.71 ± 0.46	31.07 ± 2.38
$Ni^{2+} + 2L^{-} \leftrightarrow NiL_2$ [10]	27.34 ± 0.68	46.24 ± 0.46	63.38 ± 2.38
$Ni^{2+} + 3L^- \leftrightarrow NiL_3^-$ [10]	36.22 ± 0.70	57.64 ± 0.46	71.84 ± 2.38

Таблица 1. Стандартные термодинамические характеристики реакций комплексообразования диглицина с ионами Ni^{2+}

зования, которые приведены в табл. 1. Из табл. 1 видно, что авторы не учитывали образование в системе никель(II) — диглицин депротонированных комплексных частиц.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Измерения тепловых эффектов смешения и разведения проводили в калориметре с изотермической оболочкой и автоматической записью кривой калориметрического опыта [11]. Использовали кристаллический препарат диглицина фирмы "Sigma" без дополнительной очистки, перед взятием навесок высушивали до постоянной массы при 343 К. Растворы пептида готовили растворением навесок препарата в свежеприготовленном дистилляте непосредственно перед проведением калориметрического опыта. Водные растворы Ni(NO₃)₂ готовили из соли марки "х.ч.", концентрацию определяли комплексонометрически. Для поддержания заданного значения ионной силы применяли KNO3 марки "х.ч". Для опытов использовали реактивы HNO₃ и КОН квалификации "х.ч.". Опыты проводили при 298.15 К и значениях ионной силы 0.2, 0.5 и 1.0. Величину рН контролировали с помощью прибора "Мультитест" ИПЛ-311. Для расчета доверительного интервала среднего значения ΔH из трех параллельных опытов критерий Стьюдента брали при доверительной вероятности 0.95.

При взаимодействии растворов, содержащих ионы никеля(II) и диглицин, возможно протекание следующих процессов:

 $L^{-} + H^{+} \leftrightarrow HL^{\pm}, \qquad (1)$

$$L^{-} + 2H^{+} \leftrightarrow H_{2}L^{+}, \qquad (2)$$

$$Ni^{2+} + L^- \leftrightarrow NiL^+,$$
 (3)

 $Ni^{2+} + 2L^{-} \leftrightarrow NiL_2,$ (4)

 $Ni^{2+} + 3L^- \leftrightarrow NiL_3^-,$ (5)

$$Ni^{2+} + L^{-} - H^{+} \leftrightarrow NiH_{-1}L, \tag{6}$$

$$\mathrm{Ni}^{2+} + 2\mathrm{L}^{-} - 2\mathrm{H}^{+} \leftrightarrow \mathrm{NiH}_{-2}\mathrm{L}_{2}^{2-}, \tag{7}$$

$$\mathrm{Ni}^{2^{+}} + 3\mathrm{L}^{-} - 3\mathrm{H}^{+} \leftrightarrow \mathrm{Ni}\mathrm{H}_{-3}\mathrm{L}_{3}^{4^{-}}, \qquad (8)$$

$$H^{+} + OH^{-} \leftrightarrow H_2O, \tag{9}$$

$$Ni^{2+} + HOH \leftrightarrow NiOH^{+} + H^{+},$$
 (10)

Для определения термодинамических характеристик реакций образования комплексов в системе диглицин - Ni(II) измеряли энтальпию смешения растворов Ni(NO₃)₂, помещенных в ампулу. с нахоляшимся в реакционном стакане раствором диглицина, содержащим фоновый электролит. Точные навески раствора нитрата никеля концентрации 1.0514 моль/кг раствора составляли ~0.4 г. В калориметрической ячейке после смешения концентрация металла была ~1.0 × 10⁻² моль/л. Оптимальные пределы изменения концентрации лиганда, а также рН растворов находили для каждого комплекса путем моделирования системы с помощью универсальной программы [12]. На рис. 1 представлена диаграмма равновесий в системе Ni(II) – глицил-глицин. Исследования проводили при соотношениях Ni: L = 1:1;1:2;1:5 и 1:7. Были измерены также теплоты разведения растворов Ni(NO₃)₂ в растворах фонового электролита. Значения тепловых эффектов разведения приведены в табл. 2.

Расчет равновесного состава растворов показал, что в условиях калориметрического опыта при соотношении $c_{Ni}^{\circ} : c_{L}^{\circ} = 1 : 1$ в интервале pH 8.1–6.2 выход комплекса NiL⁺ составлял 36%, вклад тепловых эффектов реакций образования остальных комплексов никеля(II) с диглицином был пренебрежимо мал. Экспериментальные данные для расчета энтальпий образования частицы NiL⁺ указаны в табл. 2.

Как показал расчет равновесного состава растворов по программе RRSU, независимое определение энтальпий образования комплексов NiL₂ и

NiL₃ невозможно. Измерения проводили в условиях одновременного протекания процессов (4) и (5) при соотношениях $c_{Ni}^{\circ} : c_{L}^{\circ} = 1 : 5$ и различных

1312

Рис. 1. Диаграмма распределения частиц в системе Ni(II)–диглицин ($C^{\circ}(Ni^{2+}) = 0.01$ моль/л; $C^{\circ}(L) = 0.05$ моль/л).

интервалах pH раствора: 8.2–7.2 и 8.8–8.1. Доля образования комплекса NiL₂ в зависимости от pH

колебалась от 38 до 22%, а Ni L_3^- от 31 до 72%. Одновременно на 4 и 27%, соответственно, протекал процесс образования комплекса Ni L^+ . Экспериментальные данные приведены в табл. 3.

Изучение частицы NiH₁L проводили при соотношении концентраций $c_{Ni}^{\circ}: c_{L}^{\circ} = 1:2$ и pH 11.2– 8.5, что соответствовало образованию ~21% частиц NiH₁L. Экспериментальные данные в виде разности энтальпий смешения и разведения указаны в табл. 3.

При двух соотношениях $c_{Ni}^{\circ} : c_{L}^{\circ} = 1 : 5 \text{ и } 1 : 7$ изучали комплексы NiH₂L₂²⁻ и NiH₃L₃⁴⁻ при их совместном присутствии, так как независимое измерение тепловых эффектов этих частиц невозможно. При первом соотношении взаимодействие растворов нитрата никеля(II) с растворами диглицина осуществляли в интервале pH 12.0– 9.9, во втором – 12.3–11.3. В этих условиях проис-

Таблица 2. Тепловые эффекты (кДж/моль) взаимодействия растворов Ni(NO₃)₂ (1.0514 моль/кг раствора) с растворами диглицина (0.01000 моль/л), m – навеска раствора Ni(NO₃)₂, $-\Delta_r H_i = \Delta_{mix} H_i - \Delta_{dil} H$

<i>I</i> (KNO ₃)	т, г	$-\Delta_{\min}H_1$	т, г	$-\Delta_{ m dil}H$	$-\Delta_{\rm r}H_1$	
	$(c_{\rm Ni}^{\circ}: c_{\rm L}^{\circ} = 1:1; \text{pH } 8.1-6.2)$					
0.2	0.40005	8.55	0.39995	1.26	7.24	
	0.40035	8.38	0.40005	1.32	7.07	
	0.40000	8.41	0.40010	1.36	7.10	
		$-\Delta_{\rm mix}H_1 = 8.45 \pm 0.17$		$-\Delta_{\rm dil}H = 1.31 \pm 0.10$	$-\Delta_{\rm r}H_1 = 7.14 \pm 0.20$	
0.5	0.40035	10.13	0.40020	2.71	7.41	
	0.40015	10.18	0.40035	2.76	7.46	
	0.39995	10.15	0.40030	2.69	7.43	
		$-\Delta_{\rm mix}H_1 = 10.15 \pm 0.10$		$-\Delta_{\rm dil}H = 2.72 \pm 0.10$	$-\Delta_{\rm r}H_1 = 7.43 \pm 0.14$	
1.0	0.40015	11.95	0.40015	4.16	7.75	
	0.39970	12.11	0.40040	4.23	7.91	
	0.40010	12.03	0.40025	4.21	7.83	
		$-\Delta_{\rm mix}H_1 = 12.03 \pm 0.15$		$-\Delta_{\rm dil}H = 4.20 \pm 0.10$	$-\Delta_{\rm r}H_1 = 7.83 \pm 0.18$	

ГОРБОЛЕТОВА и др.

<i>I</i> (KNO ₃)	т, г	$-\Delta_{\rm r}H_2$	т, г	$-\Delta_{\rm r}H_3$	т, г	$-\Delta_{\rm r}H_4$
	$c_{\rm Ni}^{\circ}: c_{\rm L}^{\circ} = 1:5; \rm pH 8.2-7.2$		$c_{\rm Ni}^{\circ}: c_{\rm L}^{\circ} = 1:5, \rm pH \ 8.8-8.1$		$c_{\rm Ni}^{\circ}: c_{\rm L}^{\circ} = 1:2; \rm pH \ 11.2-8.5$	
0.2	0.40030	39.46	0.40005	51.96	0.40000	35.79
	0.40025	39.70	0.39975	52.22	0.40010	35.76
	0.40035	39.53	0.40005	52.13	0.40015	35.78
		$-\Delta_{\rm r}H_2 = 39.56 \pm 0.25$		$-\Delta_{\rm r}H_3 = 52.10 \pm 0.26$		$-\Delta_{\rm r}H_4 = 35.78 \pm 0.14$
0.5	0.40020	40.71	0.40000	53.56	0.39975	36.52
	0.40035	40.60	0.40025	53.33	0.40050	36.73
	0.40015	40.46	0.40020	53.40	0.40025	36.63
		$-\Delta_{\rm r}H_2 = 40.59 \pm 0.25$		$-\Delta_{\rm r}H_3 = 53.43 \pm 0.24$		$-\Delta_{\rm r}H_4 = 36.63 \pm 0.21$
1.0	0.40045	41.95	0.40010	54.88	0.40005	37.83
	0.39995	41.73	0.40030	55.09	0.40025	37.58
	0.40020	41.82	0.40005	54.95	0.40010	37.62
		$-\Delta_{\rm r}H_2 = 41.83 \pm 0.22$		$-\Delta_{\rm r}H_3 = 54.97 \pm 0.22$		$-\Delta_{\rm r}H_4 = 37.68 \pm 0.27$

Таблица 3. Тепловые эффекты (кДж/моль) взаимодействия растворов Ni(NO₃)₂ (1.0514 моль/кг раствора) с растворами диглицина, $-\Delta_r H_i = \Delta_{mix} H_i - \Delta_{dil} H$

Таблица 4. Тепловые эффекты (кДж/моль) взаимодействия растворов Ni(NO₃)₂ (1.0514 моль/кг раствора) с растворами диглицина, $-\Delta_r H_i = \Delta_{mix} H_i - \Delta_{dil} H$

$I(KNO_3)$	т, г	$-\Delta_{\rm r}H_5$	т, г	$-\Delta_{\rm r}H_6$
	$c_{\rm Ni}^{\circ}: c_{\rm L}^{\circ} = 1:5; \rm pH \ 12.0-9.9$		$c_{\rm Ni}^{\circ}: c_{\rm L}^{\circ} = 1:7; \rm pH \ 12.3-11.3$	
0.2	0.40000	63.65	0.40015	74.27
	0.40010	63.41	0.40035	74.49
	0.40035	63.52	0.40005	74.41
		$-\Delta_{\rm r}H_5 = 63.53 \pm 0.24$		$-\Delta_{\rm r}H_6 = 74.39 \pm 0.22$
0.5	0.40020	64.22	0.40010	74.36
	0.40025	64.34	0.40045	74.62
	0.40000	64.10	0.40025	74.51
		$-\Delta_{\rm r}H_5 = 64.22 \pm 0.24$		$-\Delta_{\rm r}H_6 = 74.50 \pm 0.26$
1.0	0.40025	64.53	0.40035	74.69
	0.40045	64.78	0.40035	74.54
	0.40010	64.61	0.40020	74.44
		$-\Delta_{\rm r}H_5 = 64.64 \pm 0.25$		$-\Delta_{\rm r}H_6 = 74.56 \pm 0.25$

ходило образование комплекса $NiH_{-2}L_2^{2-}$ с выходом 32 и 19%, $NiH_{-3}L_3^{4-}$ с выходом 21 и 76%. Экспериментальные данные приведены в табл. 4.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Экспериментальный тепловой эффект имеет вид:

$$\Delta_{\text{mix}}H - \Delta_{\text{dil}}H = \alpha_1 \Delta H_{\text{NiL}^+} + \alpha_2 \Delta H_{\text{NiL}_2} + + \alpha_3 \Delta H_{\text{NiL}_3^-} + \alpha_4 \Delta H_{\text{NiH}_{-1}L} + \alpha_5 \Delta H_{\text{NiH}_{-2}L_2^-} + (11) + \alpha_6 \Delta H_{\text{NiH}_{-3}L_3^+} + \sum \alpha_i \Delta_r H_i,$$

где $\Delta_{\text{mix}}H$ — тепловые эффекты взаимодействия растворов Ni(NO₃)₂ с растворами триглицина, имеющими заданное значение pH; $\Delta_{\text{dil}}H$ — теплота разведения раствора нитрата никеля(II) в растворах фонового электролита; $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6,$ полнота протекания процессов (3), (4), (5), (6), (7) и (8), соответственно; $\sum \alpha_i \Delta_r H_i$ — вклад одновременно протекающих побочных процессов (1), (2), (9), (10) в измеряемый тепловой эффект.

Условия проведения калориметрических опытов выбирали таким образом, чтобы вклад побочных процессов был минимальным. Необходимые для расчета энтальпии реакций кислотно-основного взаимодействия в растворах диглицина взя-

№ 9

2022

Процесс	$\lg \beta^\circ$	$\Delta_{ m r} H^{\circ}$, кДж/моль	$\Delta_{ m r} G^{\circ},$ кДж/моль	$\Delta_{\rm r} S^{\circ}, $ Дж/(моль K)		
I = 0.2						
(3)	4.00 ± 0.02	-17.55 ± 0.20	-22.83 ± 0.11	17.7 ± 0.3		
(4)	6.79 ± 0.03	-40.22 ± 0.28	-38.76 ± 0.17	-4.9 ± 0.4		
(5)	9.36 ± 0.03	-57.88 ± 0.26	-53.43 ± 0.17	-14.9 ± 0.3		
(6)	-4.20 ± 0.02	14.54 ± 0.14	23.97 ± 0.11	-31.6 ± 0.8		
(7)	-10.58 ± 0.05	39.19 ± 0.30	60.39 ± 0.28	-71.7 ± 2.0		
(8)	-18.20 ± 0.09	91.69 ± 0.25	103.89 ± 0.51	-40.9 ± 2.6		
	I	I = 0.5		I		
(3)	3.90 ± 0.02	-18.55 ± 0.14	-22.26 ± 0.11	12.4 ± 0.2		
(4)	6.65 ± 0.03	-41.68 ± 0.28	-37.96 ± 0.17	-12.5 ± 0.4		
(5)	9.22 ± 0.03	-59.40 ± 0.24	-52.63 ± 0.17	-22.7 ± 0.3		
(6)	-4.30 ± 0.02	15.06 ± 0.30	24.54 ± 0.11	-31.8 ± 1.4		
(7)	-10.61 ± 0.05	40.02 ± 0.35	60.56 ± 0.28	-68.9 ± 2.1		
(8)	-17.99 ± 0.09	91.60 ± 0.26	102.69 ± 0.51	-37.2 ± 2.6		
I = 1.0						
(3)	3.82 ± 0.02	-19.47 ± 0.18	-21.80 ± 0.11	7.8 ± 0.2		
(4)	6.55 ± 0.03	-43.30 ± 0.29	-37.39 ± 0.17	-19.8 ± 0.4		
(5)	9.12 ± 0.03	-61.10 ± 0.22	-52.06 ± 0.17	-30.3 ± 0.3		
(6)	-4.38 ± 0.02	15.70 ± 0.32	25.00 ± 0.11	-31.2 ± 1.5		
(7)	-10.63 ± 0.05	41.20 ± 0.40	60.68 ± 0.28	-65.3 ± 2.3		
(8)	-17.85 ± 0.09	91.40 ± 0.25	101.89 ± 0.51	-35.2 ± 2.6		

Таблица 5. Стандартные термодинамические характеристики процессов образования комплексов Ni²⁺ с диглицином

ты из работы [13], термодинамические параметры диссоциации воды — из [14], константа равновесия реакции (10) — из [15]. Вклад теплового эффекта процесса (10) стремился к нулю.

Тепловые эффекты образования комплексов NiL⁺, NiH₋₁L, NiL₂, NiH₋₂L₂²⁻, NiL₃⁻, NiH₋₃L₃⁴⁻ рассчитывали по универсальной программе НЕАТ [16] путем минимизации критериальной функции *F* по искомым параметрам:

$$F = \sum_{i=1}^{N} \omega_i (\Delta H_i^{\scriptscriptstyle \mathsf{эксп}} - \Delta H_i^{\scriptscriptstyle \mathsf{Bbiq}})^2, \qquad (12)$$

где $\Delta H_i^{\text{выч}}$ — рассчитанный тепловой эффект при заданных значениях общих концентраций $c_{\text{Ni}^{2+}}^{\circ}$, $c_{\text{L}^-}^{\circ}$ и текущих lg β и $\Delta_r H$; N — число опытов; ω_i — весовые множители. Результаты расчета приведены в табл. 5.

Значения тепловых эффектов процессов образования комплексов NiL⁺, NiH₋₁L, NiL₂, NiH₋₂L₂²⁻, NiL₃⁻ и NiH₋₃L₃⁴⁻ при нулевой ионной силе находили по уравнению с одним индивидуальным параметром:

$$\Delta H - \Delta Z^2 \Psi(I) = \Delta H^\circ + bI, \qquad (13)$$

где ΔH и ΔH° — изменение энтальпии при конечном значении ионной силы и I = 0, соответственно; $\Psi(I)$ — функция ионной силы, вычисленная теоретически; ΔZ^2 — разность квадратов зарядов продуктов реакции и исходных компонентов; b эмпирический коэффициент. Рассчитанные значения стандартных термодинамических характеристик комплексообразования в системе Ni²⁺ диглицин сведены в табл. 6. Также в табл. 6 приведены литературные данные по термодинамическим характеристикам образования глицинатных и триглицинатных комплексов никеля(II) [17, 18].

Ранее в результате изучения термодинамики реакций диссоциации с участием аминокислот и коротких пептидов нами были отмечены некоторые особенности. В работе [19] было предположено, что в процессах ступенчатой ионизации какие-либо сольватационные изменения происходят в основном на функциональных группах этих соединений, так как суммарные значения $\Delta_r S^{\circ}$ ступенчатых реакций диссоциации дипептидов имеют близкие значения с суммой $\Delta_r S^{\circ}$ диссоциации карбоксильных и бетаиновых групп соответствующих аминокислот. Данное предположение нашло подтверждение при изучении термодина-

Процесс	lgβ°	Δ _r H°, кДж/моль	$\Delta_{ m r} G^{\circ},$ кДж/моль	Δ _r S°, Дж/(моль К)
$Ni^{2+} + L^- \leftrightarrow NiL^+$	4.54 ± 0.02	-16.34 ± 0.25	-25.91 ± 0.11	32.1 ± 0.5
$Ni^{2+} + 2L^- \leftrightarrow NiL_2$	7.60 ± 0.03	-38.30 ± 0.35	-43.38 ± 0.17	17.0 ± 0.6
$Ni^{2+} + 2L^- \leftrightarrow NiL_3^-$	10.17 ± 0.03	-55.93 ± 0.30	-58.05 ± 0.17	7.1 ± 0.4
$Ni^{2+} + L^ H^+ \leftrightarrow NiH_{-1}L$	-3.66 ± 0.02	15.15 ± 0.30	20.89 ± 0.11	-19.3 ± 1.4
$Ni^{2+} + 2L^{-} - 2H^{+} \leftrightarrow NiH_{-2}L_{2}^{2-}$	-10.58 ± 0.05	38.72 ± 0.45	60.39 ± 0.28	-72.7 ± 2.5
$Ni^{2+} + 3L^{-} - 3H^{+} \leftrightarrow NiH_{-3}L_{3}^{4-}$	-19.81 ± 0.09	89.19 ± 0.40	113.07 ± 0.51	-80.1 ± 3.1
$Ni^{2+} + Gly^- \leftrightarrow NiGly^+$ [17]	6.15 ± 0.03	-17.74 ± 0.26	-35.09 ± 0.17	58.2 ± 1.0
$Ni^{2+} + 2Gly^- \leftrightarrow Ni(Gly)_2$	11.12 ± 0.03	-39.98 ± 0.41	-63.49 ± 0.17	78.8 ± 1.5
$Ni^{2+} + 3Gly^- \leftrightarrow Ni(Gly)_3^-$	14.63 ± 0.10	-62.50 ± 0.39	-83.51 ± 0.57	70.4 ± 2.3
$Ni^{2+} + (3Gly^{-}) \leftrightarrow Ni(3Gly)^{+}$ [18]	4.18 ± 0.01	-11.36 ± 0.30	-23.86 ± 0.06	41.9 ± 0.5
$Ni^{2+} + 2(3Gly)^{-} \leftrightarrow Ni(3Gly)_{2}$	7.18 ± 0.02	-33.53 ± 0.50	-40.98 ± 0.11	25.0 ± 0.9
$Ni^{2+} + 3(3Gly)^{-} \leftrightarrow Ni(3Gly)_{3}^{-}$	10.10 ± 0.02	-56.90 ± 0.40	-57.65 ± 0.11	2.5 ± 0.9
$Ni^{2+} + (3Gly^{-}) - H^{+} \leftrightarrow NiH_{-1}(3Gly)$	-3.14 ± 0.02	34.03 ± 0.30	17.92 ± 0.11	54.0 ± 0.9
$Ni^{2+} + 2(3Gly)^{-} - 2H^{+} \leftrightarrow NiH_{-2}(3Gly)_{2}^{2-}$	-9.29 ± 0.05	88.47 ± 0.30	53.03 ± 0.28	118.9 ± 0.9
$Ni^{2+} + 3(3Gly)^{-} - 3H^{+} \leftrightarrow NiH_{-3}(3Gly)_{3}^{4-}$	-17.13 ± 0.20	132.42 ± 0.30	97.78 ± 1.14	116.2 ± 2.7

Таблица 6. Стандартные термодинамические характеристики процессов образования комплексов Ni²⁺ с диглицином (L), глицином (Gly) и триглицином (3Gly) при I = 0

мики протолитических равновесий в растворах диглицина и триглицина [13, 20].

Величины стандартных термодинамических характеристик, приведенные в табл. 6, показывают, что гидратационные равновесия, происходящие на функциональных группах аминокислот и пептидов, не только оказывают существенное влияние на процессы диссоциации этих лигандов, но также играют большую роль при образовании их комплексов с катионами металлов. Термодинамические характеристики процессов образования комплексов никеля(II) с глицином (табл. 6) в водном растворе были получены ранее в нашей лаборатории [17]. Координация в них осуществляется через атом азота аминогруппы и атом кислорода карбоксильной группы с образованием пятичленного хелатного узла. При этом в моно- и *бис*-комплексах лиганд координируется в экваториальном положении, в *трис*-комплексе в аксиальном положении:

Судя по термодинамическим данным для моно-, *бис-* и *трис*-комплексов диглицина (табл. 6), в координации никеля(II) с ним принимают участие азот аминогруппы и карбонильный кислород пептидной группы:

Тепловые эффекты образования моно- и бискомплексов обоих лигандов близки. Это могло бы указывать на идентичный тип их координации. Но для *mpuc*-комплексов заметно существенное отличие: $\Delta_r H^{\circ}(\text{NiL}_3) = -55.93 \text{ кДж/моль}$, меньше, чем $\Delta_r H^{\circ}(\text{Ni}(\text{Gly})_3) = -62.50 \text{ кДж/моль}$. Поскольку кислород пептидной группы более слабый донор электронной плотности по сравнению с кислородом карбоксильной группы, при насыщении координационной сферы в *mpuc*-комплексах наибольшим образом проявляется различие донорных групп лигандов.

Процессы образования комплексных частиц $Ni(Gly)^+$, $Ni(Gly)_2$ и $Ni(Gly)_3^-$ связаны с существенной дегидратацией, так как характеризуются довольно значительными положительными величинами $\Delta_r S^\circ$. Величина изменения энтропии немного снижается только в результате присоединения третьего лиганда. В случае образования диглицинатных комплексов никеля(II) дегидратация гораздо меньше и снижается по мере присоединения большего количества лигандов. Видимо, благодаря этим противоположным тенденциям в гидратации комплексов глицина и диглицина с никелем(II) тепловые эффекты образования их моно- и бискомплексов близки. Значительная дегидратация в процессе комплексообразования с участием глицина связана, по-видимому, с близостью к координационной сфере карбонильного кислорода карбоксильной группы аминокислоты, разрушающего гидратационную оболочку катиона никеля(II). Поэтому в *трис*-комплексе

 $Ni(Gly)_{3}^{-}$ из-за отсутствия внутрисферной гидратации величина $\Delta_r S^{\circ}$ немного снижается. В случае образования диглицинатных комплексов иона Ni^{2+} кислород пептидной группы принимает участие в комплексообразовании и не создает проблем для связанной никелем(II) внутрисферной воды.

Тепловые эффекты образования моно- и *бис*комплексов никеля(II) с триглицином менее экзотермичны по сравнению с $\Delta_r H^\circ$ образования аналогичных диглицинатных комплексов (табл. 6). Судя по величинам изменения энтропии (Дж/(моль K)): $\Delta_r S^\circ$ (NiL⁺) = 32.1, $\Delta_r S^\circ$ (Ni(3Gly)⁺) = = 41.9, $\Delta_r S^\circ$ (NiL₂) = 17.0 и $\Delta_r S^\circ$ (Ni(3Gly)₂) = 25.0, это может быть связано с меньшей дегидратацией при образовании частиц NiL⁺ и NiL₂, чем частиц Ni(3Gly)⁺ и Ni(3Gly)₂.

Существенное отличие термодинамики процессов комплексообразования аминокислот и коротких пептидов обусловлено участием в координации последних атомов азота пептидной группы. В щелочной среде происходят депротонирование и координация азота пептидных групп диглицина и триглицина с образованием частиц NiH₋₁L, NiH₋₂L²⁻₂ и NiH₋₃L⁴⁻₃, NiH₋₁(3Gly), NiH₋₂ (3Gly)²⁻₂ и NiH₋₃(3Gly)⁴⁻₃. Предполагаемые структуры депротонированных комплексов диглицина и триглицина приведены на схеме:

Суммарные процессы диссоциации и комплексообразования характеризуются положительными величинами изменения энтальпии. Следовательно, эндоэффект процесса диссоциации NH-группы пептидов значительно превышает экзоэффект образования связей иона никеля(II) с азотом аминогруппы и азотом пептидной группы. Можно отметить, что изменения энтропии в реакциях образования частиц NiH_1(3Gly), $NiH_{-2}(3Gly)_2^{2-}$ и $NiH_{-3}(3Gly)_3^{4-}$ положительны и гораздо больше величин $\Delta_r S^\circ$ реакций образова-

ния частиц Ni(3Gly)⁺, Ni(3Gly)₂ и Ni(3Gly)₃. В случае образования депротонированных комплексов никеля(II) с диглицином величины изменения энтропии отрицательны и довольно значительны по абсолютной величине. Очевидно, что на процессы образования депротонированных комплексов также оказывают существенное влияние процессы гидратации. Причем в случае взаимодействия никеля(II) с триглицином происходит разупорядочение системы, а с диглицином, наоборот, система стабилизируется. Сравнение величин $\Delta_r H^\circ$ образования депротонированных комплексов подтверждает данное

предположение. Величины изменения энтальпии в результате образования частиц NiH₋₁(3Gly), $NiH_{-2}(3Gly)_2^{2-}$ и $NiH_{-3}(3Gly)_3^{4-}$ более чем в 2 раза превышают аналогичные величины при образовании комплексов NiH₋₁L, NiH₋₂ L_2^{2-} и NiH₋₃ L_3^{4-} (табл. 6). Это можно объяснить изначально большей гидратацией аминогруппы триглицина по сравнению с диглицином, а также тем, что внутрисферная и внешнесферная гидратации депротонированных диглицинатных комплексов никеля(II) должны быть значительны вследствие сравнительной близости к координационной сфере гидрофобной карбоксильной группы. В триглицинатных комплексах никеля(II) ближе к координационной сфере расположена пептидная группа, которая менее гидрофобна, чем карбоксильная, и не требует компенсации клатратной структуры.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования (проект FZZW-2020-0009).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gielen M., Tiekink ERT.* Metallotherapeutic Drugs and Metal-Based Diagnostic Agents. The Use of Metals in Medicine. Wiley: Chichester, 2005. 584 p.
- Zhang C.X., Lippard S.J. // Curr. Opin. Chem. Biol. 2003. V. 7. № 4. P. 481. https://doi.org/10.1016/S1367-5931(03)00081-4
- 3. *Balogh B.D., Szunyog G., Lukács M. et al.* // J. Chem. Soc., Dalton Trans. 2021. № 50. P. 14411. https://doi.org/10.1039/D1DT02324A
- Mandal S., Lyngdoh R.H.D., Askari H. et al. // J. Chem & Eng. Data. 2015. V. 60. № 3. P. 659. https://doi.org/10.1021/je500799g
- Constantino E., Rimola A., Rodríguez-Santiago L. et al. // New Journal of Chemistry. 2005. V. 29. N 12. P. 1585. https://doi.org/10.1039/B512618E
- 6. *Xu Jian-Hua, Hu Chang-Wei.* // Acta Chimica Sinica. Chinese Edition. 2006. V. 64. № 16. P. 1622.
- Ágoston C.G., Miskolczy Z., Nagy Z. et al. // Polyhedron. 2003. V. 22. № 18. P. 2607. https://doi.org/10.1016/S0277-5387(03)00367-X
- Бычкова С.А., Горболетова Г.Г., Крутова О.Н. др. // Рос. хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менделеева). 2021. Т. 65. № 2. С. 47. https://doi.org/10.6060/rcj.2021652.4
- Tipping E.W., Skinner H.A. // J. Chem. Soc., Faraday Trans. 1: Physical Chemistry in Condensed Phases. 1972. V. 68. P. 1764. https://doi.org/10.1039/f19726801764

- 10. *Кочергина Л.А., Емельянов А.В.* // Журн. физ. химии. 2014. Т. 88. № 10. С. 1482. https://doi.org/10.7868/S0044453714100240
- 11. Черников В.В. Дис. ... канд. хим. наук. Иваново: ИХТИ, 1988. С. 161.
- Васильев В.П., Бородин В.А., Козловский Е.В. Применение ЭВМ в химико-аналитических расчетах. М.: Высшая школа, 1993. С. 112.
- 13. Горболетова Г.Г., Гридчин С.Н., Сазонова Е.С. // Журн. физ. химии. 2005. Т. 79. № 8. С. 1390.
- 14. Васильев В.П., Лобанов Г.А. // Изв. вузов. Химия и хим. технология. 1969. Т. 12. № 6. С. 740.
- Назаренко В.А., Антонович В.П., Невская Е.М. Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат. 1979. С. 120.
- 16. Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1982. Т. 27. № 9. С. 2169.
- 17. Васильев В.П., Кутуров М.В., Кочергина Л.А. и др. // Там же. 1986. Т. 31. № 6. С. 1479.
- Горболетова Г.Г., Метлин А.А., Бычкова С.А. // Журн. физ. химии. 2018. Т. 92. № 5. С. 684. https://doi.org/10.7868/S0044453718050023
- 19. *Gorboletova G.G., Kochergina L.A.* // J. Thermal Analysis and Calorimetry. 2007. V. 87. № 2. P. 561–565. https://doi.org/10.1007/s10973-006-7679-y
- 20. Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. неорган. химии. 2017. Т. 62. № 2. С. 249. https://doi.org/10.7868/s0044457x17020118